Defining parameters
| Level: | \( N \) | = | \( 88 = 2^{3} \cdot 11 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Nonzero newspaces: | \( 6 \) | ||
| Newform subspaces: | \( 10 \) | ||
| Sturm bound: | \(960\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(88))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 300 | 151 | 149 |
| Cusp forms | 181 | 115 | 66 |
| Eisenstein series | 119 | 36 | 83 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(88))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(88))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(88)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 2}\)