Properties

Label 88.2
Level 88
Weight 2
Dimension 115
Nonzero newspaces 6
Newform subspaces 10
Sturm bound 960
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 10 \)
Sturm bound: \(960\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(88))\).

Total New Old
Modular forms 300 151 149
Cusp forms 181 115 66
Eisenstein series 119 36 83

Trace form

\( 115 q - 10 q^{2} - 10 q^{3} - 10 q^{4} - 10 q^{6} - 10 q^{7} - 10 q^{8} - 20 q^{9} - 10 q^{10} - 10 q^{11} - 20 q^{12} - 10 q^{14} - 20 q^{15} - 10 q^{16} - 30 q^{17} - 10 q^{18} - 25 q^{19} - 10 q^{20}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(88))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
88.2.a \(\chi_{88}(1, \cdot)\) 88.2.a.a 1 1
88.2.a.b 2
88.2.c \(\chi_{88}(45, \cdot)\) 88.2.c.a 10 1
88.2.e \(\chi_{88}(87, \cdot)\) None 0 1
88.2.g \(\chi_{88}(43, \cdot)\) 88.2.g.a 2 1
88.2.g.b 8
88.2.i \(\chi_{88}(9, \cdot)\) 88.2.i.a 4 4
88.2.i.b 8
88.2.k \(\chi_{88}(19, \cdot)\) 88.2.k.a 8 4
88.2.k.b 32
88.2.m \(\chi_{88}(7, \cdot)\) None 0 4
88.2.o \(\chi_{88}(5, \cdot)\) 88.2.o.a 40 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(88))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(88)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 2}\)