Properties

Label 875.2.bb.a.507.15
Level $875$
Weight $2$
Character 875.507
Analytic conductor $6.987$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [875,2,Mod(82,875)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("875.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(60)) chi = DirichletCharacter(H, H._module([27, 50])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.bb (of order \(60\), degree \(16\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: no (minimal twist has level 175)
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 507.15
Character \(\chi\) \(=\) 875.507
Dual form 875.2.bb.a.768.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.69351 + 1.09978i) q^{2} +(0.0509090 + 0.0195422i) q^{3} +(0.844998 + 1.89790i) q^{4} +(0.0647231 + 0.0890837i) q^{6} +(2.64536 + 0.0453616i) q^{7} +(-0.0244829 + 0.154579i) q^{8} +(-2.22722 - 2.00540i) q^{9} +(2.53998 + 2.82093i) q^{11} +(0.00592906 + 0.113133i) q^{12} +(1.38789 - 2.72389i) q^{13} +(4.43007 + 2.98614i) q^{14} +(2.56878 - 2.85292i) q^{16} +(2.63674 + 2.13519i) q^{17} +(-1.56633 - 5.84563i) q^{18} +(3.38312 + 1.50626i) q^{19} +(0.133786 + 0.0540054i) q^{21} +(1.19908 + 7.57071i) q^{22} +(-3.12944 + 4.81891i) q^{23} +(-0.00426721 + 0.00739102i) q^{24} +(5.34609 - 3.08657i) q^{26} +(-0.148466 - 0.291380i) q^{27} +(2.14923 + 5.05895i) q^{28} +(-1.14694 + 1.57863i) q^{29} +(-4.49990 + 0.472959i) q^{31} +(7.79020 - 2.08738i) q^{32} +(0.0741808 + 0.193248i) q^{33} +(2.11711 + 6.51580i) q^{34} +(1.92404 - 5.92160i) q^{36} +(-8.17923 + 0.428655i) q^{37} +(4.07280 + 6.27156i) q^{38} +(0.123887 - 0.111548i) q^{39} +(7.75457 - 2.51961i) q^{41} +(0.167175 + 0.238595i) q^{42} +(-5.09273 + 5.09273i) q^{43} +(-3.20756 + 7.20430i) q^{44} +(-10.5995 + 4.71920i) q^{46} +(-5.87669 - 7.25711i) q^{47} +(0.186526 - 0.0950399i) q^{48} +(6.99588 + 0.239996i) q^{49} +(0.0925076 + 0.160228i) q^{51} +(6.34242 + 0.332392i) q^{52} +(2.38575 - 6.21509i) q^{53} +(0.0690257 - 0.656736i) q^{54} +(-0.0717781 + 0.407807i) q^{56} +(0.142796 + 0.142796i) q^{57} +(-3.67851 + 1.41205i) q^{58} +(3.16655 + 0.673070i) q^{59} +(-2.94484 - 13.8544i) q^{61} +(-8.14080 - 4.14794i) q^{62} +(-5.80085 - 5.40605i) q^{63} +(8.18628 + 2.65988i) q^{64} +(-0.0869038 + 0.408850i) q^{66} +(-8.87250 + 10.9566i) q^{67} +(-1.82433 + 6.80848i) q^{68} +(-0.253489 + 0.184170i) q^{69} +(1.76180 + 1.28002i) q^{71} +(0.364522 - 0.295184i) q^{72} +(-0.114904 + 2.19250i) q^{73} +(-14.3231 - 8.26943i) q^{74} +7.69359i q^{76} +(6.59120 + 7.57761i) q^{77} +(0.332483 - 0.0526601i) q^{78} +(-6.51601 - 0.684861i) q^{79} +(0.937960 + 8.92409i) q^{81} +(15.9035 + 4.26133i) q^{82} +(6.83177 + 1.08205i) q^{83} +(0.0105526 + 0.299547i) q^{84} +(-14.2255 + 3.02372i) q^{86} +(-0.0892396 + 0.0579529i) q^{87} +(-0.498243 + 0.323563i) q^{88} +(3.73767 - 0.794467i) q^{89} +(3.79503 - 7.14272i) q^{91} +(-11.7902 - 1.86738i) q^{92} +(-0.238328 - 0.0638599i) q^{93} +(-1.97103 - 18.7531i) q^{94} +(0.437383 + 0.0459708i) q^{96} +(-4.26064 + 0.674820i) q^{97} +(11.5837 + 8.10037i) q^{98} -11.3765i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 2 q^{2} - 6 q^{3} + 10 q^{4} + 10 q^{7} - 64 q^{8} + 10 q^{9} - 6 q^{11} + 6 q^{12} + 20 q^{14} - 30 q^{16} + 12 q^{17} + 14 q^{18} + 30 q^{19} - 12 q^{21} + 8 q^{22} - 30 q^{23} - 48 q^{26} + 58 q^{28}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/875\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(626\)
\(\chi(n)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.69351 + 1.09978i 1.19749 + 0.777662i 0.980116 0.198425i \(-0.0635826\pi\)
0.217379 + 0.976087i \(0.430249\pi\)
\(3\) 0.0509090 + 0.0195422i 0.0293923 + 0.0112827i 0.373020 0.927823i \(-0.378322\pi\)
−0.343627 + 0.939106i \(0.611656\pi\)
\(4\) 0.844998 + 1.89790i 0.422499 + 0.948948i
\(5\) 0 0
\(6\) 0.0647231 + 0.0890837i 0.0264231 + 0.0363683i
\(7\) 2.64536 + 0.0453616i 0.999853 + 0.0171451i
\(8\) −0.0244829 + 0.154579i −0.00865601 + 0.0546519i
\(9\) −2.22722 2.00540i −0.742408 0.668467i
\(10\) 0 0
\(11\) 2.53998 + 2.82093i 0.765832 + 0.850543i 0.992349 0.123464i \(-0.0394004\pi\)
−0.226517 + 0.974007i \(0.572734\pi\)
\(12\) 0.00592906 + 0.113133i 0.00171157 + 0.0326587i
\(13\) 1.38789 2.72389i 0.384932 0.755471i −0.614509 0.788910i \(-0.710646\pi\)
0.999441 + 0.0334387i \(0.0106459\pi\)
\(14\) 4.43007 + 2.98614i 1.18399 + 0.798079i
\(15\) 0 0
\(16\) 2.56878 2.85292i 0.642195 0.713230i
\(17\) 2.63674 + 2.13519i 0.639503 + 0.517859i 0.893336 0.449389i \(-0.148358\pi\)
−0.253834 + 0.967248i \(0.581692\pi\)
\(18\) −1.56633 5.84563i −0.369188 1.37783i
\(19\) 3.38312 + 1.50626i 0.776140 + 0.345560i 0.756284 0.654243i \(-0.227013\pi\)
0.0198559 + 0.999803i \(0.493679\pi\)
\(20\) 0 0
\(21\) 0.133786 + 0.0540054i 0.0291946 + 0.0117849i
\(22\) 1.19908 + 7.57071i 0.255645 + 1.61408i
\(23\) −3.12944 + 4.81891i −0.652533 + 1.00481i 0.345266 + 0.938505i \(0.387789\pi\)
−0.997799 + 0.0663077i \(0.978878\pi\)
\(24\) −0.00426721 + 0.00739102i −0.000871040 + 0.00150869i
\(25\) 0 0
\(26\) 5.34609 3.08657i 1.04846 0.605326i
\(27\) −0.148466 0.291380i −0.0285722 0.0560761i
\(28\) 2.14923 + 5.05895i 0.406167 + 0.956052i
\(29\) −1.14694 + 1.57863i −0.212982 + 0.293144i −0.902120 0.431486i \(-0.857989\pi\)
0.689138 + 0.724630i \(0.257989\pi\)
\(30\) 0 0
\(31\) −4.49990 + 0.472959i −0.808206 + 0.0849459i −0.499614 0.866248i \(-0.666525\pi\)
−0.308593 + 0.951194i \(0.599858\pi\)
\(32\) 7.79020 2.08738i 1.37712 0.369000i
\(33\) 0.0741808 + 0.193248i 0.0129132 + 0.0336401i
\(34\) 2.11711 + 6.51580i 0.363082 + 1.11745i
\(35\) 0 0
\(36\) 1.92404 5.92160i 0.320674 0.986933i
\(37\) −8.17923 + 0.428655i −1.34466 + 0.0704705i −0.711027 0.703165i \(-0.751769\pi\)
−0.633631 + 0.773636i \(0.718436\pi\)
\(38\) 4.07280 + 6.27156i 0.660695 + 1.01738i
\(39\) 0.123887 0.111548i 0.0198378 0.0178620i
\(40\) 0 0
\(41\) 7.75457 2.51961i 1.21106 0.393497i 0.367242 0.930126i \(-0.380302\pi\)
0.843819 + 0.536628i \(0.180302\pi\)
\(42\) 0.167175 + 0.238595i 0.0257957 + 0.0368159i
\(43\) −5.09273 + 5.09273i −0.776634 + 0.776634i −0.979257 0.202623i \(-0.935054\pi\)
0.202623 + 0.979257i \(0.435054\pi\)
\(44\) −3.20756 + 7.20430i −0.483558 + 1.08609i
\(45\) 0 0
\(46\) −10.5995 + 4.71920i −1.56281 + 0.695808i
\(47\) −5.87669 7.25711i −0.857204 1.05856i −0.997653 0.0684709i \(-0.978188\pi\)
0.140449 0.990088i \(-0.455145\pi\)
\(48\) 0.186526 0.0950399i 0.0269228 0.0137178i
\(49\) 6.99588 + 0.239996i 0.999412 + 0.0342851i
\(50\) 0 0
\(51\) 0.0925076 + 0.160228i 0.0129537 + 0.0224364i
\(52\) 6.34242 + 0.332392i 0.879536 + 0.0460945i
\(53\) 2.38575 6.21509i 0.327708 0.853708i −0.666428 0.745569i \(-0.732178\pi\)
0.994136 0.108139i \(-0.0344890\pi\)
\(54\) 0.0690257 0.656736i 0.00939321 0.0893704i
\(55\) 0 0
\(56\) −0.0717781 + 0.407807i −0.00959175 + 0.0544955i
\(57\) 0.142796 + 0.142796i 0.0189138 + 0.0189138i
\(58\) −3.67851 + 1.41205i −0.483012 + 0.185411i
\(59\) 3.16655 + 0.673070i 0.412249 + 0.0876263i 0.409368 0.912370i \(-0.365749\pi\)
0.00288177 + 0.999996i \(0.499083\pi\)
\(60\) 0 0
\(61\) −2.94484 13.8544i −0.377048 1.77387i −0.600979 0.799265i \(-0.705222\pi\)
0.223931 0.974605i \(-0.428111\pi\)
\(62\) −8.14080 4.14794i −1.03388 0.526789i
\(63\) −5.80085 5.40605i −0.730838 0.681098i
\(64\) 8.18628 + 2.65988i 1.02329 + 0.332485i
\(65\) 0 0
\(66\) −0.0869038 + 0.408850i −0.0106971 + 0.0503260i
\(67\) −8.87250 + 10.9566i −1.08395 + 1.33856i −0.146984 + 0.989139i \(0.546957\pi\)
−0.936964 + 0.349426i \(0.886377\pi\)
\(68\) −1.82433 + 6.80848i −0.221232 + 0.825650i
\(69\) −0.253489 + 0.184170i −0.0305164 + 0.0221715i
\(70\) 0 0
\(71\) 1.76180 + 1.28002i 0.209087 + 0.151910i 0.687400 0.726279i \(-0.258752\pi\)
−0.478314 + 0.878189i \(0.658752\pi\)
\(72\) 0.364522 0.295184i 0.0429593 0.0347878i
\(73\) −0.114904 + 2.19250i −0.0134485 + 0.256613i 0.983628 + 0.180209i \(0.0576773\pi\)
−0.997077 + 0.0764042i \(0.975656\pi\)
\(74\) −14.3231 8.26943i −1.66502 0.961301i
\(75\) 0 0
\(76\) 7.69359i 0.882515i
\(77\) 6.59120 + 7.57761i 0.751137 + 0.863548i
\(78\) 0.332483 0.0526601i 0.0376463 0.00596258i
\(79\) −6.51601 0.684861i −0.733109 0.0770529i −0.269385 0.963033i \(-0.586820\pi\)
−0.463724 + 0.885980i \(0.653487\pi\)
\(80\) 0 0
\(81\) 0.937960 + 8.92409i 0.104218 + 0.991566i
\(82\) 15.9035 + 4.26133i 1.75625 + 0.470585i
\(83\) 6.83177 + 1.08205i 0.749884 + 0.118770i 0.519667 0.854369i \(-0.326056\pi\)
0.230218 + 0.973139i \(0.426056\pi\)
\(84\) 0.0105526 + 0.299547i 0.00115138 + 0.0326833i
\(85\) 0 0
\(86\) −14.2255 + 3.02372i −1.53398 + 0.326056i
\(87\) −0.0892396 + 0.0579529i −0.00956749 + 0.00621320i
\(88\) −0.498243 + 0.323563i −0.0531129 + 0.0344919i
\(89\) 3.73767 0.794467i 0.396193 0.0842133i −0.00550702 0.999985i \(-0.501753\pi\)
0.401700 + 0.915772i \(0.368420\pi\)
\(90\) 0 0
\(91\) 3.79503 7.14272i 0.397828 0.748760i
\(92\) −11.7902 1.86738i −1.22921 0.194688i
\(93\) −0.238328 0.0638599i −0.0247135 0.00662196i
\(94\) −1.97103 18.7531i −0.203296 1.93423i
\(95\) 0 0
\(96\) 0.437383 + 0.0459708i 0.0446402 + 0.00469188i
\(97\) −4.26064 + 0.674820i −0.432603 + 0.0685176i −0.368939 0.929454i \(-0.620279\pi\)
−0.0636644 + 0.997971i \(0.520279\pi\)
\(98\) 11.5837 + 8.10037i 1.17013 + 0.818261i
\(99\) 11.3765i 1.14338i
\(100\) 0 0
\(101\) −6.04964 3.49276i −0.601962 0.347543i 0.167851 0.985812i \(-0.446317\pi\)
−0.769813 + 0.638270i \(0.779651\pi\)
\(102\) −0.0195526 + 0.373086i −0.00193600 + 0.0369410i
\(103\) −7.49562 + 6.06984i −0.738566 + 0.598079i −0.923015 0.384763i \(-0.874283\pi\)
0.184450 + 0.982842i \(0.440950\pi\)
\(104\) 0.387076 + 0.281228i 0.0379560 + 0.0275766i
\(105\) 0 0
\(106\) 10.8755 7.90153i 1.05632 0.767465i
\(107\) −0.858034 + 3.20223i −0.0829493 + 0.309571i −0.994918 0.100689i \(-0.967895\pi\)
0.911969 + 0.410260i \(0.134562\pi\)
\(108\) 0.427556 0.527988i 0.0411416 0.0508057i
\(109\) 2.02932 9.54720i 0.194374 0.914456i −0.767519 0.641027i \(-0.778509\pi\)
0.961892 0.273429i \(-0.0881579\pi\)
\(110\) 0 0
\(111\) −0.424774 0.138017i −0.0403177 0.0131000i
\(112\) 6.92477 7.43048i 0.654329 0.702115i
\(113\) −4.16559 2.12247i −0.391866 0.199666i 0.246945 0.969030i \(-0.420573\pi\)
−0.638811 + 0.769364i \(0.720573\pi\)
\(114\) 0.0847825 + 0.398870i 0.00794061 + 0.0373576i
\(115\) 0 0
\(116\) −3.96524 0.842838i −0.368163 0.0782556i
\(117\) −8.55364 + 3.28343i −0.790784 + 0.303554i
\(118\) 4.62236 + 4.62236i 0.425523 + 0.425523i
\(119\) 6.87827 + 5.76795i 0.630530 + 0.528747i
\(120\) 0 0
\(121\) −0.356354 + 3.39048i −0.0323958 + 0.308225i
\(122\) 10.2496 26.7012i 0.927959 2.41742i
\(123\) 0.444016 + 0.0232699i 0.0400356 + 0.00209818i
\(124\) −4.70003 8.14070i −0.422075 0.731056i
\(125\) 0 0
\(126\) −3.87835 15.5349i −0.345511 1.38396i
\(127\) −10.9199 + 5.56395i −0.968982 + 0.493721i −0.865499 0.500910i \(-0.832999\pi\)
−0.103483 + 0.994631i \(0.532999\pi\)
\(128\) 0.787347 + 0.972292i 0.0695923 + 0.0859393i
\(129\) −0.358789 + 0.159743i −0.0315896 + 0.0140646i
\(130\) 0 0
\(131\) −4.18789 + 9.40615i −0.365898 + 0.821819i 0.632967 + 0.774179i \(0.281837\pi\)
−0.998865 + 0.0476406i \(0.984830\pi\)
\(132\) −0.304081 + 0.304081i −0.0264669 + 0.0264669i
\(133\) 8.88125 + 4.13807i 0.770102 + 0.358816i
\(134\) −27.0756 + 8.79739i −2.33897 + 0.759979i
\(135\) 0 0
\(136\) −0.394610 + 0.355309i −0.0338375 + 0.0304675i
\(137\) −10.1362 15.6084i −0.865993 1.33351i −0.941725 0.336384i \(-0.890796\pi\)
0.0757320 0.997128i \(-0.475871\pi\)
\(138\) −0.631833 + 0.0331130i −0.0537852 + 0.00281876i
\(139\) 4.94661 15.2241i 0.419566 1.29129i −0.488537 0.872543i \(-0.662469\pi\)
0.908103 0.418747i \(-0.137531\pi\)
\(140\) 0 0
\(141\) −0.157357 0.484296i −0.0132519 0.0407851i
\(142\) 1.57588 + 4.10532i 0.132245 + 0.344511i
\(143\) 11.2091 3.00348i 0.937354 0.251163i
\(144\) −11.4425 + 1.20266i −0.953542 + 0.100221i
\(145\) 0 0
\(146\) −2.60586 + 3.58666i −0.215663 + 0.296834i
\(147\) 0.351464 + 0.148933i 0.0289882 + 0.0122838i
\(148\) −7.72497 15.1611i −0.634989 1.24624i
\(149\) −1.52167 + 0.878534i −0.124660 + 0.0719723i −0.561033 0.827793i \(-0.689596\pi\)
0.436373 + 0.899766i \(0.356263\pi\)
\(150\) 0 0
\(151\) 0.749583 1.29832i 0.0610002 0.105655i −0.833913 0.551897i \(-0.813904\pi\)
0.894913 + 0.446241i \(0.147238\pi\)
\(152\) −0.315665 + 0.486081i −0.0256038 + 0.0394264i
\(153\) −1.59070 10.0433i −0.128600 0.811949i
\(154\) 2.82859 + 20.0817i 0.227934 + 1.61823i
\(155\) 0 0
\(156\) 0.316391 + 0.140866i 0.0253316 + 0.0112783i
\(157\) −1.02623 3.82995i −0.0819023 0.305664i 0.912807 0.408391i \(-0.133910\pi\)
−0.994710 + 0.102727i \(0.967243\pi\)
\(158\) −10.2818 8.32601i −0.817973 0.662382i
\(159\) 0.242912 0.269781i 0.0192642 0.0213951i
\(160\) 0 0
\(161\) −8.49709 + 12.6058i −0.669665 + 0.993477i
\(162\) −8.22609 + 16.1446i −0.646303 + 1.26844i
\(163\) 0.567303 + 10.8248i 0.0444346 + 0.847862i 0.926398 + 0.376545i \(0.122888\pi\)
−0.881964 + 0.471317i \(0.843779\pi\)
\(164\) 11.3346 + 12.5883i 0.885080 + 0.982981i
\(165\) 0 0
\(166\) 10.3797 + 9.34591i 0.805620 + 0.725383i
\(167\) 1.97743 12.4850i 0.153018 0.966117i −0.784991 0.619507i \(-0.787333\pi\)
0.938009 0.346610i \(-0.112667\pi\)
\(168\) −0.0116236 + 0.0193584i −0.000896778 + 0.00149353i
\(169\) 2.14788 + 2.95630i 0.165221 + 0.227407i
\(170\) 0 0
\(171\) −4.51430 10.1393i −0.345217 0.775371i
\(172\) −13.9688 5.36213i −1.06511 0.408858i
\(173\) −11.2496 7.30558i −0.855292 0.555433i 0.0408678 0.999165i \(-0.486988\pi\)
−0.896160 + 0.443731i \(0.853654\pi\)
\(174\) −0.214864 −0.0162888
\(175\) 0 0
\(176\) 14.5725 1.09845
\(177\) 0.148053 + 0.0961465i 0.0111283 + 0.00722681i
\(178\) 7.20354 + 2.76518i 0.539928 + 0.207259i
\(179\) −2.19411 4.92806i −0.163996 0.368340i 0.812791 0.582556i \(-0.197947\pi\)
−0.976786 + 0.214215i \(0.931281\pi\)
\(180\) 0 0
\(181\) 12.4457 + 17.1301i 0.925085 + 1.27327i 0.961746 + 0.273942i \(0.0883276\pi\)
−0.0366616 + 0.999328i \(0.511672\pi\)
\(182\) 14.2824 7.92258i 1.05868 0.587261i
\(183\) 0.120825 0.762861i 0.00893166 0.0563923i
\(184\) −0.668285 0.601726i −0.0492666 0.0443598i
\(185\) 0 0
\(186\) −0.333380 0.370256i −0.0244446 0.0271485i
\(187\) 0.674037 + 12.8614i 0.0492905 + 0.940518i
\(188\) 8.80745 17.2856i 0.642349 1.26068i
\(189\) −0.379528 0.777541i −0.0276066 0.0565578i
\(190\) 0 0
\(191\) −10.1181 + 11.2373i −0.732121 + 0.813103i −0.988138 0.153570i \(-0.950923\pi\)
0.256017 + 0.966672i \(0.417590\pi\)
\(192\) 0.364776 + 0.295390i 0.0263254 + 0.0213179i
\(193\) −3.46038 12.9143i −0.249084 0.929593i −0.971287 0.237912i \(-0.923537\pi\)
0.722203 0.691681i \(-0.243130\pi\)
\(194\) −7.95761 3.54296i −0.571323 0.254370i
\(195\) 0 0
\(196\) 5.45602 + 13.4803i 0.389716 + 0.962875i
\(197\) 1.47858 + 9.33538i 0.105344 + 0.665118i 0.982690 + 0.185259i \(0.0593123\pi\)
−0.877345 + 0.479859i \(0.840688\pi\)
\(198\) 12.5117 19.2663i 0.889167 1.36920i
\(199\) 6.97072 12.0736i 0.494141 0.855878i −0.505836 0.862630i \(-0.668816\pi\)
0.999977 + 0.00675174i \(0.00214916\pi\)
\(200\) 0 0
\(201\) −0.665806 + 0.384403i −0.0469624 + 0.0271137i
\(202\) −6.40388 12.5683i −0.450575 0.884304i
\(203\) −3.10569 + 4.12402i −0.217977 + 0.289450i
\(204\) −0.225927 + 0.310962i −0.0158181 + 0.0217717i
\(205\) 0 0
\(206\) −19.3694 + 2.03581i −1.34953 + 0.141842i
\(207\) 16.6338 4.45702i 1.15613 0.309784i
\(208\) −4.20585 10.9566i −0.291623 0.759705i
\(209\) 4.34399 + 13.3694i 0.300480 + 0.924782i
\(210\) 0 0
\(211\) −1.35065 + 4.15686i −0.0929824 + 0.286170i −0.986723 0.162415i \(-0.948072\pi\)
0.893740 + 0.448585i \(0.148072\pi\)
\(212\) 13.8115 0.723832i 0.948580 0.0497130i
\(213\) 0.0646770 + 0.0995938i 0.00443159 + 0.00682406i
\(214\) −4.97484 + 4.47937i −0.340073 + 0.306203i
\(215\) 0 0
\(216\) 0.0486761 0.0158158i 0.00331199 0.00107613i
\(217\) −11.9253 + 1.04702i −0.809544 + 0.0710767i
\(218\) 13.9365 13.9365i 0.943899 0.943899i
\(219\) −0.0486958 + 0.109373i −0.00329056 + 0.00739072i
\(220\) 0 0
\(221\) 9.47552 4.21877i 0.637392 0.283785i
\(222\) −0.567571 0.700892i −0.0380929 0.0470408i
\(223\) −5.03366 + 2.56478i −0.337079 + 0.171750i −0.614334 0.789046i \(-0.710575\pi\)
0.277255 + 0.960796i \(0.410575\pi\)
\(224\) 20.7026 5.16849i 1.38325 0.345334i
\(225\) 0 0
\(226\) −4.72023 8.17568i −0.313985 0.543838i
\(227\) 16.5074 + 0.865117i 1.09564 + 0.0574198i 0.591576 0.806249i \(-0.298506\pi\)
0.504060 + 0.863669i \(0.331839\pi\)
\(228\) −0.150349 + 0.391673i −0.00995713 + 0.0259392i
\(229\) −2.91929 + 27.7751i −0.192912 + 1.83543i 0.286780 + 0.957996i \(0.407415\pi\)
−0.479692 + 0.877437i \(0.659252\pi\)
\(230\) 0 0
\(231\) 0.187469 + 0.514575i 0.0123346 + 0.0338565i
\(232\) −0.215943 0.215943i −0.0141773 0.0141773i
\(233\) −15.0402 + 5.77338i −0.985314 + 0.378227i −0.797064 0.603894i \(-0.793615\pi\)
−0.188250 + 0.982121i \(0.560282\pi\)
\(234\) −18.0968 3.84659i −1.18302 0.251459i
\(235\) 0 0
\(236\) 1.39831 + 6.57852i 0.0910221 + 0.428225i
\(237\) −0.318340 0.162203i −0.0206784 0.0105362i
\(238\) 5.30496 + 17.3327i 0.343870 + 1.12351i
\(239\) 14.3559 + 4.66452i 0.928606 + 0.301722i 0.733993 0.679157i \(-0.237655\pi\)
0.194614 + 0.980880i \(0.437655\pi\)
\(240\) 0 0
\(241\) −5.19859 + 24.4574i −0.334871 + 1.57544i 0.412451 + 0.910980i \(0.364673\pi\)
−0.747322 + 0.664462i \(0.768661\pi\)
\(242\) −4.33227 + 5.34991i −0.278489 + 0.343905i
\(243\) −0.380565 + 1.42029i −0.0244133 + 0.0911115i
\(244\) 23.8058 17.2959i 1.52401 1.10726i
\(245\) 0 0
\(246\) 0.726356 + 0.527729i 0.0463108 + 0.0336467i
\(247\) 8.79829 7.12471i 0.559822 0.453335i
\(248\) 0.0370612 0.707170i 0.00235339 0.0449053i
\(249\) 0.326653 + 0.188593i 0.0207008 + 0.0119516i
\(250\) 0 0
\(251\) 12.4908i 0.788410i −0.919023 0.394205i \(-0.871020\pi\)
0.919023 0.394205i \(-0.128980\pi\)
\(252\) 5.35841 15.5775i 0.337548 0.981290i
\(253\) −21.5425 + 3.41200i −1.35437 + 0.214511i
\(254\) −24.6121 2.58683i −1.54430 0.162312i
\(255\) 0 0
\(256\) −1.53540 14.6083i −0.0959623 0.913020i
\(257\) −5.56457 1.49102i −0.347109 0.0930075i 0.0810527 0.996710i \(-0.474172\pi\)
−0.428161 + 0.903702i \(0.640838\pi\)
\(258\) −0.783297 0.124062i −0.0487659 0.00772376i
\(259\) −21.6565 + 0.762926i −1.34567 + 0.0474059i
\(260\) 0 0
\(261\) 5.72029 1.21589i 0.354077 0.0752614i
\(262\) −17.4370 + 11.3237i −1.07726 + 0.699580i
\(263\) −5.42424 + 3.52255i −0.334473 + 0.217209i −0.700938 0.713223i \(-0.747235\pi\)
0.366464 + 0.930432i \(0.380568\pi\)
\(264\) −0.0316882 + 0.00673553i −0.00195027 + 0.000414543i
\(265\) 0 0
\(266\) 10.4895 + 16.7753i 0.643155 + 1.02856i
\(267\) 0.205807 + 0.0325966i 0.0125952 + 0.00199488i
\(268\) −28.2918 7.58076i −1.72819 0.463068i
\(269\) 1.59755 + 15.1996i 0.0974041 + 0.926738i 0.928681 + 0.370880i \(0.120944\pi\)
−0.831277 + 0.555859i \(0.812390\pi\)
\(270\) 0 0
\(271\) −4.48618 0.471517i −0.272516 0.0286426i −0.0327154 0.999465i \(-0.510415\pi\)
−0.239801 + 0.970822i \(0.577082\pi\)
\(272\) 12.8647 2.03757i 0.780038 0.123546i
\(273\) 0.332786 0.289466i 0.0201411 0.0175193i
\(274\) 37.5806i 2.27032i
\(275\) 0 0
\(276\) −0.563733 0.325471i −0.0339327 0.0195911i
\(277\) 0.296475 5.65708i 0.0178134 0.339901i −0.975155 0.221523i \(-0.928897\pi\)
0.992969 0.118378i \(-0.0377694\pi\)
\(278\) 25.1203 20.3420i 1.50662 1.22003i
\(279\) 10.9708 + 7.97073i 0.656803 + 0.477195i
\(280\) 0 0
\(281\) 8.30707 6.03544i 0.495558 0.360044i −0.311760 0.950161i \(-0.600918\pi\)
0.807318 + 0.590117i \(0.200918\pi\)
\(282\) 0.266133 0.993220i 0.0158480 0.0591454i
\(283\) 17.8045 21.9867i 1.05837 1.30697i 0.108575 0.994088i \(-0.465371\pi\)
0.949791 0.312885i \(-0.101296\pi\)
\(284\) −0.940630 + 4.42532i −0.0558161 + 0.262594i
\(285\) 0 0
\(286\) 22.2860 + 7.24115i 1.31780 + 0.428178i
\(287\) 20.6279 6.31353i 1.21763 0.372676i
\(288\) −21.5365 10.9734i −1.26905 0.646615i
\(289\) −1.14114 5.36865i −0.0671260 0.315803i
\(290\) 0 0
\(291\) −0.230093 0.0489077i −0.0134883 0.00286702i
\(292\) −4.25823 + 1.63458i −0.249194 + 0.0956567i
\(293\) 13.4826 + 13.4826i 0.787661 + 0.787661i 0.981110 0.193449i \(-0.0619675\pi\)
−0.193449 + 0.981110i \(0.561968\pi\)
\(294\) 0.431415 + 0.638752i 0.0251607 + 0.0372528i
\(295\) 0 0
\(296\) 0.133990 1.27483i 0.00778802 0.0740981i
\(297\) 0.444864 1.15891i 0.0258136 0.0672468i
\(298\) −3.54315 0.185689i −0.205249 0.0107567i
\(299\) 8.78286 + 15.2124i 0.507926 + 0.879754i
\(300\) 0 0
\(301\) −13.7031 + 13.2411i −0.789836 + 0.763205i
\(302\) 2.69729 1.37434i 0.155212 0.0790843i
\(303\) −0.239725 0.296036i −0.0137719 0.0170068i
\(304\) 12.9877 5.78251i 0.744897 0.331650i
\(305\) 0 0
\(306\) 8.35152 18.7578i 0.477424 1.07231i
\(307\) −13.9902 + 13.9902i −0.798461 + 0.798461i −0.982853 0.184392i \(-0.940968\pi\)
0.184392 + 0.982853i \(0.440968\pi\)
\(308\) −8.81196 + 18.9125i −0.502108 + 1.07764i
\(309\) −0.500213 + 0.162529i −0.0284561 + 0.00924595i
\(310\) 0 0
\(311\) −0.132551 + 0.119349i −0.00751626 + 0.00676767i −0.672880 0.739751i \(-0.734943\pi\)
0.665364 + 0.746519i \(0.268276\pi\)
\(312\) 0.0142099 + 0.0218813i 0.000804477 + 0.00123879i
\(313\) 13.7239 0.719241i 0.775723 0.0406539i 0.339634 0.940558i \(-0.389697\pi\)
0.436089 + 0.899904i \(0.356363\pi\)
\(314\) 2.47417 7.61471i 0.139625 0.429723i
\(315\) 0 0
\(316\) −4.20622 12.9454i −0.236619 0.728237i
\(317\) −4.37431 11.3955i −0.245686 0.640034i 0.754176 0.656673i \(-0.228037\pi\)
−0.999862 + 0.0166391i \(0.994703\pi\)
\(318\) 0.708076 0.189728i 0.0397069 0.0106394i
\(319\) −7.36642 + 0.774242i −0.412440 + 0.0433492i
\(320\) 0 0
\(321\) −0.106260 + 0.146254i −0.00593086 + 0.00816313i
\(322\) −28.2536 + 12.0032i −1.57451 + 0.668911i
\(323\) 5.70424 + 11.1952i 0.317392 + 0.622918i
\(324\) −16.1444 + 9.32098i −0.896912 + 0.517832i
\(325\) 0 0
\(326\) −10.9441 + 18.9558i −0.606140 + 1.04987i
\(327\) 0.289883 0.446381i 0.0160306 0.0246849i
\(328\) 0.199625 + 1.26038i 0.0110224 + 0.0695929i
\(329\) −15.2168 19.4643i −0.838929 1.07310i
\(330\) 0 0
\(331\) 7.85181 + 3.49585i 0.431574 + 0.192149i 0.611014 0.791620i \(-0.290762\pi\)
−0.179440 + 0.983769i \(0.557429\pi\)
\(332\) 3.71922 + 13.8803i 0.204119 + 0.761781i
\(333\) 19.0766 + 15.4479i 1.04539 + 0.846542i
\(334\) 17.0795 18.9688i 0.934551 1.03792i
\(335\) 0 0
\(336\) 0.497741 0.242954i 0.0271540 0.0132542i
\(337\) −3.14995 + 6.18213i −0.171589 + 0.336762i −0.960746 0.277429i \(-0.910518\pi\)
0.789157 + 0.614191i \(0.210518\pi\)
\(338\) 0.386178 + 7.36872i 0.0210053 + 0.400806i
\(339\) −0.170589 0.189458i −0.00926510 0.0102899i
\(340\) 0 0
\(341\) −12.7638 11.4926i −0.691201 0.622360i
\(342\) 3.50596 22.1358i 0.189581 1.19697i
\(343\) 18.4958 + 0.952220i 0.998677 + 0.0514151i
\(344\) −0.662544 0.911914i −0.0357220 0.0491671i
\(345\) 0 0
\(346\) −11.0168 24.7442i −0.592268 1.33026i
\(347\) 14.2593 + 5.47365i 0.765481 + 0.293841i 0.709608 0.704597i \(-0.248872\pi\)
0.0558738 + 0.998438i \(0.482206\pi\)
\(348\) −0.185396 0.120397i −0.00993826 0.00645398i
\(349\) −27.7967 −1.48792 −0.743961 0.668224i \(-0.767055\pi\)
−0.743961 + 0.668224i \(0.767055\pi\)
\(350\) 0 0
\(351\) −0.999742 −0.0533623
\(352\) 25.6753 + 16.6737i 1.36850 + 0.888712i
\(353\) −11.6058 4.45506i −0.617716 0.237119i 0.0293301 0.999570i \(-0.490663\pi\)
−0.647046 + 0.762451i \(0.723996\pi\)
\(354\) 0.144989 + 0.325651i 0.00770608 + 0.0173081i
\(355\) 0 0
\(356\) 4.66614 + 6.42239i 0.247305 + 0.340386i
\(357\) 0.237448 + 0.428057i 0.0125671 + 0.0226552i
\(358\) 1.70402 10.7588i 0.0900604 0.568619i
\(359\) 27.4274 + 24.6957i 1.44756 + 1.30339i 0.875533 + 0.483159i \(0.160511\pi\)
0.572030 + 0.820232i \(0.306156\pi\)
\(360\) 0 0
\(361\) −3.53682 3.92804i −0.186148 0.206739i
\(362\) 2.23769 + 42.6976i 0.117610 + 2.24414i
\(363\) −0.0843988 + 0.165642i −0.00442979 + 0.00869395i
\(364\) 16.7629 + 1.16700i 0.878616 + 0.0611675i
\(365\) 0 0
\(366\) 1.04360 1.15903i 0.0545498 0.0605837i
\(367\) 11.2604 + 9.11853i 0.587791 + 0.475983i 0.876479 0.481440i \(-0.159886\pi\)
−0.288689 + 0.957423i \(0.593219\pi\)
\(368\) 5.70913 + 21.3068i 0.297609 + 1.11069i
\(369\) −22.3240 9.93929i −1.16214 0.517419i
\(370\) 0 0
\(371\) 6.59309 16.3329i 0.342296 0.847964i
\(372\) −0.0801875 0.506284i −0.00415753 0.0262496i
\(373\) −14.4541 + 22.2573i −0.748404 + 1.15244i 0.235173 + 0.971953i \(0.424434\pi\)
−0.983577 + 0.180488i \(0.942232\pi\)
\(374\) −13.0032 + 22.5222i −0.672380 + 1.16460i
\(375\) 0 0
\(376\) 1.26568 0.730738i 0.0652722 0.0376849i
\(377\) 2.70819 + 5.31511i 0.139479 + 0.273742i
\(378\) 0.212389 1.73417i 0.0109241 0.0891963i
\(379\) 0.369609 0.508723i 0.0189855 0.0261314i −0.799419 0.600774i \(-0.794859\pi\)
0.818404 + 0.574643i \(0.194859\pi\)
\(380\) 0 0
\(381\) −0.664652 + 0.0698577i −0.0340512 + 0.00357892i
\(382\) −29.4937 + 7.90282i −1.50903 + 0.404344i
\(383\) 4.21053 + 10.9688i 0.215148 + 0.560480i 0.998101 0.0616015i \(-0.0196208\pi\)
−0.782953 + 0.622081i \(0.786287\pi\)
\(384\) 0.0210824 + 0.0648849i 0.00107586 + 0.00331114i
\(385\) 0 0
\(386\) 8.34271 25.6762i 0.424633 1.30689i
\(387\) 21.5556 1.12968i 1.09573 0.0574250i
\(388\) −4.88097 7.51604i −0.247794 0.381569i
\(389\) 3.77113 3.39554i 0.191204 0.172161i −0.567969 0.823050i \(-0.692270\pi\)
0.759173 + 0.650889i \(0.225604\pi\)
\(390\) 0 0
\(391\) −18.5408 + 6.02427i −0.937648 + 0.304660i
\(392\) −0.208378 + 1.07554i −0.0105247 + 0.0543230i
\(393\) −0.397018 + 0.397018i −0.0200269 + 0.0200269i
\(394\) −7.76288 + 17.4357i −0.391088 + 0.878398i
\(395\) 0 0
\(396\) 21.5915 9.61314i 1.08501 0.483078i
\(397\) −18.7756 23.1860i −0.942323 1.16367i −0.986354 0.164641i \(-0.947353\pi\)
0.0440310 0.999030i \(-0.485980\pi\)
\(398\) 25.0834 12.7806i 1.25732 0.640634i
\(399\) 0.371269 + 0.384224i 0.0185867 + 0.0192352i
\(400\) 0 0
\(401\) 8.26123 + 14.3089i 0.412546 + 0.714551i 0.995167 0.0981931i \(-0.0313063\pi\)
−0.582621 + 0.812744i \(0.697973\pi\)
\(402\) −1.55031 0.0812484i −0.0773225 0.00405230i
\(403\) −4.95709 + 12.9137i −0.246930 + 0.643275i
\(404\) 1.51697 14.4330i 0.0754719 0.718067i
\(405\) 0 0
\(406\) −9.79505 + 3.56852i −0.486120 + 0.177102i
\(407\) −21.9843 21.9843i −1.08972 1.08972i
\(408\) −0.0270327 + 0.0103769i −0.00133832 + 0.000513732i
\(409\) 18.8781 + 4.01266i 0.933461 + 0.198413i 0.649447 0.760407i \(-0.275000\pi\)
0.284014 + 0.958820i \(0.408334\pi\)
\(410\) 0 0
\(411\) −0.211003 0.992690i −0.0104080 0.0489658i
\(412\) −17.8537 9.09692i −0.879589 0.448173i
\(413\) 8.34613 + 1.92415i 0.410686 + 0.0946815i
\(414\) 33.0713 + 10.7455i 1.62537 + 0.528114i
\(415\) 0 0
\(416\) 5.12616 24.1167i 0.251331 1.18242i
\(417\) 0.549338 0.678376i 0.0269012 0.0332202i
\(418\) −7.34682 + 27.4187i −0.359345 + 1.34109i
\(419\) 19.1402 13.9062i 0.935062 0.679362i −0.0121653 0.999926i \(-0.503872\pi\)
0.947227 + 0.320564i \(0.103872\pi\)
\(420\) 0 0
\(421\) −0.268667 0.195198i −0.0130940 0.00951338i 0.581219 0.813747i \(-0.302576\pi\)
−0.594313 + 0.804234i \(0.702576\pi\)
\(422\) −6.85898 + 5.55429i −0.333890 + 0.270379i
\(423\) −1.46471 + 27.9484i −0.0712167 + 1.35890i
\(424\) 0.902312 + 0.520950i 0.0438201 + 0.0252996i
\(425\) 0 0
\(426\) 0.239794i 0.0116181i
\(427\) −7.16170 36.7834i −0.346579 1.78007i
\(428\) −6.80253 + 1.07742i −0.328813 + 0.0520788i
\(429\) 0.629340 + 0.0661463i 0.0303848 + 0.00319357i
\(430\) 0 0
\(431\) −3.57389 34.0033i −0.172148 1.63788i −0.650352 0.759633i \(-0.725378\pi\)
0.478203 0.878249i \(-0.341288\pi\)
\(432\) −1.21266 0.324931i −0.0583441 0.0156333i
\(433\) −3.60320 0.570691i −0.173159 0.0274256i 0.0692529 0.997599i \(-0.477938\pi\)
−0.242412 + 0.970173i \(0.577938\pi\)
\(434\) −21.3472 11.3421i −1.02470 0.544438i
\(435\) 0 0
\(436\) 19.8344 4.21592i 0.949893 0.201906i
\(437\) −17.8458 + 11.5892i −0.853680 + 0.554386i
\(438\) −0.202753 + 0.131669i −0.00968791 + 0.00629140i
\(439\) −30.0361 + 6.38437i −1.43355 + 0.304710i −0.858248 0.513235i \(-0.828447\pi\)
−0.575297 + 0.817944i \(0.695114\pi\)
\(440\) 0 0
\(441\) −15.1001 14.5641i −0.719053 0.693528i
\(442\) 20.6866 + 3.27644i 0.983963 + 0.155844i
\(443\) −6.25039 1.67479i −0.296965 0.0795715i 0.107260 0.994231i \(-0.465792\pi\)
−0.404225 + 0.914659i \(0.632459\pi\)
\(444\) −0.0969902 0.922800i −0.00460295 0.0437942i
\(445\) 0 0
\(446\) −11.3453 1.19244i −0.537214 0.0564635i
\(447\) −0.0946350 + 0.0149887i −0.00447608 + 0.000708941i
\(448\) 21.5350 + 7.40770i 1.01743 + 0.349981i
\(449\) 33.2556i 1.56943i −0.619856 0.784715i \(-0.712809\pi\)
0.619856 0.784715i \(-0.287191\pi\)
\(450\) 0 0
\(451\) 26.8041 + 15.4754i 1.26216 + 0.728706i
\(452\) 0.508321 9.69935i 0.0239094 0.456219i
\(453\) 0.0635324 0.0514476i 0.00298501 0.00241722i
\(454\) 27.0041 + 19.6196i 1.26737 + 0.920795i
\(455\) 0 0
\(456\) −0.0255693 + 0.0185772i −0.00119739 + 0.000869955i
\(457\) −7.18403 + 26.8112i −0.336055 + 1.25417i 0.566666 + 0.823947i \(0.308233\pi\)
−0.902721 + 0.430226i \(0.858434\pi\)
\(458\) −35.4904 + 43.8270i −1.65836 + 2.04790i
\(459\) 0.230687 1.08529i 0.0107675 0.0506572i
\(460\) 0 0
\(461\) −5.61141 1.82326i −0.261350 0.0849176i 0.175411 0.984495i \(-0.443874\pi\)
−0.436761 + 0.899578i \(0.643874\pi\)
\(462\) −0.248438 + 1.07761i −0.0115584 + 0.0501352i
\(463\) 19.8133 + 10.0954i 0.920804 + 0.469173i 0.849088 0.528252i \(-0.177152\pi\)
0.0717166 + 0.997425i \(0.477152\pi\)
\(464\) 1.55746 + 7.32729i 0.0723034 + 0.340161i
\(465\) 0 0
\(466\) −31.8202 6.76359i −1.47404 0.313317i
\(467\) 12.2764 4.71248i 0.568085 0.218068i −0.0573358 0.998355i \(-0.518261\pi\)
0.625421 + 0.780287i \(0.284927\pi\)
\(468\) −13.4594 13.4594i −0.622162 0.622162i
\(469\) −23.9680 + 28.5818i −1.10674 + 1.31978i
\(470\) 0 0
\(471\) 0.0226010 0.215034i 0.00104140 0.00990825i
\(472\) −0.181569 + 0.473003i −0.00835738 + 0.0217717i
\(473\) −27.3017 1.43082i −1.25533 0.0657892i
\(474\) −0.360727 0.624797i −0.0165687 0.0286979i
\(475\) 0 0
\(476\) −5.13485 + 17.9281i −0.235355 + 0.821735i
\(477\) −17.7773 + 9.05801i −0.813969 + 0.414738i
\(478\) 19.1820 + 23.6878i 0.877363 + 1.08345i
\(479\) −9.63545 + 4.28998i −0.440255 + 0.196014i −0.614880 0.788621i \(-0.710795\pi\)
0.174625 + 0.984635i \(0.444129\pi\)
\(480\) 0 0
\(481\) −10.1843 + 22.8742i −0.464363 + 1.04298i
\(482\) −35.7017 + 35.7017i −1.62617 + 1.62617i
\(483\) −0.678923 + 0.475698i −0.0308921 + 0.0216450i
\(484\) −6.73589 + 2.18862i −0.306177 + 0.0994829i
\(485\) 0 0
\(486\) −2.20650 + 1.98674i −0.100089 + 0.0901203i
\(487\) 20.1463 + 31.0226i 0.912916 + 1.40577i 0.913976 + 0.405768i \(0.132996\pi\)
−0.00106056 + 0.999999i \(0.500338\pi\)
\(488\) 2.21369 0.116015i 0.100209 0.00525174i
\(489\) −0.182659 + 0.562165i −0.00826011 + 0.0254220i
\(490\) 0 0
\(491\) −8.54554 26.3005i −0.385655 1.18692i −0.936004 0.351989i \(-0.885506\pi\)
0.550350 0.834934i \(-0.314494\pi\)
\(492\) 0.331029 + 0.862360i 0.0149239 + 0.0388782i
\(493\) −6.39486 + 1.71350i −0.288010 + 0.0771720i
\(494\) 22.7356 2.38961i 1.02292 0.107514i
\(495\) 0 0
\(496\) −10.2099 + 14.0528i −0.458440 + 0.630989i
\(497\) 4.60252 + 3.46603i 0.206451 + 0.155473i
\(498\) 0.345781 + 0.678633i 0.0154948 + 0.0304103i
\(499\) 29.8613 17.2404i 1.33678 0.771788i 0.350448 0.936582i \(-0.386029\pi\)
0.986328 + 0.164794i \(0.0526959\pi\)
\(500\) 0 0
\(501\) 0.344652 0.596956i 0.0153979 0.0266700i
\(502\) 13.7371 21.1533i 0.613117 0.944117i
\(503\) 0.765036 + 4.83025i 0.0341113 + 0.215370i 0.998856 0.0478169i \(-0.0152264\pi\)
−0.964745 + 0.263187i \(0.915226\pi\)
\(504\) 0.977683 0.764333i 0.0435494 0.0340461i
\(505\) 0 0
\(506\) −40.2350 17.9138i −1.78866 0.796365i
\(507\) 0.0515739 + 0.192476i 0.00229048 + 0.00854817i
\(508\) −19.7871 16.0233i −0.877909 0.710917i
\(509\) 19.6524 21.8262i 0.871079 0.967431i −0.128627 0.991693i \(-0.541057\pi\)
0.999706 + 0.0242622i \(0.00772365\pi\)
\(510\) 0 0
\(511\) −0.403418 + 5.79475i −0.0178462 + 0.256344i
\(512\) 14.6017 28.6575i 0.645311 1.26649i
\(513\) −0.0633820 1.20940i −0.00279839 0.0533964i
\(514\) −7.78388 8.64488i −0.343332 0.381309i
\(515\) 0 0
\(516\) −0.606352 0.545962i −0.0266932 0.0240346i
\(517\) 5.54515 35.0107i 0.243875 1.53977i
\(518\) −37.5146 22.5253i −1.64830 0.989707i
\(519\) −0.429940 0.591762i −0.0188723 0.0259755i
\(520\) 0 0
\(521\) 16.7254 + 37.5659i 0.732753 + 1.64579i 0.763124 + 0.646252i \(0.223664\pi\)
−0.0303715 + 0.999539i \(0.509669\pi\)
\(522\) 11.0246 + 4.23195i 0.482533 + 0.185227i
\(523\) −13.9351 9.04956i −0.609339 0.395710i 0.202760 0.979228i \(-0.435009\pi\)
−0.812100 + 0.583519i \(0.801675\pi\)
\(524\) −21.3907 −0.934455
\(525\) 0 0
\(526\) −13.0601 −0.569446
\(527\) −12.8749 8.36107i −0.560840 0.364214i
\(528\) 0.741874 + 0.284779i 0.0322859 + 0.0123934i
\(529\) −4.07358 9.14942i −0.177112 0.397801i
\(530\) 0 0
\(531\) −5.70284 7.84928i −0.247482 0.340630i
\(532\) −0.348994 + 20.3523i −0.0151308 + 0.882386i
\(533\) 3.89935 24.6195i 0.168900 1.06639i
\(534\) 0.312688 + 0.281545i 0.0135313 + 0.0121837i
\(535\) 0 0
\(536\) −1.47644 1.63975i −0.0637724 0.0708265i
\(537\) −0.0153953 0.293760i −0.000664358 0.0126767i
\(538\) −14.0108 + 27.4977i −0.604048 + 1.18551i
\(539\) 17.0924 + 20.3445i 0.736221 + 0.876300i
\(540\) 0 0
\(541\) 4.47384 4.96870i 0.192345 0.213621i −0.639256 0.768994i \(-0.720758\pi\)
0.831602 + 0.555373i \(0.187424\pi\)
\(542\) −7.07885 5.73234i −0.304063 0.246225i
\(543\) 0.298842 + 1.11529i 0.0128245 + 0.0478618i
\(544\) 24.9976 + 11.1297i 1.07176 + 0.477180i
\(545\) 0 0
\(546\) 0.881926 0.124223i 0.0377429 0.00531626i
\(547\) 1.45799 + 9.20536i 0.0623389 + 0.393593i 0.999053 + 0.0434985i \(0.0138504\pi\)
−0.936715 + 0.350094i \(0.886150\pi\)
\(548\) 21.0580 32.4265i 0.899553 1.38519i
\(549\) −21.2248 + 36.7624i −0.905851 + 1.56898i
\(550\) 0 0
\(551\) −6.25807 + 3.61310i −0.266603 + 0.153923i
\(552\) −0.0222627 0.0436930i −0.000947564 0.00185970i
\(553\) −17.2062 2.10728i −0.731680 0.0896107i
\(554\) 6.72363 9.25428i 0.285660 0.393177i
\(555\) 0 0
\(556\) 33.0736 3.47618i 1.40263 0.147423i
\(557\) 26.5262 7.10767i 1.12395 0.301162i 0.351469 0.936199i \(-0.385682\pi\)
0.772481 + 0.635038i \(0.219015\pi\)
\(558\) 9.81309 + 25.5640i 0.415421 + 1.08221i
\(559\) 6.80388 + 20.9402i 0.287774 + 0.885676i
\(560\) 0 0
\(561\) −0.217025 + 0.667933i −0.00916279 + 0.0282002i
\(562\) 20.7058 1.08514i 0.873421 0.0457741i
\(563\) −16.6016 25.5643i −0.699676 1.07741i −0.992619 0.121276i \(-0.961301\pi\)
0.292943 0.956130i \(-0.405365\pi\)
\(564\) 0.786177 0.707877i 0.0331040 0.0298070i
\(565\) 0 0
\(566\) 54.3327 17.6538i 2.28377 0.742043i
\(567\) 2.07643 + 23.6500i 0.0872020 + 0.993207i
\(568\) −0.240998 + 0.240998i −0.0101120 + 0.0101120i
\(569\) 3.62068 8.13218i 0.151787 0.340919i −0.821608 0.570053i \(-0.806923\pi\)
0.973395 + 0.229134i \(0.0735894\pi\)
\(570\) 0 0
\(571\) 39.4472 17.5630i 1.65081 0.734989i 0.651100 0.758992i \(-0.274308\pi\)
0.999712 + 0.0240028i \(0.00764107\pi\)
\(572\) 15.1720 + 18.7358i 0.634372 + 0.783384i
\(573\) −0.734705 + 0.374351i −0.0306927 + 0.0156387i
\(574\) 41.8772 + 11.9942i 1.74792 + 0.500627i
\(575\) 0 0
\(576\) −12.8985 22.3409i −0.537440 0.930873i
\(577\) −2.78350 0.145877i −0.115879 0.00607295i −0.00569159 0.999984i \(-0.501812\pi\)
−0.110187 + 0.993911i \(0.535145\pi\)
\(578\) 3.97180 10.3469i 0.165205 0.430374i
\(579\) 0.0762088 0.725079i 0.00316713 0.0301332i
\(580\) 0 0
\(581\) 18.0234 + 3.17230i 0.747738 + 0.131609i
\(582\) −0.335877 0.335877i −0.0139226 0.0139226i
\(583\) 23.5921 9.05615i 0.977085 0.375068i
\(584\) −0.336101 0.0714405i −0.0139080 0.00295623i
\(585\) 0 0
\(586\) 8.00505 + 37.6608i 0.330686 + 1.55575i
\(587\) 28.5627 + 14.5534i 1.17891 + 0.600684i 0.929898 0.367817i \(-0.119895\pi\)
0.249011 + 0.968501i \(0.419895\pi\)
\(588\) 0.0143275 + 0.792889i 0.000590857 + 0.0326982i
\(589\) −15.9361 5.17795i −0.656635 0.213354i
\(590\) 0 0
\(591\) −0.107160 + 0.504150i −0.00440799 + 0.0207380i
\(592\) −19.7877 + 24.4358i −0.813271 + 1.00431i
\(593\) 3.56036 13.2874i 0.146206 0.545650i −0.853492 0.521105i \(-0.825520\pi\)
0.999699 0.0245444i \(-0.00781352\pi\)
\(594\) 2.02793 1.47338i 0.0832070 0.0604535i
\(595\) 0 0
\(596\) −2.95317 2.14560i −0.120967 0.0878873i
\(597\) 0.590818 0.478435i 0.0241806 0.0195810i
\(598\) −1.85637 + 35.4216i −0.0759125 + 1.44850i
\(599\) 27.9160 + 16.1173i 1.14062 + 0.658535i 0.946583 0.322460i \(-0.104510\pi\)
0.194033 + 0.980995i \(0.437843\pi\)
\(600\) 0 0
\(601\) 12.7293i 0.519238i 0.965711 + 0.259619i \(0.0835970\pi\)
−0.965711 + 0.259619i \(0.916403\pi\)
\(602\) −37.7688 + 7.35355i −1.53934 + 0.299708i
\(603\) 41.7335 6.60993i 1.69952 0.269177i
\(604\) 3.09746 + 0.325557i 0.126034 + 0.0132467i
\(605\) 0 0
\(606\) −0.0804033 0.764987i −0.00326616 0.0310755i
\(607\) 11.2348 + 3.01036i 0.456007 + 0.122187i 0.479509 0.877537i \(-0.340815\pi\)
−0.0235020 + 0.999724i \(0.507482\pi\)
\(608\) 29.4993 + 4.67223i 1.19635 + 0.189484i
\(609\) −0.238700 + 0.149258i −0.00967261 + 0.00604825i
\(610\) 0 0
\(611\) −27.9238 + 5.93538i −1.12968 + 0.240120i
\(612\) 17.7169 11.5055i 0.716164 0.465083i
\(613\) 20.1061 13.0570i 0.812077 0.527369i −0.0705139 0.997511i \(-0.522464\pi\)
0.882591 + 0.470142i \(0.155797\pi\)
\(614\) −39.0786 + 8.30642i −1.57709 + 0.335220i
\(615\) 0 0
\(616\) −1.33271 + 0.833340i −0.0536964 + 0.0335762i
\(617\) 46.3033 + 7.33373i 1.86410 + 0.295245i 0.983814 0.179194i \(-0.0573491\pi\)
0.880288 + 0.474439i \(0.157349\pi\)
\(618\) −1.02586 0.274879i −0.0412663 0.0110573i
\(619\) 0.396520 + 3.77263i 0.0159375 + 0.151635i 0.999596 0.0284068i \(-0.00904339\pi\)
−0.983659 + 0.180042i \(0.942377\pi\)
\(620\) 0 0
\(621\) 1.86875 + 0.196413i 0.0749903 + 0.00788180i
\(622\) −0.355734 + 0.0563428i −0.0142637 + 0.00225914i
\(623\) 9.92354 1.93211i 0.397578 0.0774082i
\(624\) 0.639982i 0.0256198i
\(625\) 0 0
\(626\) 24.0327 + 13.8753i 0.960539 + 0.554568i
\(627\) −0.0401189 + 0.765515i −0.00160220 + 0.0305717i
\(628\) 6.40169 5.18399i 0.255455 0.206864i
\(629\) −22.4817 16.3339i −0.896406 0.651277i
\(630\) 0 0
\(631\) −16.4374 + 11.9425i −0.654362 + 0.475422i −0.864754 0.502195i \(-0.832526\pi\)
0.210392 + 0.977617i \(0.432526\pi\)
\(632\) 0.265396 0.990471i 0.0105569 0.0393988i
\(633\) −0.149994 + 0.185227i −0.00596174 + 0.00736213i
\(634\) 5.12456 24.1092i 0.203522 0.957498i
\(635\) 0 0
\(636\) 0.717277 + 0.233058i 0.0284419 + 0.00924133i
\(637\) 10.3632 18.7229i 0.410607 0.741829i
\(638\) −13.3266 6.79026i −0.527606 0.268829i
\(639\) −1.35696 6.38400i −0.0536805 0.252547i
\(640\) 0 0
\(641\) 10.7436 + 2.28363i 0.424348 + 0.0901981i 0.415136 0.909760i \(-0.363734\pi\)
0.00921279 + 0.999958i \(0.497067\pi\)
\(642\) −0.340801 + 0.130821i −0.0134503 + 0.00516310i
\(643\) −1.99706 1.99706i −0.0787564 0.0787564i 0.666631 0.745388i \(-0.267736\pi\)
−0.745388 + 0.666631i \(0.767736\pi\)
\(644\) −31.1045 5.47471i −1.22569 0.215734i
\(645\) 0 0
\(646\) −2.65206 + 25.2326i −0.104344 + 0.992765i
\(647\) −8.05429 + 20.9821i −0.316647 + 0.824893i 0.679209 + 0.733945i \(0.262323\pi\)
−0.995856 + 0.0909482i \(0.971010\pi\)
\(648\) −1.40244 0.0734988i −0.0550931 0.00288731i
\(649\) 6.14428 + 10.6422i 0.241184 + 0.417743i
\(650\) 0 0
\(651\) −0.627568 0.179743i −0.0245963 0.00704470i
\(652\) −20.0649 + 10.2236i −0.785803 + 0.400387i
\(653\) 4.78157 + 5.90474i 0.187117 + 0.231070i 0.862068 0.506792i \(-0.169169\pi\)
−0.674951 + 0.737862i \(0.735835\pi\)
\(654\) 0.981843 0.437145i 0.0383931 0.0170937i
\(655\) 0 0
\(656\) 12.7315 28.5955i 0.497083 1.11647i
\(657\) 4.65276 4.65276i 0.181522 0.181522i
\(658\) −4.36342 49.6981i −0.170104 1.93744i
\(659\) −39.6715 + 12.8900i −1.54538 + 0.502125i −0.952855 0.303426i \(-0.901869\pi\)
−0.592526 + 0.805551i \(0.701869\pi\)
\(660\) 0 0
\(661\) 32.5603 29.3174i 1.26645 1.14031i 0.283001 0.959120i \(-0.408670\pi\)
0.983447 0.181195i \(-0.0579965\pi\)
\(662\) 9.45247 + 14.5555i 0.367381 + 0.565717i
\(663\) 0.564834 0.0296017i 0.0219363 0.00114963i
\(664\) −0.334523 + 1.02956i −0.0129820 + 0.0399545i
\(665\) 0 0
\(666\) 15.3172 + 47.1414i 0.593528 + 1.82669i
\(667\) −4.01800 10.4672i −0.155578 0.405293i
\(668\) 25.3661 6.79683i 0.981445 0.262977i
\(669\) −0.306380 + 0.0322019i −0.0118453 + 0.00124500i
\(670\) 0 0
\(671\) 31.6024 43.4970i 1.22000 1.67918i
\(672\) 1.15495 + 0.141450i 0.0445532 + 0.00545655i
\(673\) 13.0594 + 25.6305i 0.503402 + 0.987982i 0.993230 + 0.116163i \(0.0370596\pi\)
−0.489828 + 0.871819i \(0.662940\pi\)
\(674\) −12.1335 + 7.00526i −0.467364 + 0.269833i
\(675\) 0 0
\(676\) −3.79579 + 6.57451i −0.145992 + 0.252866i
\(677\) 22.6171 34.8273i 0.869245 1.33852i −0.0708068 0.997490i \(-0.522557\pi\)
0.940052 0.341030i \(-0.110776\pi\)
\(678\) −0.0805320 0.508459i −0.00309281 0.0195273i
\(679\) −11.3016 + 1.59187i −0.433714 + 0.0610905i
\(680\) 0 0
\(681\) 0.823471 + 0.366633i 0.0315555 + 0.0140494i
\(682\) −8.97638 33.5003i −0.343724 1.28279i
\(683\) 3.59070 + 2.90769i 0.137394 + 0.111260i 0.695554 0.718474i \(-0.255159\pi\)
−0.558160 + 0.829734i \(0.688492\pi\)
\(684\) 15.4287 17.1354i 0.589933 0.655187i
\(685\) 0 0
\(686\) 30.2756 + 21.9539i 1.15593 + 0.838203i
\(687\) −0.691404 + 1.35696i −0.0263787 + 0.0517711i
\(688\) 1.44705 + 27.6113i 0.0551681 + 1.05267i
\(689\) −13.6181 15.1244i −0.518806 0.576193i
\(690\) 0 0
\(691\) −0.175360 0.157895i −0.00667101 0.00600660i 0.665788 0.746141i \(-0.268095\pi\)
−0.672459 + 0.740134i \(0.734762\pi\)
\(692\) 4.35934 27.5238i 0.165717 1.04630i
\(693\) 0.516058 30.0950i 0.0196034 1.14322i
\(694\) 18.1286 + 24.9518i 0.688151 + 0.947159i
\(695\) 0 0
\(696\) −0.00677345 0.0152134i −0.000256747 0.000576663i
\(697\) 25.8266 + 9.91391i 0.978252 + 0.375516i
\(698\) −47.0740 30.5702i −1.78178 1.15710i
\(699\) −0.878505 −0.0332281
\(700\) 0 0
\(701\) −8.97311 −0.338910 −0.169455 0.985538i \(-0.554201\pi\)
−0.169455 + 0.985538i \(0.554201\pi\)
\(702\) −1.69308 1.09950i −0.0639010 0.0414978i
\(703\) −28.3170 10.8699i −1.06799 0.409965i
\(704\) 13.2896 + 29.8490i 0.500872 + 1.12498i
\(705\) 0 0
\(706\) −14.7550 20.3086i −0.555313 0.764323i
\(707\) −15.8451 9.51404i −0.595915 0.357812i
\(708\) −0.0573719 + 0.362232i −0.00215617 + 0.0136135i
\(709\) −13.1569 11.8465i −0.494119 0.444906i 0.384011 0.923328i \(-0.374542\pi\)
−0.878130 + 0.478422i \(0.841209\pi\)
\(710\) 0 0
\(711\) 13.1392 + 14.5926i 0.492759 + 0.547264i
\(712\) 0.0312988 + 0.597217i 0.00117297 + 0.0223816i
\(713\) 11.8030 23.1647i 0.442026 0.867526i
\(714\) −0.0686475 + 0.986061i −0.00256907 + 0.0369024i
\(715\) 0 0
\(716\) 7.49892 8.32840i 0.280248 0.311247i
\(717\) 0.639691 + 0.518011i 0.0238897 + 0.0193455i
\(718\) 19.2888 + 71.9867i 0.719851 + 2.68652i
\(719\) 0.351469 + 0.156484i 0.0131076 + 0.00583587i 0.413280 0.910604i \(-0.364383\pi\)
−0.400172 + 0.916440i \(0.631050\pi\)
\(720\) 0 0
\(721\) −20.1040 + 15.7169i −0.748711 + 0.585328i
\(722\) −1.66967 10.5419i −0.0621388 0.392329i
\(723\) −0.742606 + 1.14351i −0.0276178 + 0.0425277i
\(724\) −21.9945 + 38.0956i −0.817419 + 1.41581i
\(725\) 0 0
\(726\) −0.325100 + 0.187697i −0.0120656 + 0.00696608i
\(727\) 15.1495 + 29.7326i 0.561864 + 1.10272i 0.980857 + 0.194731i \(0.0623835\pi\)
−0.418992 + 0.907990i \(0.637617\pi\)
\(728\) 1.01120 + 0.761507i 0.0374776 + 0.0282233i
\(729\) 15.7759 21.7137i 0.584292 0.804210i
\(730\) 0 0
\(731\) −24.3021 + 2.55426i −0.898847 + 0.0944726i
\(732\) 1.54993 0.415302i 0.0572870 0.0153500i
\(733\) −17.5710 45.7741i −0.649001 1.69070i −0.720672 0.693276i \(-0.756167\pi\)
0.0716715 0.997428i \(-0.477167\pi\)
\(734\) 9.04134 + 27.8264i 0.333722 + 1.02709i
\(735\) 0 0
\(736\) −14.3200 + 44.0726i −0.527844 + 1.62454i
\(737\) −53.4438 + 2.80087i −1.96863 + 0.103172i
\(738\) −26.8750 41.3838i −0.989281 1.52336i
\(739\) −1.05689 + 0.951626i −0.0388782 + 0.0350061i −0.688341 0.725387i \(-0.741661\pi\)
0.649463 + 0.760394i \(0.274994\pi\)
\(740\) 0 0
\(741\) 0.587145 0.190775i 0.0215693 0.00700829i
\(742\) 29.1281 20.4091i 1.06933 0.749241i
\(743\) 28.2843 28.2843i 1.03765 1.03765i 0.0383888 0.999263i \(-0.487777\pi\)
0.999263 0.0383888i \(-0.0122225\pi\)
\(744\) 0.0157064 0.0352771i 0.000575823 0.00129332i
\(745\) 0 0
\(746\) −48.9564 + 21.7968i −1.79242 + 0.798037i
\(747\) −13.0460 16.1104i −0.477326 0.589449i
\(748\) −23.8400 + 12.1471i −0.871677 + 0.444142i
\(749\) −2.41507 + 8.43213i −0.0882447 + 0.308103i
\(750\) 0 0
\(751\) −14.2895 24.7501i −0.521430 0.903143i −0.999689 0.0249242i \(-0.992066\pi\)
0.478260 0.878218i \(-0.341268\pi\)
\(752\) −35.7999 1.87619i −1.30549 0.0684177i
\(753\) 0.244096 0.635893i 0.00889537 0.0231732i
\(754\) −1.25911 + 11.9796i −0.0458541 + 0.436272i
\(755\) 0 0
\(756\) 1.15499 1.37732i 0.0420066 0.0500928i
\(757\) −9.94771 9.94771i −0.361556 0.361556i 0.502830 0.864385i \(-0.332292\pi\)
−0.864385 + 0.502830i \(0.832292\pi\)
\(758\) 1.18542 0.455041i 0.0430565 0.0165278i
\(759\) −1.16339 0.247286i −0.0422283 0.00897590i
\(760\) 0 0
\(761\) −4.97651 23.4126i −0.180398 0.848708i −0.971503 0.237027i \(-0.923827\pi\)
0.791105 0.611681i \(-0.209506\pi\)
\(762\) −1.20243 0.612666i −0.0435593 0.0221946i
\(763\) 5.80136 25.1637i 0.210023 0.910989i
\(764\) −29.8770 9.70763i −1.08091 0.351210i
\(765\) 0 0
\(766\) −4.93269 + 23.2065i −0.178225 + 0.838484i
\(767\) 6.22819 7.69118i 0.224887 0.277712i
\(768\) 0.207313 0.773701i 0.00748075 0.0279185i
\(769\) 18.1484 13.1856i 0.654450 0.475486i −0.210334 0.977630i \(-0.567455\pi\)
0.864784 + 0.502144i \(0.167455\pi\)
\(770\) 0 0
\(771\) −0.254149 0.184650i −0.00915296 0.00665002i
\(772\) 21.5860 17.4800i 0.776897 0.629119i
\(773\) −0.0465468 + 0.888166i −0.00167417 + 0.0319451i −0.999339 0.0363567i \(-0.988425\pi\)
0.997665 + 0.0683018i \(0.0217581\pi\)
\(774\) 37.7472 + 21.7933i 1.35679 + 0.783345i
\(775\) 0 0
\(776\) 0.675128i 0.0242357i
\(777\) −1.11742 0.384374i −0.0400872 0.0137893i
\(778\) 10.1208 1.60298i 0.362849 0.0574696i
\(779\) 30.0298 + 3.15626i 1.07593 + 0.113085i
\(780\) 0 0
\(781\) 0.864075 + 8.22113i 0.0309190 + 0.294175i
\(782\) −38.0244 10.1886i −1.35975 0.364344i
\(783\) 0.630263 + 0.0998239i 0.0225238 + 0.00356742i
\(784\) 18.6556 19.3422i 0.666271 0.690793i
\(785\) 0 0
\(786\) −1.10899 + 0.235723i −0.0395563 + 0.00840795i
\(787\) −9.61316 + 6.24286i −0.342672 + 0.222534i −0.704488 0.709716i \(-0.748823\pi\)
0.361816 + 0.932249i \(0.382157\pi\)
\(788\) −16.4682 + 10.6946i −0.586655 + 0.380978i
\(789\) −0.344981 + 0.0733280i −0.0122817 + 0.00261055i
\(790\) 0 0
\(791\) −10.9232 5.80367i −0.388385 0.206355i
\(792\) 1.75857 + 0.278530i 0.0624881 + 0.00989715i
\(793\) −41.8249 11.2069i −1.48524 0.397970i
\(794\) −6.29731 59.9149i −0.223483 2.12630i
\(795\) 0 0
\(796\) 28.8048 + 3.02750i 1.02096 + 0.107307i
\(797\) −6.72244 + 1.06473i −0.238121 + 0.0377146i −0.274354 0.961629i \(-0.588464\pi\)
0.0362333 + 0.999343i \(0.488464\pi\)
\(798\) 0.206187 + 1.05900i 0.00729894 + 0.0374883i
\(799\) 31.6829i 1.12086i
\(800\) 0 0
\(801\) −9.91786 5.72608i −0.350430 0.202321i
\(802\) −1.74611 + 33.3178i −0.0616573 + 1.17649i
\(803\) −6.47675 + 5.24477i −0.228560 + 0.185084i
\(804\) −1.29216 0.938811i −0.0455711 0.0331093i
\(805\) 0 0
\(806\) −22.5971 + 16.4177i −0.795948 + 0.578290i
\(807\) −0.215704 + 0.805018i −0.00759314 + 0.0283380i
\(808\) 0.688020 0.849634i 0.0242045 0.0298900i
\(809\) −4.20054 + 19.7620i −0.147683 + 0.694794i 0.840537 + 0.541754i \(0.182240\pi\)
−0.988220 + 0.153040i \(0.951094\pi\)
\(810\) 0 0
\(811\) −44.8838 14.5836i −1.57608 0.512101i −0.615041 0.788495i \(-0.710860\pi\)
−0.961044 + 0.276394i \(0.910860\pi\)
\(812\) −10.4513 2.40948i −0.366768 0.0845562i
\(813\) −0.219173 0.111674i −0.00768673 0.00391658i
\(814\) −13.0528 61.4086i −0.457500 2.15237i
\(815\) 0 0
\(816\) 0.694749 + 0.147673i 0.0243211 + 0.00516960i
\(817\) −24.9003 + 9.55833i −0.871151 + 0.334404i
\(818\) 27.5572 + 27.5572i 0.963517 + 0.963517i
\(819\) −22.7764 + 8.29787i −0.795872 + 0.289951i
\(820\) 0 0
\(821\) 4.44023 42.2460i 0.154965 1.47439i −0.590061 0.807359i \(-0.700896\pi\)
0.745026 0.667036i \(-0.232437\pi\)
\(822\) 0.734405 1.91319i 0.0256153 0.0667302i
\(823\) −10.9948 0.576213i −0.383255 0.0200855i −0.140264 0.990114i \(-0.544795\pi\)
−0.242991 + 0.970029i \(0.578128\pi\)
\(824\) −0.754754 1.30727i −0.0262931 0.0455410i
\(825\) 0 0
\(826\) 12.0181 + 12.4375i 0.418165 + 0.432756i
\(827\) −13.5701 + 6.91433i −0.471880 + 0.240435i −0.673724 0.738983i \(-0.735307\pi\)
0.201844 + 0.979418i \(0.435307\pi\)
\(828\) 22.5145 + 27.8031i 0.782433 + 0.966224i
\(829\) −22.8989 + 10.1953i −0.795312 + 0.354096i −0.763837 0.645409i \(-0.776687\pi\)
−0.0314750 + 0.999505i \(0.510020\pi\)
\(830\) 0 0
\(831\) 0.125645 0.282203i 0.00435857 0.00978950i
\(832\) 18.6069 18.6069i 0.645078 0.645078i
\(833\) 17.9339 + 15.5703i 0.621372 + 0.539480i
\(834\) 1.67638 0.544688i 0.0580482 0.0188610i
\(835\) 0 0
\(836\) −21.7031 + 19.5416i −0.750617 + 0.675859i
\(837\) 0.805892 + 1.24096i 0.0278557 + 0.0428940i
\(838\) 47.7080 2.50027i 1.64805 0.0863704i
\(839\) 5.42302 16.6903i 0.187223 0.576214i −0.812756 0.582604i \(-0.802034\pi\)
0.999980 + 0.00638981i \(0.00203395\pi\)
\(840\) 0 0
\(841\) 7.78489 + 23.9594i 0.268445 + 0.826188i
\(842\) −0.240316 0.626046i −0.00828185 0.0215750i
\(843\) 0.540850 0.144920i 0.0186279 0.00499132i
\(844\) −9.03059 + 0.949153i −0.310846 + 0.0326712i
\(845\) 0 0
\(846\) −33.2176 + 45.7201i −1.14204 + 1.57189i
\(847\) −1.09648 + 8.95288i −0.0376756 + 0.307624i
\(848\) −11.6027 22.7715i −0.398438 0.781978i
\(849\) 1.33608 0.771384i 0.0458540 0.0264738i
\(850\) 0 0
\(851\) 23.5307 40.7564i 0.806623 1.39711i
\(852\) −0.134367 + 0.206907i −0.00460333 + 0.00708851i
\(853\) −2.70636 17.0873i −0.0926639 0.585057i −0.989706 0.143113i \(-0.954289\pi\)
0.897043 0.441944i \(-0.145711\pi\)
\(854\) 28.3252 70.1695i 0.969269 2.40115i
\(855\) 0 0
\(856\) −0.473990 0.211034i −0.0162006 0.00721299i
\(857\) 7.83496 + 29.2405i 0.267637 + 0.998836i 0.960616 + 0.277878i \(0.0896311\pi\)
−0.692979 + 0.720958i \(0.743702\pi\)
\(858\) 0.993050 + 0.804156i 0.0339022 + 0.0274534i
\(859\) 16.3706 18.1814i 0.558558 0.620342i −0.396042 0.918233i \(-0.629616\pi\)
0.954600 + 0.297891i \(0.0962831\pi\)
\(860\) 0 0
\(861\) 1.17353 + 0.0816986i 0.0399938 + 0.00278428i
\(862\) 31.3438 61.5156i 1.06757 2.09523i
\(863\) 1.71198 + 32.6665i 0.0582764 + 1.11198i 0.858678 + 0.512515i \(0.171286\pi\)
−0.800402 + 0.599464i \(0.795380\pi\)
\(864\) −1.76480 1.96001i −0.0600396 0.0666807i
\(865\) 0 0
\(866\) −5.47443 4.92920i −0.186029 0.167501i
\(867\) 0.0468206 0.295613i 0.00159011 0.0100396i
\(868\) −12.0640 21.7483i −0.409479 0.738185i
\(869\) −14.6186 20.1208i −0.495902 0.682550i
\(870\) 0 0
\(871\) 17.5306 + 39.3743i 0.594001 + 1.33415i
\(872\) 1.42611 + 0.547433i 0.0482943 + 0.0185384i
\(873\) 10.8427 + 7.04133i 0.366970 + 0.238313i
\(874\) −42.9677 −1.45340
\(875\) 0 0
\(876\) −0.248726 −0.00840366
\(877\) −3.10180 2.01433i −0.104740 0.0680191i 0.491206 0.871043i \(-0.336556\pi\)
−0.595946 + 0.803024i \(0.703223\pi\)
\(878\) −57.8880 22.2211i −1.95362 0.749926i
\(879\) 0.422907 + 0.949864i 0.0142643 + 0.0320381i
\(880\) 0 0
\(881\) 13.7300 + 18.8977i 0.462575 + 0.636680i 0.975040 0.222028i \(-0.0712676\pi\)
−0.512465 + 0.858708i \(0.671268\pi\)
\(882\) −9.55496 41.2713i −0.321732 1.38968i
\(883\) −7.03524 + 44.4188i −0.236755 + 1.49481i 0.527311 + 0.849672i \(0.323200\pi\)
−0.764066 + 0.645139i \(0.776800\pi\)
\(884\) 16.0136 + 14.4187i 0.538595 + 0.484953i
\(885\) 0 0
\(886\) −8.74322 9.71033i −0.293734 0.326225i
\(887\) −2.70240 51.5648i −0.0907376 1.73138i −0.543208 0.839598i \(-0.682791\pi\)
0.452471 0.891779i \(-0.350543\pi\)
\(888\) 0.0317343 0.0622820i 0.00106493 0.00209005i
\(889\) −29.1394 + 14.2233i −0.977305 + 0.477035i
\(890\) 0 0
\(891\) −22.7919 + 25.3129i −0.763556 + 0.848015i
\(892\) −9.12112 7.38613i −0.305398 0.247306i
\(893\) −8.95044 33.4035i −0.299515 1.11781i
\(894\) −0.176750 0.0786941i −0.00591140 0.00263192i
\(895\) 0 0
\(896\) 2.03871 + 2.60778i 0.0681086 + 0.0871198i
\(897\) 0.149845 + 0.946083i 0.00500317 + 0.0315888i
\(898\) 36.5739 56.3189i 1.22049 1.87938i
\(899\) 4.41450 7.64614i 0.147232 0.255013i
\(900\) 0 0
\(901\) 19.5610 11.2935i 0.651670 0.376242i
\(902\) 28.3736 + 55.6864i 0.944738 + 1.85415i
\(903\) −0.956373 + 0.406303i −0.0318261 + 0.0135209i
\(904\) 0.430076 0.591949i 0.0143041 0.0196879i
\(905\) 0 0
\(906\) 0.164174 0.0172554i 0.00545432 0.000573272i
\(907\) −1.89080 + 0.506638i −0.0627830 + 0.0168226i −0.290074 0.957004i \(-0.593680\pi\)
0.227291 + 0.973827i \(0.427013\pi\)
\(908\) 12.3068 + 32.0604i 0.408416 + 1.06396i
\(909\) 6.46952 + 19.9111i 0.214580 + 0.660410i
\(910\) 0 0
\(911\) 12.2158 37.5963i 0.404726 1.24562i −0.516397 0.856349i \(-0.672727\pi\)
0.921124 0.389270i \(-0.127273\pi\)
\(912\) 0.774195 0.0405739i 0.0256362 0.00134353i
\(913\) 14.3002 + 22.0203i 0.473267 + 0.728767i
\(914\) −41.6527 + 37.5042i −1.37775 + 1.24053i
\(915\) 0 0
\(916\) −55.1811 + 17.9294i −1.82324 + 0.592405i
\(917\) −11.5052 + 24.6927i −0.379934 + 0.815425i
\(918\) 1.58426 1.58426i 0.0522883 0.0522883i
\(919\) −1.55562 + 3.49397i −0.0513151 + 0.115256i −0.937384 0.348299i \(-0.886759\pi\)
0.886068 + 0.463554i \(0.153426\pi\)
\(920\) 0 0
\(921\) −0.985624 + 0.438828i −0.0324774 + 0.0144599i
\(922\) −7.49782 9.25904i −0.246928 0.304930i
\(923\) 5.93181 3.02241i 0.195248 0.0994838i
\(924\) −0.818199 + 0.790611i −0.0269168 + 0.0260092i
\(925\) 0 0
\(926\) 22.4514 + 38.8870i 0.737800 + 1.27791i
\(927\) 28.8669 + 1.51285i 0.948113 + 0.0496885i
\(928\) −5.63971 + 14.6919i −0.185133 + 0.482287i
\(929\) 1.91707 18.2397i 0.0628971 0.598426i −0.916995 0.398899i \(-0.869393\pi\)
0.979892 0.199528i \(-0.0639408\pi\)
\(930\) 0 0
\(931\) 23.3064 + 11.3496i 0.763837 + 0.371967i
\(932\) −23.6662 23.6662i −0.775212 0.775212i
\(933\) −0.00908037 + 0.00348563i −0.000297278 + 0.000114114i
\(934\) 25.9730 + 5.52073i 0.849862 + 0.180644i
\(935\) 0 0
\(936\) −0.298132 1.40260i −0.00974475 0.0458454i
\(937\) −33.1453 16.8884i −1.08281 0.551720i −0.180838 0.983513i \(-0.557881\pi\)
−0.901973 + 0.431793i \(0.857881\pi\)
\(938\) −72.0238 + 22.0441i −2.35166 + 0.719765i
\(939\) 0.712728 + 0.231579i 0.0232590 + 0.00755731i
\(940\) 0 0
\(941\) 3.62373 17.0483i 0.118130 0.555758i −0.878781 0.477225i \(-0.841643\pi\)
0.996911 0.0785338i \(-0.0250239\pi\)
\(942\) 0.274765 0.339307i 0.00895234 0.0110552i
\(943\) −12.1257 + 45.2536i −0.394866 + 1.47366i
\(944\) 10.0544 7.30493i 0.327242 0.237755i
\(945\) 0 0
\(946\) −44.6622 32.4490i −1.45209 1.05501i
\(947\) −18.4756 + 14.9613i −0.600377 + 0.486175i −0.880664 0.473741i \(-0.842903\pi\)
0.280288 + 0.959916i \(0.409570\pi\)
\(948\) 0.0388466 0.741238i 0.00126168 0.0240743i
\(949\) 5.81265 + 3.35594i 0.188687 + 0.108938i
\(950\) 0 0
\(951\) 0.665616i 0.0215841i
\(952\) −1.06000 + 0.922020i −0.0343549 + 0.0298828i
\(953\) −27.4941 + 4.35463i −0.890621 + 0.141060i −0.584943 0.811075i \(-0.698883\pi\)
−0.305678 + 0.952135i \(0.598883\pi\)
\(954\) −40.0680 4.21132i −1.29725 0.136346i
\(955\) 0 0
\(956\) 3.27794 + 31.1875i 0.106016 + 1.00868i
\(957\) −0.390148 0.104540i −0.0126117 0.00337929i
\(958\) −21.0358 3.33174i −0.679636 0.107644i
\(959\) −26.1059 41.7496i −0.843002 1.34816i
\(960\) 0 0
\(961\) −10.2971 + 2.18873i −0.332166 + 0.0706041i
\(962\) −42.4039 + 27.5374i −1.36716 + 0.887841i
\(963\) 8.33279 5.41138i 0.268520 0.174379i
\(964\) −50.8105 + 10.8001i −1.63650 + 0.347848i
\(965\) 0 0
\(966\) −1.67293 + 0.0589348i −0.0538256 + 0.00189620i
\(967\) −17.6999 2.80338i −0.569189 0.0901507i −0.134795 0.990874i \(-0.543038\pi\)
−0.434394 + 0.900723i \(0.643038\pi\)
\(968\) −0.515372 0.138094i −0.0165647 0.00443849i
\(969\) 0.0716191 + 0.681410i 0.00230074 + 0.0218901i
\(970\) 0 0
\(971\) −15.8054 1.66122i −0.507221 0.0533110i −0.152538 0.988298i \(-0.548745\pi\)
−0.354683 + 0.934987i \(0.615411\pi\)
\(972\) −3.01714 + 0.477867i −0.0967747 + 0.0153276i
\(973\) 13.7762 40.0488i 0.441643 1.28391i
\(974\) 74.6937i 2.39334i
\(975\) 0 0
\(976\) −47.0900 27.1874i −1.50731 0.870249i
\(977\) −0.285577 + 5.44914i −0.00913643 + 0.174333i 0.990250 + 0.139303i \(0.0444862\pi\)
−0.999386 + 0.0350305i \(0.988847\pi\)
\(978\) −0.927593 + 0.751150i −0.0296612 + 0.0240191i
\(979\) 11.7347 + 8.52579i 0.375044 + 0.272486i
\(980\) 0 0
\(981\) −23.6657 + 17.1942i −0.755588 + 0.548967i
\(982\) 14.4527 53.9384i 0.461206 1.72124i
\(983\) 13.2762 16.3947i 0.423444 0.522910i −0.520123 0.854091i \(-0.674114\pi\)
0.943567 + 0.331182i \(0.107447\pi\)
\(984\) −0.0144678 + 0.0680659i −0.000461218 + 0.00216986i
\(985\) 0 0
\(986\) −12.7143 4.13111i −0.404904 0.131561i
\(987\) −0.394299 1.28828i −0.0125507 0.0410063i
\(988\) 20.9565 + 10.6779i 0.666715 + 0.339708i
\(989\) −8.60404 40.4788i −0.273592 1.28715i
\(990\) 0 0
\(991\) 3.91217 + 0.831558i 0.124274 + 0.0264153i 0.269629 0.962964i \(-0.413099\pi\)
−0.145355 + 0.989380i \(0.546432\pi\)
\(992\) −34.0679 + 13.0774i −1.08166 + 0.415209i
\(993\) 0.331412 + 0.331412i 0.0105170 + 0.0105170i
\(994\) 3.98256 + 10.9315i 0.126319 + 0.346727i
\(995\) 0 0
\(996\) −0.0819093 + 0.779315i −0.00259540 + 0.0246935i
\(997\) 1.01769 2.65118i 0.0322306 0.0839636i −0.916521 0.399987i \(-0.869015\pi\)
0.948751 + 0.316024i \(0.102348\pi\)
\(998\) 69.5313 + 3.64398i 2.20097 + 0.115348i
\(999\) 1.33924 + 2.31963i 0.0423716 + 0.0733897i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.bb.a.507.15 288
5.2 odd 4 175.2.x.a.3.4 288
5.3 odd 4 875.2.bb.c.493.15 288
5.4 even 2 875.2.bb.b.507.4 288
7.5 odd 6 inner 875.2.bb.a.257.15 288
25.6 even 5 875.2.bb.c.857.4 288
25.8 odd 20 inner 875.2.bb.a.143.15 288
25.17 odd 20 875.2.bb.b.143.4 288
25.19 even 10 175.2.x.a.17.15 yes 288
35.12 even 12 175.2.x.a.103.15 yes 288
35.19 odd 6 875.2.bb.b.257.4 288
35.33 even 12 875.2.bb.c.243.4 288
175.19 odd 30 175.2.x.a.117.4 yes 288
175.33 even 60 inner 875.2.bb.a.768.15 288
175.117 even 60 875.2.bb.b.768.4 288
175.131 odd 30 875.2.bb.c.607.15 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.x.a.3.4 288 5.2 odd 4
175.2.x.a.17.15 yes 288 25.19 even 10
175.2.x.a.103.15 yes 288 35.12 even 12
175.2.x.a.117.4 yes 288 175.19 odd 30
875.2.bb.a.143.15 288 25.8 odd 20 inner
875.2.bb.a.257.15 288 7.5 odd 6 inner
875.2.bb.a.507.15 288 1.1 even 1 trivial
875.2.bb.a.768.15 288 175.33 even 60 inner
875.2.bb.b.143.4 288 25.17 odd 20
875.2.bb.b.257.4 288 35.19 odd 6
875.2.bb.b.507.4 288 5.4 even 2
875.2.bb.b.768.4 288 175.117 even 60
875.2.bb.c.243.4 288 35.33 even 12
875.2.bb.c.493.15 288 5.3 odd 4
875.2.bb.c.607.15 288 175.131 odd 30
875.2.bb.c.857.4 288 25.6 even 5