Properties

Label 8700.2.g
Level $8700$
Weight $2$
Character orbit 8700.g
Rep. character $\chi_{8700}(349,\cdot)$
Character field $\Q$
Dimension $84$
Newform subspaces $24$
Sturm bound $3600$
Trace bound $21$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8700.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 24 \)
Sturm bound: \(3600\)
Trace bound: \(21\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(8700, [\chi])\).

Total New Old
Modular forms 1836 84 1752
Cusp forms 1764 84 1680
Eisenstein series 72 0 72

Trace form

\( 84 q - 84 q^{9} - 24 q^{11} + 12 q^{19} + 4 q^{21} - 4 q^{31} + 4 q^{39} - 16 q^{41} - 72 q^{49} + 16 q^{51} + 24 q^{59} + 44 q^{61} - 32 q^{69} - 16 q^{71} - 8 q^{79} + 84 q^{81} + 56 q^{89} + 20 q^{91}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(8700, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
8700.2.g.a 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 8700.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+3 i q^{7}-q^{9}-6 q^{11}-i q^{13}+\cdots\)
8700.2.g.b 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 1740.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-q^{9}-6 q^{11}-6 i q^{13}+4 i q^{17}+\cdots\)
8700.2.g.c 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 1740.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 i q^{7}-q^{9}-4 q^{11}-2 i q^{13}+\cdots\)
8700.2.g.d 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 1740.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+i q^{7}-q^{9}-3 q^{11}-i q^{13}+\cdots\)
8700.2.g.e 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 348.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+3 i q^{7}-q^{9}-3 q^{11}-3 i q^{13}+\cdots\)
8700.2.g.f 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 1740.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+3 i q^{7}-q^{9}-3 q^{11}+i q^{13}+\cdots\)
8700.2.g.g 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 8700.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+i q^{7}-q^{9}-2 q^{11}+5 i q^{13}+\cdots\)
8700.2.g.h 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 348.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+3 i q^{7}-q^{9}-q^{11}-3 i q^{13}+\cdots\)
8700.2.g.i 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 348.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+i q^{7}-q^{9}+q^{11}+3 i q^{13}+\cdots\)
8700.2.g.j 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 348.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+i q^{7}-q^{9}+3 q^{11}-5 i q^{13}+\cdots\)
8700.2.g.k 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 1740.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+2 i q^{7}-q^{9}+3 q^{11}-2 i q^{13}+\cdots\)
8700.2.g.l 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 1740.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+3 i q^{7}-q^{9}+3 q^{11}-3 i q^{13}+\cdots\)
8700.2.g.m 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 1740.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+2 i q^{7}-q^{9}+4 q^{11}-2 i q^{13}+\cdots\)
8700.2.g.n 8700.g 5.b $2$ $69.470$ \(\Q(\sqrt{-1}) \) None 1740.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+5 i q^{7}-q^{9}+5 q^{11}-5 i q^{13}+\cdots\)
8700.2.g.o 8700.g 5.b $4$ $69.470$ \(\Q(i, \sqrt{17})\) None 1740.2.a.m \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+2\beta _{1}q^{7}-q^{9}+(-1-\beta _{3})q^{11}+\cdots\)
8700.2.g.p 8700.g 5.b $4$ $69.470$ \(\Q(i, \sqrt{57})\) None 1740.2.a.n \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}-2\beta _{2}q^{7}-q^{9}+(-2+\beta _{3})q^{11}+\cdots\)
8700.2.g.q 8700.g 5.b $4$ $69.470$ \(\Q(i, \sqrt{17})\) None 1740.2.a.k \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+(\beta _{1}+3\beta _{2})q^{7}-q^{9}-\beta _{3}q^{11}+\cdots\)
8700.2.g.r 8700.g 5.b $4$ $69.470$ \(\Q(i, \sqrt{17})\) None 1740.2.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+(\beta _{1}-\beta _{2})q^{7}-q^{9}+(1-2\beta _{3})q^{11}+\cdots\)
8700.2.g.s 8700.g 5.b $4$ $69.470$ \(\Q(i, \sqrt{33})\) None 1740.2.a.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+\beta _{1}q^{7}-q^{9}+(1+\beta _{3})q^{11}+\cdots\)
8700.2.g.t 8700.g 5.b $4$ $69.470$ \(\Q(i, \sqrt{33})\) None 1740.2.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+\beta _{1}q^{7}-q^{9}+(3-\beta _{3})q^{11}+\cdots\)
8700.2.g.u 8700.g 5.b $6$ $69.470$ 6.0.4227136.2 None 8700.2.a.bb \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}+(\beta _{1}-\beta _{4})q^{7}-q^{9}+\beta _{2}q^{11}+\cdots\)
8700.2.g.v 8700.g 5.b $6$ $69.470$ 6.0.6594624.1 None 8700.2.a.ba \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{3}+(2\beta _{1}-\beta _{4}-\beta _{5})q^{7}-q^{9}+\cdots\)
8700.2.g.w 8700.g 5.b $10$ $69.470$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 8700.2.a.be \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{3}-\beta _{9}q^{7}-q^{9}+(-2+\beta _{7}+\cdots)q^{11}+\cdots\)
8700.2.g.x 8700.g 5.b $10$ $69.470$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 8700.2.a.bf \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+\beta _{1}q^{7}-q^{9}+\beta _{7}q^{11}+(-\beta _{1}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(8700, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(8700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(725, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(870, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1450, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1740, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2175, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2900, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4350, [\chi])\)\(^{\oplus 2}\)