Properties

Label 8700.2.a.bh
Level $8700$
Weight $2$
Character orbit 8700.a
Self dual yes
Analytic conductor $69.470$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8700,2,Mod(1,8700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8700.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8700.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,5,0,0,0,0,0,5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.4698497585\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.40563468.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 18x^{3} - x^{2} + 63x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} - \beta_1 q^{7} + q^{9} - \beta_{2} q^{11} + ( - \beta_{2} - \beta_1) q^{13} + (\beta_{4} + 1) q^{17} - \beta_{3} q^{19} - \beta_1 q^{21} + (\beta_{4} - \beta_{2} + 1) q^{23} + q^{27} + q^{29}+ \cdots - \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{3} + 5 q^{9} + 2 q^{11} + 2 q^{13} + 6 q^{17} + 8 q^{23} + 5 q^{27} + 5 q^{29} + 10 q^{31} + 2 q^{33} + 2 q^{39} + q^{41} + 10 q^{43} - 8 q^{47} + q^{49} + 6 q^{51} + 12 q^{53} + 12 q^{59}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 18x^{3} - x^{2} + 63x + 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + \nu^{2} - 11\nu - 9 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - \nu^{3} - 13\nu^{2} + 16\nu + 15 ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} + \nu^{3} + 19\nu^{2} - 16\nu - 57 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{3} + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} - \beta_{3} + 3\beta_{2} + 11\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 12\beta_{4} + 18\beta_{3} + 3\beta_{2} - 5\beta _1 + 78 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.56966
2.43734
−0.451304
−1.86123
−3.69446
0 1.00000 0 0 0 −3.56966 0 1.00000 0
1.2 0 1.00000 0 0 0 −2.43734 0 1.00000 0
1.3 0 1.00000 0 0 0 0.451304 0 1.00000 0
1.4 0 1.00000 0 0 0 1.86123 0 1.00000 0
1.5 0 1.00000 0 0 0 3.69446 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8700.2.a.bh yes 5
5.b even 2 1 8700.2.a.bf 5
5.c odd 4 2 8700.2.g.x 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8700.2.a.bf 5 5.b even 2 1
8700.2.a.bh yes 5 1.a even 1 1 trivial
8700.2.g.x 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8700))\):

\( T_{7}^{5} - 18T_{7}^{3} + T_{7}^{2} + 63T_{7} - 27 \) Copy content Toggle raw display
\( T_{11}^{5} - 2T_{11}^{4} - 23T_{11}^{3} + 21T_{11}^{2} + 96T_{11} - 108 \) Copy content Toggle raw display
\( T_{13}^{5} - 2T_{13}^{4} - 42T_{13}^{3} + 135T_{13}^{2} - 9T_{13} - 171 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( (T - 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 18 T^{3} + \cdots - 27 \) Copy content Toggle raw display
$11$ \( T^{5} - 2 T^{4} + \cdots - 108 \) Copy content Toggle raw display
$13$ \( T^{5} - 2 T^{4} + \cdots - 171 \) Copy content Toggle raw display
$17$ \( T^{5} - 6 T^{4} + \cdots + 146 \) Copy content Toggle raw display
$19$ \( T^{5} - 35 T^{3} + \cdots + 24 \) Copy content Toggle raw display
$23$ \( T^{5} - 8 T^{4} + \cdots - 144 \) Copy content Toggle raw display
$29$ \( (T - 1)^{5} \) Copy content Toggle raw display
$31$ \( T^{5} - 10 T^{4} + \cdots + 344 \) Copy content Toggle raw display
$37$ \( T^{5} \) Copy content Toggle raw display
$41$ \( T^{5} - T^{4} + \cdots - 1584 \) Copy content Toggle raw display
$43$ \( T^{5} - 10 T^{4} + \cdots + 600 \) Copy content Toggle raw display
$47$ \( T^{5} + 8 T^{4} + \cdots + 10620 \) Copy content Toggle raw display
$53$ \( T^{5} - 12 T^{4} + \cdots - 4912 \) Copy content Toggle raw display
$59$ \( T^{5} - 12 T^{4} + \cdots - 32112 \) Copy content Toggle raw display
$61$ \( T^{5} - 10 T^{4} + \cdots - 4104 \) Copy content Toggle raw display
$67$ \( T^{5} + 20 T^{4} + \cdots - 9489 \) Copy content Toggle raw display
$71$ \( T^{5} - 18 T^{4} + \cdots + 1296 \) Copy content Toggle raw display
$73$ \( T^{5} - 16 T^{4} + \cdots + 9504 \) Copy content Toggle raw display
$79$ \( T^{5} - 10 T^{4} + \cdots + 3648 \) Copy content Toggle raw display
$83$ \( T^{5} - 10 T^{4} + \cdots - 864 \) Copy content Toggle raw display
$89$ \( T^{5} + 6 T^{4} + \cdots - 30816 \) Copy content Toggle raw display
$97$ \( T^{5} + 12 T^{4} + \cdots - 3384 \) Copy content Toggle raw display
show more
show less