Defining parameters
Level: | \( N \) | \(=\) | \( 87 = 3 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 87.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(87))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 14 | 18 |
Cusp forms | 28 | 14 | 14 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(29\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(5\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(5\) |
Plus space | \(+\) | \(10\) | |
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(87))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 29 | |||||||
87.4.a.a | $2$ | $5.133$ | \(\Q(\sqrt{17}) \) | None | \(-5\) | \(6\) | \(-11\) | \(-24\) | $-$ | $+$ | \(q+(-2-\beta )q^{2}+3q^{3}+5\beta q^{4}+(-4+\cdots)q^{5}+\cdots\) | |
87.4.a.b | $2$ | $5.133$ | \(\Q(\sqrt{41}) \) | None | \(-1\) | \(-6\) | \(-1\) | \(-24\) | $+$ | $-$ | \(q-\beta q^{2}-3q^{3}+(2+\beta )q^{4}+(-2+3\beta )q^{5}+\cdots\) | |
87.4.a.c | $5$ | $5.133$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(3\) | \(-15\) | \(-1\) | \(4\) | $+$ | $+$ | \(q+(1-\beta _{1})q^{2}-3q^{3}+(6-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) | |
87.4.a.d | $5$ | $5.133$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(3\) | \(15\) | \(29\) | \(4\) | $-$ | $-$ | \(q+(1-\beta _{1})q^{2}+3q^{3}+(6+\beta _{2}+\beta _{3}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(87))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(87)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 2}\)