Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [87,2,Mod(2,87)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(87, base_ring=CyclotomicField(28))
chi = DirichletCharacter(H, H._module([14, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("87.2");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 87 = 3 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 87.k (of order \(28\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.694698497585\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{28})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{28}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −0.261972 | + | 2.32506i | 1.64121 | + | 0.553555i | −3.38744 | − | 0.773161i | 0.273793 | + | 0.343325i | −1.71700 | + | 3.67091i | −0.670558 | − | 2.93790i | 1.13950 | − | 3.25651i | 2.38715 | + | 1.81700i | −0.869979 | + | 0.546644i |
2.2 | −0.255714 | + | 2.26953i | −1.44205 | + | 0.959421i | −3.13550 | − | 0.715657i | −1.22248 | − | 1.53294i | −1.80868 | − | 3.51811i | 0.968527 | + | 4.24339i | 0.917355 | − | 2.62165i | 1.15902 | − | 2.76707i | 3.79166 | − | 2.38246i |
2.3 | −0.128998 | + | 1.14489i | −1.41996 | − | 0.991816i | 0.655718 | + | 0.149663i | 1.88898 | + | 2.36870i | 1.31870 | − | 1.49776i | −0.0467107 | − | 0.204653i | −1.01699 | + | 2.90639i | 1.03260 | + | 2.81669i | −2.95558 | + | 1.85712i |
2.4 | −0.108076 | + | 0.959202i | 0.843782 | − | 1.51262i | 1.04147 | + | 0.237708i | −1.18935 | − | 1.49140i | 1.35972 | + | 0.972836i | −0.00234208 | − | 0.0102613i | −0.978186 | + | 2.79549i | −1.57606 | − | 2.55265i | 1.55910 | − | 0.979646i |
2.5 | 0.108076 | − | 0.959202i | −0.996724 | + | 1.41652i | 1.04147 | + | 0.237708i | 1.18935 | + | 1.49140i | 1.25101 | + | 1.10915i | −0.00234208 | − | 0.0102613i | 0.978186 | − | 2.79549i | −1.01308 | − | 2.82377i | 1.55910 | − | 0.979646i |
2.6 | 0.128998 | − | 1.14489i | −1.50970 | − | 0.849011i | 0.655718 | + | 0.149663i | −1.88898 | − | 2.36870i | −1.16677 | + | 1.61892i | −0.0467107 | − | 0.204653i | 1.01699 | − | 2.90639i | 1.55836 | + | 2.56350i | −2.95558 | + | 1.85712i |
2.7 | 0.255714 | − | 2.26953i | 0.238726 | − | 1.71552i | −3.13550 | − | 0.715657i | 1.22248 | + | 1.53294i | −3.83237 | − | 0.980478i | 0.968527 | + | 4.24339i | −0.917355 | + | 2.62165i | −2.88602 | − | 0.819080i | 3.79166 | − | 2.38246i |
2.8 | 0.261972 | − | 2.32506i | 1.21083 | + | 1.23850i | −3.38744 | − | 0.773161i | −0.273793 | − | 0.343325i | 3.19680 | − | 2.49081i | −0.670558 | − | 2.93790i | −1.13950 | + | 3.25651i | −0.0677777 | + | 2.99923i | −0.869979 | + | 0.546644i |
8.1 | −0.909159 | + | 2.59823i | 1.42570 | + | 0.983555i | −4.36055 | − | 3.47743i | −1.78469 | + | 0.859464i | −3.85169 | + | 2.81008i | 0.785988 | + | 0.985597i | 8.33803 | − | 5.23913i | 1.06524 | + | 2.80451i | −0.610511 | − | 5.41843i |
8.2 | −0.576259 | + | 1.64685i | 0.598445 | − | 1.62538i | −0.816387 | − | 0.651047i | 1.59790 | − | 0.769508i | 2.33190 | + | 1.92219i | 1.54710 | + | 1.94000i | −1.41204 | + | 0.887242i | −2.28373 | − | 1.94540i | 0.346463 | + | 3.07494i |
8.3 | −0.454505 | + | 1.29890i | −0.706640 | + | 1.58135i | 0.0830922 | + | 0.0662638i | 0.181368 | − | 0.0873422i | −1.73284 | − | 1.63659i | −0.770934 | − | 0.966720i | −2.45423 | + | 1.54210i | −2.00132 | − | 2.23489i | 0.0310162 | + | 0.275277i |
8.4 | −0.0726507 | + | 0.207624i | 1.66092 | − | 0.491261i | 1.52583 | + | 1.21681i | −2.41194 | + | 1.16153i | −0.0186698 | + | 0.380537i | −1.79859 | − | 2.25536i | −0.735996 | + | 0.462457i | 2.51733 | − | 1.63189i | −0.0659319 | − | 0.585161i |
8.5 | 0.0726507 | − | 0.207624i | −1.50996 | − | 0.848534i | 1.52583 | + | 1.21681i | 2.41194 | − | 1.16153i | −0.285876 | + | 0.251858i | −1.79859 | − | 2.25536i | 0.735996 | − | 0.462457i | 1.55998 | + | 2.56251i | −0.0659319 | − | 0.585161i |
8.6 | 0.454505 | − | 1.29890i | 0.337040 | + | 1.69894i | 0.0830922 | + | 0.0662638i | −0.181368 | + | 0.0873422i | 2.35995 | + | 0.334396i | −0.770934 | − | 0.966720i | 2.45423 | − | 1.54210i | −2.77281 | + | 1.14522i | 0.0310162 | + | 0.275277i |
8.7 | 0.576259 | − | 1.64685i | −0.221759 | − | 1.71780i | −0.816387 | − | 0.651047i | −1.59790 | + | 0.769508i | −2.95675 | − | 0.624690i | 1.54710 | + | 1.94000i | 1.41204 | − | 0.887242i | −2.90165 | + | 0.761874i | 0.346463 | + | 3.07494i |
8.8 | 0.909159 | − | 2.59823i | −1.60882 | + | 0.641647i | −4.36055 | − | 3.47743i | 1.78469 | − | 0.859464i | 0.204476 | + | 4.76343i | 0.785988 | + | 0.985597i | −8.33803 | + | 5.23913i | 2.17658 | − | 2.06459i | −0.610511 | − | 5.41843i |
11.1 | −0.909159 | − | 2.59823i | 1.42570 | − | 0.983555i | −4.36055 | + | 3.47743i | −1.78469 | − | 0.859464i | −3.85169 | − | 2.81008i | 0.785988 | − | 0.985597i | 8.33803 | + | 5.23913i | 1.06524 | − | 2.80451i | −0.610511 | + | 5.41843i |
11.2 | −0.576259 | − | 1.64685i | 0.598445 | + | 1.62538i | −0.816387 | + | 0.651047i | 1.59790 | + | 0.769508i | 2.33190 | − | 1.92219i | 1.54710 | − | 1.94000i | −1.41204 | − | 0.887242i | −2.28373 | + | 1.94540i | 0.346463 | − | 3.07494i |
11.3 | −0.454505 | − | 1.29890i | −0.706640 | − | 1.58135i | 0.0830922 | − | 0.0662638i | 0.181368 | + | 0.0873422i | −1.73284 | + | 1.63659i | −0.770934 | + | 0.966720i | −2.45423 | − | 1.54210i | −2.00132 | + | 2.23489i | 0.0310162 | − | 0.275277i |
11.4 | −0.0726507 | − | 0.207624i | 1.66092 | + | 0.491261i | 1.52583 | − | 1.21681i | −2.41194 | − | 1.16153i | −0.0186698 | − | 0.380537i | −1.79859 | + | 2.25536i | −0.735996 | − | 0.462457i | 2.51733 | + | 1.63189i | −0.0659319 | + | 0.585161i |
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
29.f | odd | 28 | 1 | inner |
87.k | even | 28 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 87.2.k.a | ✓ | 96 |
3.b | odd | 2 | 1 | inner | 87.2.k.a | ✓ | 96 |
29.f | odd | 28 | 1 | inner | 87.2.k.a | ✓ | 96 |
87.k | even | 28 | 1 | inner | 87.2.k.a | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
87.2.k.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
87.2.k.a | ✓ | 96 | 3.b | odd | 2 | 1 | inner |
87.2.k.a | ✓ | 96 | 29.f | odd | 28 | 1 | inner |
87.2.k.a | ✓ | 96 | 87.k | even | 28 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(87, [\chi])\).