Newspace parameters
| Level: | \( N \) | \(=\) | \( 87 = 3 \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 87.i (of order \(14\), degree \(6\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(0.694698497585\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(4\) over \(\Q(\zeta_{14})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4.1 | −1.39841 | − | 0.319179i | 0.433884 | + | 0.900969i | 0.0517506 | + | 0.0249218i | −0.831893 | + | 3.64476i | −0.319179 | − | 1.39841i | 0.406749 | − | 0.195880i | 2.17847 | + | 1.73727i | −0.623490 | + | 0.781831i | 2.32666 | − | 4.83137i |
| 4.2 | −0.0665871 | − | 0.0151981i | −0.433884 | − | 0.900969i | −1.79773 | − | 0.865743i | 0.452835 | − | 1.98400i | 0.0151981 | + | 0.0665871i | 3.73941 | − | 1.80080i | 0.213346 | + | 0.170138i | −0.623490 | + | 0.781831i | −0.0603060 | + | 0.125227i |
| 4.3 | 1.26950 | + | 0.289755i | 0.433884 | + | 0.900969i | −0.274272 | − | 0.132082i | −0.0725658 | + | 0.317931i | 0.289755 | + | 1.26950i | 0.994220 | − | 0.478791i | −2.34603 | − | 1.87090i | −0.623490 | + | 0.781831i | −0.184244 | + | 0.382587i |
| 4.4 | 1.88753 | + | 0.430815i | −0.433884 | − | 0.900969i | 1.57521 | + | 0.758583i | −0.103334 | + | 0.452737i | −0.430815 | − | 1.88753i | −2.33844 | + | 1.12613i | −0.380909 | − | 0.303765i | −0.623490 | + | 0.781831i | −0.390092 | + | 0.810035i |
| 13.1 | −0.583108 | + | 1.21084i | 0.781831 | + | 0.623490i | 0.120869 | + | 0.151565i | −0.242958 | − | 0.117003i | −1.21084 | + | 0.583108i | 0.650721 | − | 0.815979i | −2.87447 | + | 0.656078i | 0.222521 | + | 0.974928i | 0.283342 | − | 0.225958i |
| 13.2 | 0.105380 | − | 0.218824i | −0.781831 | − | 0.623490i | 1.21020 | + | 1.51754i | 0.879217 | + | 0.423409i | −0.218824 | + | 0.105380i | 2.00910 | − | 2.51933i | 0.933178 | − | 0.212992i | 0.222521 | + | 0.974928i | 0.185304 | − | 0.147775i |
| 13.3 | 0.827672 | − | 1.71868i | 0.781831 | + | 0.623490i | −1.02184 | − | 1.28134i | −1.54672 | − | 0.744859i | 1.71868 | − | 0.827672i | −0.774211 | + | 0.970830i | 0.671559 | − | 0.153279i | 0.222521 | + | 0.974928i | −2.56035 | + | 2.04181i |
| 13.4 | 1.00695 | − | 2.09096i | −0.781831 | − | 0.623490i | −2.11117 | − | 2.64732i | 1.71239 | + | 0.824646i | −2.09096 | + | 1.00695i | −2.13259 | + | 2.67418i | −3.13608 | + | 0.715791i | 0.222521 | + | 0.974928i | 3.44860 | − | 2.75017i |
| 22.1 | −1.39841 | + | 0.319179i | 0.433884 | − | 0.900969i | 0.0517506 | − | 0.0249218i | −0.831893 | − | 3.64476i | −0.319179 | + | 1.39841i | 0.406749 | + | 0.195880i | 2.17847 | − | 1.73727i | −0.623490 | − | 0.781831i | 2.32666 | + | 4.83137i |
| 22.2 | −0.0665871 | + | 0.0151981i | −0.433884 | + | 0.900969i | −1.79773 | + | 0.865743i | 0.452835 | + | 1.98400i | 0.0151981 | − | 0.0665871i | 3.73941 | + | 1.80080i | 0.213346 | − | 0.170138i | −0.623490 | − | 0.781831i | −0.0603060 | − | 0.125227i |
| 22.3 | 1.26950 | − | 0.289755i | 0.433884 | − | 0.900969i | −0.274272 | + | 0.132082i | −0.0725658 | − | 0.317931i | 0.289755 | − | 1.26950i | 0.994220 | + | 0.478791i | −2.34603 | + | 1.87090i | −0.623490 | − | 0.781831i | −0.184244 | − | 0.382587i |
| 22.4 | 1.88753 | − | 0.430815i | −0.433884 | + | 0.900969i | 1.57521 | − | 0.758583i | −0.103334 | − | 0.452737i | −0.430815 | + | 1.88753i | −2.33844 | − | 1.12613i | −0.380909 | + | 0.303765i | −0.623490 | − | 0.781831i | −0.390092 | − | 0.810035i |
| 34.1 | −2.01867 | + | 1.60984i | −0.974928 | + | 0.222521i | 1.03842 | − | 4.54960i | −1.92590 | − | 2.41500i | 1.60984 | − | 2.01867i | 0.0378611 | + | 0.165880i | 2.98734 | + | 6.20327i | 0.900969 | − | 0.433884i | 7.77550 | + | 1.77471i |
| 34.2 | −1.76451 | + | 1.40715i | 0.974928 | − | 0.222521i | 0.688387 | − | 3.01602i | 1.56067 | + | 1.95702i | −1.40715 | + | 1.76451i | 0.193639 | + | 0.848388i | 1.07087 | + | 2.22368i | 0.900969 | − | 0.433884i | −5.50765 | − | 1.25709i |
| 34.3 | −0.287620 | + | 0.229369i | −0.974928 | + | 0.222521i | −0.414927 | + | 1.81791i | 0.561619 | + | 0.704248i | 0.229369 | − | 0.287620i | 0.684660 | + | 2.99969i | −0.616866 | − | 1.28093i | 0.900969 | − | 0.433884i | −0.323065 | − | 0.0737376i |
| 34.4 | 1.02189 | − | 0.814927i | 0.974928 | − | 0.222521i | −0.0648970 | + | 0.284332i | −2.44337 | − | 3.06390i | 0.814927 | − | 1.02189i | 0.528882 | + | 2.31718i | 1.29960 | + | 2.69865i | 0.900969 | − | 0.433884i | −4.99370 | − | 1.13978i |
| 64.1 | −2.01867 | − | 1.60984i | −0.974928 | − | 0.222521i | 1.03842 | + | 4.54960i | −1.92590 | + | 2.41500i | 1.60984 | + | 2.01867i | 0.0378611 | − | 0.165880i | 2.98734 | − | 6.20327i | 0.900969 | + | 0.433884i | 7.77550 | − | 1.77471i |
| 64.2 | −1.76451 | − | 1.40715i | 0.974928 | + | 0.222521i | 0.688387 | + | 3.01602i | 1.56067 | − | 1.95702i | −1.40715 | − | 1.76451i | 0.193639 | − | 0.848388i | 1.07087 | − | 2.22368i | 0.900969 | + | 0.433884i | −5.50765 | + | 1.25709i |
| 64.3 | −0.287620 | − | 0.229369i | −0.974928 | − | 0.222521i | −0.414927 | − | 1.81791i | 0.561619 | − | 0.704248i | 0.229369 | + | 0.287620i | 0.684660 | − | 2.99969i | −0.616866 | + | 1.28093i | 0.900969 | + | 0.433884i | −0.323065 | + | 0.0737376i |
| 64.4 | 1.02189 | + | 0.814927i | 0.974928 | + | 0.222521i | −0.0648970 | − | 0.284332i | −2.44337 | + | 3.06390i | 0.814927 | + | 1.02189i | 0.528882 | − | 2.31718i | 1.29960 | − | 2.69865i | 0.900969 | + | 0.433884i | −4.99370 | + | 1.13978i |
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 29.e | even | 14 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 87.2.i.a | ✓ | 24 |
| 3.b | odd | 2 | 1 | 261.2.o.b | 24 | ||
| 29.e | even | 14 | 1 | inner | 87.2.i.a | ✓ | 24 |
| 29.f | odd | 28 | 1 | 2523.2.a.s | 12 | ||
| 29.f | odd | 28 | 1 | 2523.2.a.v | 12 | ||
| 87.h | odd | 14 | 1 | 261.2.o.b | 24 | ||
| 87.k | even | 28 | 1 | 7569.2.a.bn | 12 | ||
| 87.k | even | 28 | 1 | 7569.2.a.bt | 12 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 87.2.i.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 87.2.i.a | ✓ | 24 | 29.e | even | 14 | 1 | inner |
| 261.2.o.b | 24 | 3.b | odd | 2 | 1 | ||
| 261.2.o.b | 24 | 87.h | odd | 14 | 1 | ||
| 2523.2.a.s | 12 | 29.f | odd | 28 | 1 | ||
| 2523.2.a.v | 12 | 29.f | odd | 28 | 1 | ||
| 7569.2.a.bn | 12 | 87.k | even | 28 | 1 | ||
| 7569.2.a.bt | 12 | 87.k | even | 28 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(87, [\chi])\).