Properties

Label 87.2.i
Level $87$
Weight $2$
Character orbit 87.i
Rep. character $\chi_{87}(4,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $24$
Newform subspaces $1$
Sturm bound $20$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.i (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q(\zeta_{14})\)
Newform subspaces: \( 1 \)
Sturm bound: \(20\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(87, [\chi])\).

Total New Old
Modular forms 72 24 48
Cusp forms 48 24 24
Eisenstein series 24 0 24

Trace form

\( 24 q - 2 q^{4} - 4 q^{5} - 2 q^{6} + 8 q^{7} + 4 q^{9} - 28 q^{11} - 10 q^{13} - 14 q^{15} - 22 q^{16} - 20 q^{20} + 4 q^{22} + 18 q^{23} - 18 q^{25} + 28 q^{26} + 8 q^{28} + 28 q^{29} - 40 q^{30} + 28 q^{31}+ \cdots - 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(87, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
87.2.i.a 87.i 29.e $24$ $0.695$ None 87.2.i.a \(0\) \(0\) \(-4\) \(8\) $\mathrm{SU}(2)[C_{14}]$

Decomposition of \(S_{2}^{\mathrm{old}}(87, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(87, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 2}\)