Properties

Label 87.2.g.b.82.3
Level $87$
Weight $2$
Character 87.82
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 82.3
Root \(-0.408260 + 1.78870i\) of defining polynomial
Character \(\chi\) \(=\) 87.82
Dual form 87.2.g.b.52.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14392 + 1.43443i) q^{2} +(0.222521 + 0.974928i) q^{3} +(-0.303995 + 1.33189i) q^{4} +(-1.40816 - 1.76577i) q^{5} +(-1.14392 + 1.43443i) q^{6} +(0.165617 + 0.725615i) q^{7} +(1.04778 - 0.504584i) q^{8} +(-0.900969 + 0.433884i) q^{9} +O(q^{10})\) \(q+(1.14392 + 1.43443i) q^{2} +(0.222521 + 0.974928i) q^{3} +(-0.303995 + 1.33189i) q^{4} +(-1.40816 - 1.76577i) q^{5} +(-1.14392 + 1.43443i) q^{6} +(0.165617 + 0.725615i) q^{7} +(1.04778 - 0.504584i) q^{8} +(-0.900969 + 0.433884i) q^{9} +(0.922058 - 4.03980i) q^{10} +(-5.68404 - 2.73729i) q^{11} -1.36614 q^{12} +(1.48289 + 0.714123i) q^{13} +(-0.851391 + 1.06761i) q^{14} +(1.40816 - 1.76577i) q^{15} +(4.38406 + 2.11125i) q^{16} +4.16595 q^{17} +(-1.65301 - 0.796048i) q^{18} +(-0.231613 + 1.01476i) q^{19} +(2.77988 - 1.33872i) q^{20} +(-0.670569 + 0.322929i) q^{21} +(-2.57563 - 11.2846i) q^{22} +(-2.85155 + 3.57573i) q^{23} +(0.725086 + 0.909229i) q^{24} +(-0.0224408 + 0.0983195i) q^{25} +(0.671949 + 2.94400i) q^{26} +(-0.623490 - 0.781831i) q^{27} -1.01678 q^{28} +(-4.68636 + 2.65293i) q^{29} +4.14369 q^{30} +(-2.20186 - 2.76105i) q^{31} +(1.46901 + 6.43615i) q^{32} +(1.40384 - 6.15063i) q^{33} +(4.76551 + 5.97577i) q^{34} +(1.04806 - 1.31422i) q^{35} +(-0.303995 - 1.33189i) q^{36} +(0.969034 - 0.466662i) q^{37} +(-1.72055 + 0.828574i) q^{38} +(-0.366244 + 1.60462i) q^{39} +(-2.36642 - 1.13961i) q^{40} -1.20065 q^{41} +(-1.23030 - 0.592479i) q^{42} +(-7.99734 + 10.0283i) q^{43} +(5.37367 - 6.73837i) q^{44} +(2.03484 + 0.979929i) q^{45} -8.39108 q^{46} +(7.10498 + 3.42158i) q^{47} +(-1.08277 + 4.74394i) q^{48} +(5.80769 - 2.79684i) q^{49} +(-0.166703 + 0.0802799i) q^{50} +(0.927012 + 4.06150i) q^{51} +(-1.40192 + 1.75795i) q^{52} +(-8.22494 - 10.3138i) q^{53} +(0.408260 - 1.78870i) q^{54} +(3.17058 + 13.8912i) q^{55} +(0.539663 + 0.676716i) q^{56} -1.04086 q^{57} +(-9.16625 - 3.68752i) q^{58} +11.0585 q^{59} +(1.92374 + 2.41229i) q^{60} +(1.43496 + 6.28696i) q^{61} +(1.44178 - 6.31683i) q^{62} +(-0.464048 - 0.581898i) q^{63} +(-1.48405 + 1.86094i) q^{64} +(-0.827164 - 3.62404i) q^{65} +(10.4285 - 5.02211i) q^{66} +(6.19652 - 2.98409i) q^{67} +(-1.26643 + 5.54858i) q^{68} +(-4.12061 - 1.98438i) q^{69} +3.08405 q^{70} +(2.95303 + 1.42211i) q^{71} +(-0.725086 + 0.909229i) q^{72} +(4.42081 - 5.54352i) q^{73} +(1.77789 + 0.856187i) q^{74} -0.100848 q^{75} +(-1.28114 - 0.616965i) q^{76} +(1.04484 - 4.57776i) q^{77} +(-2.72067 + 1.31020i) q^{78} +(-5.75663 + 2.77225i) q^{79} +(-2.44545 - 10.7142i) q^{80} +(0.623490 - 0.781831i) q^{81} +(-1.37344 - 1.72224i) q^{82} +(1.14686 - 5.02472i) q^{83} +(-0.226256 - 0.991291i) q^{84} +(-5.86631 - 7.35612i) q^{85} -23.5333 q^{86} +(-3.62923 - 3.97853i) q^{87} -7.33681 q^{88} +(5.80998 + 7.28549i) q^{89} +(0.922058 + 4.03980i) q^{90} +(-0.272586 + 1.19428i) q^{91} +(-3.89562 - 4.88495i) q^{92} +(2.20186 - 2.76105i) q^{93} +(3.21951 + 14.1056i) q^{94} +(2.11798 - 1.01997i) q^{95} +(-5.94790 + 2.86436i) q^{96} +(3.37522 - 14.7878i) q^{97} +(10.6554 + 5.13137i) q^{98} +6.30880 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14392 + 1.43443i 0.808873 + 1.01429i 0.999468 + 0.0326259i \(0.0103870\pi\)
−0.190595 + 0.981669i \(0.561042\pi\)
\(3\) 0.222521 + 0.974928i 0.128473 + 0.562875i
\(4\) −0.303995 + 1.33189i −0.151997 + 0.665944i
\(5\) −1.40816 1.76577i −0.629746 0.789677i 0.359933 0.932978i \(-0.382800\pi\)
−0.989679 + 0.143301i \(0.954228\pi\)
\(6\) −1.14392 + 1.43443i −0.467003 + 0.585603i
\(7\) 0.165617 + 0.725615i 0.0625973 + 0.274257i 0.996534 0.0831805i \(-0.0265078\pi\)
−0.933937 + 0.357437i \(0.883651\pi\)
\(8\) 1.04778 0.504584i 0.370446 0.178397i
\(9\) −0.900969 + 0.433884i −0.300323 + 0.144628i
\(10\) 0.922058 4.03980i 0.291580 1.27750i
\(11\) −5.68404 2.73729i −1.71380 0.825323i −0.990936 0.134334i \(-0.957111\pi\)
−0.722865 0.690989i \(-0.757175\pi\)
\(12\) −1.36614 −0.394370
\(13\) 1.48289 + 0.714123i 0.411280 + 0.198062i 0.628071 0.778156i \(-0.283845\pi\)
−0.216791 + 0.976218i \(0.569559\pi\)
\(14\) −0.851391 + 1.06761i −0.227544 + 0.285331i
\(15\) 1.40816 1.76577i 0.363584 0.455920i
\(16\) 4.38406 + 2.11125i 1.09602 + 0.527813i
\(17\) 4.16595 1.01039 0.505196 0.863005i \(-0.331420\pi\)
0.505196 + 0.863005i \(0.331420\pi\)
\(18\) −1.65301 0.796048i −0.389618 0.187630i
\(19\) −0.231613 + 1.01476i −0.0531356 + 0.232802i −0.994522 0.104528i \(-0.966667\pi\)
0.941386 + 0.337330i \(0.109524\pi\)
\(20\) 2.77988 1.33872i 0.621600 0.299347i
\(21\) −0.670569 + 0.322929i −0.146330 + 0.0704689i
\(22\) −2.57563 11.2846i −0.549127 2.40588i
\(23\) −2.85155 + 3.57573i −0.594590 + 0.745592i −0.984524 0.175251i \(-0.943926\pi\)
0.389934 + 0.920843i \(0.372498\pi\)
\(24\) 0.725086 + 0.909229i 0.148008 + 0.185596i
\(25\) −0.0224408 + 0.0983195i −0.00448816 + 0.0196639i
\(26\) 0.671949 + 2.94400i 0.131780 + 0.577366i
\(27\) −0.623490 0.781831i −0.119991 0.150464i
\(28\) −1.01678 −0.192154
\(29\) −4.68636 + 2.65293i −0.870235 + 0.492636i
\(30\) 4.14369 0.756531
\(31\) −2.20186 2.76105i −0.395466 0.495899i 0.543740 0.839254i \(-0.317008\pi\)
−0.939206 + 0.343355i \(0.888437\pi\)
\(32\) 1.46901 + 6.43615i 0.259687 + 1.13776i
\(33\) 1.40384 6.15063i 0.244377 1.07069i
\(34\) 4.76551 + 5.97577i 0.817279 + 1.02484i
\(35\) 1.04806 1.31422i 0.177154 0.222144i
\(36\) −0.303995 1.33189i −0.0506658 0.221981i
\(37\) 0.969034 0.466662i 0.159308 0.0767188i −0.352531 0.935800i \(-0.614679\pi\)
0.511839 + 0.859081i \(0.328964\pi\)
\(38\) −1.72055 + 0.828574i −0.279110 + 0.134412i
\(39\) −0.366244 + 1.60462i −0.0586460 + 0.256945i
\(40\) −2.36642 1.13961i −0.374163 0.180187i
\(41\) −1.20065 −0.187510 −0.0937548 0.995595i \(-0.529887\pi\)
−0.0937548 + 0.995595i \(0.529887\pi\)
\(42\) −1.23030 0.592479i −0.189839 0.0914215i
\(43\) −7.99734 + 10.0283i −1.21958 + 1.52931i −0.446804 + 0.894632i \(0.647438\pi\)
−0.772778 + 0.634676i \(0.781133\pi\)
\(44\) 5.37367 6.73837i 0.810112 1.01585i
\(45\) 2.03484 + 0.979929i 0.303337 + 0.146079i
\(46\) −8.39108 −1.23720
\(47\) 7.10498 + 3.42158i 1.03637 + 0.499088i 0.873124 0.487497i \(-0.162090\pi\)
0.163243 + 0.986586i \(0.447804\pi\)
\(48\) −1.08277 + 4.74394i −0.156285 + 0.684729i
\(49\) 5.80769 2.79684i 0.829671 0.399548i
\(50\) −0.166703 + 0.0802799i −0.0235753 + 0.0113533i
\(51\) 0.927012 + 4.06150i 0.129808 + 0.568724i
\(52\) −1.40192 + 1.75795i −0.194412 + 0.243784i
\(53\) −8.22494 10.3138i −1.12978 1.41670i −0.895797 0.444463i \(-0.853395\pi\)
−0.233986 0.972240i \(-0.575177\pi\)
\(54\) 0.408260 1.78870i 0.0555572 0.243412i
\(55\) 3.17058 + 13.8912i 0.427521 + 1.87309i
\(56\) 0.539663 + 0.676716i 0.0721155 + 0.0904300i
\(57\) −1.04086 −0.137865
\(58\) −9.16625 3.68752i −1.20359 0.484195i
\(59\) 11.0585 1.43970 0.719849 0.694131i \(-0.244211\pi\)
0.719849 + 0.694131i \(0.244211\pi\)
\(60\) 1.92374 + 2.41229i 0.248353 + 0.311425i
\(61\) 1.43496 + 6.28696i 0.183728 + 0.804963i 0.979835 + 0.199808i \(0.0640318\pi\)
−0.796108 + 0.605155i \(0.793111\pi\)
\(62\) 1.44178 6.31683i 0.183106 0.802238i
\(63\) −0.464048 0.581898i −0.0584646 0.0733122i
\(64\) −1.48405 + 1.86094i −0.185506 + 0.232617i
\(65\) −0.827164 3.62404i −0.102597 0.449507i
\(66\) 10.4285 5.02211i 1.28366 0.618179i
\(67\) 6.19652 2.98409i 0.757026 0.364564i −0.0152236 0.999884i \(-0.504846\pi\)
0.772249 + 0.635320i \(0.219132\pi\)
\(68\) −1.26643 + 5.54858i −0.153577 + 0.672864i
\(69\) −4.12061 1.98438i −0.496063 0.238892i
\(70\) 3.08405 0.368614
\(71\) 2.95303 + 1.42211i 0.350461 + 0.168773i 0.600829 0.799378i \(-0.294837\pi\)
−0.250368 + 0.968151i \(0.580552\pi\)
\(72\) −0.725086 + 0.909229i −0.0854522 + 0.107154i
\(73\) 4.42081 5.54352i 0.517417 0.648820i −0.452641 0.891693i \(-0.649518\pi\)
0.970058 + 0.242872i \(0.0780896\pi\)
\(74\) 1.77789 + 0.856187i 0.206676 + 0.0995298i
\(75\) −0.100848 −0.0116449
\(76\) −1.28114 0.616965i −0.146957 0.0707707i
\(77\) 1.04484 4.57776i 0.119071 0.521684i
\(78\) −2.72067 + 1.31020i −0.308055 + 0.148351i
\(79\) −5.75663 + 2.77225i −0.647672 + 0.311902i −0.728724 0.684808i \(-0.759886\pi\)
0.0810523 + 0.996710i \(0.474172\pi\)
\(80\) −2.44545 10.7142i −0.273410 1.19789i
\(81\) 0.623490 0.781831i 0.0692766 0.0868702i
\(82\) −1.37344 1.72224i −0.151672 0.190190i
\(83\) 1.14686 5.02472i 0.125884 0.551535i −0.872171 0.489201i \(-0.837288\pi\)
0.998055 0.0623339i \(-0.0198544\pi\)
\(84\) −0.226256 0.991291i −0.0246865 0.108159i
\(85\) −5.86631 7.35612i −0.636290 0.797883i
\(86\) −23.5333 −2.53766
\(87\) −3.62923 3.97853i −0.389094 0.426543i
\(88\) −7.33681 −0.782106
\(89\) 5.80998 + 7.28549i 0.615857 + 0.772260i 0.987755 0.156013i \(-0.0498643\pi\)
−0.371898 + 0.928274i \(0.621293\pi\)
\(90\) 0.922058 + 4.03980i 0.0971934 + 0.425832i
\(91\) −0.272586 + 1.19428i −0.0285748 + 0.125194i
\(92\) −3.89562 4.88495i −0.406146 0.509291i
\(93\) 2.20186 2.76105i 0.228322 0.286307i
\(94\) 3.21951 + 14.1056i 0.332067 + 1.45488i
\(95\) 2.11798 1.01997i 0.217301 0.104646i
\(96\) −5.94790 + 2.86436i −0.607055 + 0.292342i
\(97\) 3.37522 14.7878i 0.342701 1.50147i −0.450646 0.892703i \(-0.648806\pi\)
0.793347 0.608769i \(-0.208337\pi\)
\(98\) 10.6554 + 5.13137i 1.07636 + 0.518347i
\(99\) 6.30880 0.634059
\(100\) −0.124129 0.0597772i −0.0124129 0.00597772i
\(101\) 2.76928 3.47257i 0.275554 0.345534i −0.624727 0.780843i \(-0.714790\pi\)
0.900281 + 0.435310i \(0.143361\pi\)
\(102\) −4.76551 + 5.97577i −0.471856 + 0.591689i
\(103\) −13.8692 6.67906i −1.36657 0.658108i −0.400482 0.916305i \(-0.631157\pi\)
−0.966092 + 0.258197i \(0.916872\pi\)
\(104\) 1.91408 0.187691
\(105\) 1.51448 + 0.729337i 0.147798 + 0.0711760i
\(106\) 5.38568 23.5962i 0.523103 2.29187i
\(107\) 7.13273 3.43494i 0.689547 0.332068i −0.0560855 0.998426i \(-0.517862\pi\)
0.745632 + 0.666358i \(0.232148\pi\)
\(108\) 1.23085 0.592746i 0.118438 0.0570370i
\(109\) −0.932147 4.08400i −0.0892835 0.391177i 0.910465 0.413585i \(-0.135724\pi\)
−0.999749 + 0.0224086i \(0.992867\pi\)
\(110\) −16.2991 + 20.4384i −1.55406 + 1.94873i
\(111\) 0.670593 + 0.840897i 0.0636498 + 0.0798144i
\(112\) −0.805882 + 3.53080i −0.0761487 + 0.333629i
\(113\) 2.40874 + 10.5534i 0.226595 + 0.992779i 0.952394 + 0.304871i \(0.0986134\pi\)
−0.725798 + 0.687907i \(0.758529\pi\)
\(114\) −1.19066 1.49304i −0.111515 0.139836i
\(115\) 10.3294 0.963217
\(116\) −2.10877 7.04818i −0.195794 0.654407i
\(117\) −1.64589 −0.152162
\(118\) 12.6501 + 15.8627i 1.16453 + 1.46028i
\(119\) 0.689952 + 3.02288i 0.0632478 + 0.277107i
\(120\) 0.584456 2.56067i 0.0533533 0.233756i
\(121\) 17.9571 + 22.5175i 1.63247 + 2.04705i
\(122\) −7.37673 + 9.25012i −0.667858 + 0.837467i
\(123\) −0.267169 1.17054i −0.0240898 0.105544i
\(124\) 4.34676 2.09329i 0.390350 0.187983i
\(125\) −9.96901 + 4.80082i −0.891655 + 0.429398i
\(126\) 0.303858 1.33129i 0.0270698 0.118601i
\(127\) −7.27053 3.50130i −0.645155 0.310690i 0.0825435 0.996587i \(-0.473696\pi\)
−0.727698 + 0.685897i \(0.759410\pi\)
\(128\) 8.83633 0.781029
\(129\) −11.5565 5.56531i −1.01749 0.489998i
\(130\) 4.25222 5.33212i 0.372945 0.467658i
\(131\) −11.6622 + 14.6240i −1.01893 + 1.27770i −0.0587686 + 0.998272i \(0.518717\pi\)
−0.960166 + 0.279432i \(0.909854\pi\)
\(132\) 7.76518 + 3.73952i 0.675872 + 0.325483i
\(133\) −0.774686 −0.0671738
\(134\) 11.3688 + 5.47492i 0.982113 + 0.472961i
\(135\) −0.502565 + 2.20188i −0.0432539 + 0.189508i
\(136\) 4.36500 2.10207i 0.374296 0.180251i
\(137\) 3.36252 1.61931i 0.287280 0.138347i −0.284694 0.958618i \(-0.591892\pi\)
0.571974 + 0.820272i \(0.306178\pi\)
\(138\) −1.86719 8.18070i −0.158946 0.696388i
\(139\) 8.44508 10.5898i 0.716302 0.898214i −0.281820 0.959467i \(-0.590938\pi\)
0.998122 + 0.0612530i \(0.0195096\pi\)
\(140\) 1.43179 + 1.79541i 0.121008 + 0.151740i
\(141\) −1.75478 + 7.68822i −0.147780 + 0.647465i
\(142\) 1.33812 + 5.86270i 0.112293 + 0.491986i
\(143\) −6.47405 8.11820i −0.541387 0.678878i
\(144\) −4.86594 −0.405495
\(145\) 11.2836 + 4.53931i 0.937051 + 0.376969i
\(146\) 13.0088 1.07662
\(147\) 4.01905 + 5.03973i 0.331486 + 0.415670i
\(148\) 0.326960 + 1.43251i 0.0268760 + 0.117751i
\(149\) 0.458291 2.00790i 0.0375447 0.164494i −0.952680 0.303975i \(-0.901686\pi\)
0.990225 + 0.139481i \(0.0445433\pi\)
\(150\) −0.115362 0.144659i −0.00941927 0.0118114i
\(151\) −7.77480 + 9.74929i −0.632704 + 0.793386i −0.990070 0.140578i \(-0.955104\pi\)
0.357365 + 0.933965i \(0.383675\pi\)
\(152\) 0.269354 + 1.18012i 0.0218475 + 0.0957200i
\(153\) −3.75339 + 1.80754i −0.303444 + 0.146131i
\(154\) 7.76169 3.73783i 0.625455 0.301203i
\(155\) −1.77481 + 7.77597i −0.142556 + 0.624581i
\(156\) −2.02584 0.975591i −0.162197 0.0781098i
\(157\) −13.1146 −1.04666 −0.523329 0.852131i \(-0.675310\pi\)
−0.523329 + 0.852131i \(0.675310\pi\)
\(158\) −10.5617 5.08625i −0.840245 0.404641i
\(159\) 8.22494 10.3138i 0.652281 0.817934i
\(160\) 9.29618 11.6570i 0.734927 0.921570i
\(161\) −3.06687 1.47693i −0.241703 0.116398i
\(162\) 1.83470 0.144148
\(163\) −9.80204 4.72041i −0.767755 0.369731i 0.00865246 0.999963i \(-0.497246\pi\)
−0.776407 + 0.630231i \(0.782960\pi\)
\(164\) 0.364990 1.59913i 0.0285010 0.124871i
\(165\) −12.8374 + 6.18218i −0.999392 + 0.481282i
\(166\) 8.51952 4.10279i 0.661243 0.318438i
\(167\) 4.51248 + 19.7705i 0.349186 + 1.52988i 0.779033 + 0.626983i \(0.215710\pi\)
−0.429847 + 0.902902i \(0.641432\pi\)
\(168\) −0.539663 + 0.676716i −0.0416359 + 0.0522098i
\(169\) −6.41637 8.04588i −0.493567 0.618914i
\(170\) 3.84125 16.8296i 0.294610 1.29077i
\(171\) −0.231613 1.01476i −0.0177119 0.0776008i
\(172\) −10.9255 13.7001i −0.833060 1.04462i
\(173\) −0.158953 −0.0120850 −0.00604249 0.999982i \(-0.501923\pi\)
−0.00604249 + 0.999982i \(0.501923\pi\)
\(174\) 1.55538 9.75699i 0.117913 0.739675i
\(175\) −0.0750587 −0.00567390
\(176\) −19.1401 24.0009i −1.44274 1.80913i
\(177\) 2.46075 + 10.7813i 0.184962 + 0.810369i
\(178\) −3.80437 + 16.6680i −0.285149 + 1.24932i
\(179\) −8.97720 11.2571i −0.670988 0.841392i 0.323502 0.946228i \(-0.395140\pi\)
−0.994490 + 0.104836i \(0.966568\pi\)
\(180\) −1.92374 + 2.41229i −0.143387 + 0.179801i
\(181\) −2.87864 12.6121i −0.213968 0.937453i −0.961840 0.273611i \(-0.911782\pi\)
0.747873 0.663842i \(-0.231075\pi\)
\(182\) −2.02492 + 0.975152i −0.150097 + 0.0722831i
\(183\) −5.81003 + 2.79796i −0.429490 + 0.206831i
\(184\) −1.18354 + 5.18543i −0.0872517 + 0.382275i
\(185\) −2.18857 1.05396i −0.160907 0.0774887i
\(186\) 6.47928 0.475084
\(187\) −23.6794 11.4034i −1.73161 0.833900i
\(188\) −6.71703 + 8.42289i −0.489890 + 0.614302i
\(189\) 0.464048 0.581898i 0.0337545 0.0423268i
\(190\) 3.88588 + 1.87134i 0.281911 + 0.135761i
\(191\) −5.61297 −0.406140 −0.203070 0.979164i \(-0.565092\pi\)
−0.203070 + 0.979164i \(0.565092\pi\)
\(192\) −2.14451 1.03274i −0.154767 0.0745317i
\(193\) −2.01768 + 8.84002i −0.145236 + 0.636319i 0.848935 + 0.528498i \(0.177245\pi\)
−0.994170 + 0.107821i \(0.965613\pi\)
\(194\) 25.0730 12.0745i 1.80014 0.866900i
\(195\) 3.34912 1.61285i 0.239835 0.115499i
\(196\) 1.95957 + 8.58542i 0.139969 + 0.613244i
\(197\) 6.01235 7.53925i 0.428362 0.537149i −0.520072 0.854122i \(-0.674095\pi\)
0.948435 + 0.316973i \(0.102667\pi\)
\(198\) 7.21676 + 9.04953i 0.512873 + 0.643122i
\(199\) −2.64957 + 11.6085i −0.187823 + 0.822905i 0.789939 + 0.613186i \(0.210112\pi\)
−0.977762 + 0.209720i \(0.932745\pi\)
\(200\) 0.0260975 + 0.114340i 0.00184537 + 0.00808509i
\(201\) 4.28813 + 5.37714i 0.302461 + 0.379274i
\(202\) 8.14899 0.573361
\(203\) −2.70114 2.96112i −0.189583 0.207830i
\(204\) −5.69127 −0.398469
\(205\) 1.69070 + 2.12007i 0.118083 + 0.148072i
\(206\) −6.28462 27.5347i −0.437870 1.91843i
\(207\) 1.01771 4.45887i 0.0707355 0.309913i
\(208\) 4.99339 + 6.26152i 0.346230 + 0.434158i
\(209\) 4.09419 5.13395i 0.283201 0.355123i
\(210\) 0.686265 + 3.00672i 0.0473568 + 0.207484i
\(211\) 5.22041 2.51402i 0.359388 0.173072i −0.245473 0.969404i \(-0.578943\pi\)
0.604861 + 0.796331i \(0.293229\pi\)
\(212\) 16.2371 7.81937i 1.11517 0.537037i
\(213\) −0.729339 + 3.19544i −0.0499735 + 0.218948i
\(214\) 13.0864 + 6.30210i 0.894571 + 0.430803i
\(215\) 28.9692 1.97569
\(216\) −1.04778 0.504584i −0.0712923 0.0343326i
\(217\) 1.63879 2.05498i 0.111248 0.139501i
\(218\) 4.79191 6.00887i 0.324549 0.406972i
\(219\) 6.38826 + 3.07642i 0.431678 + 0.207885i
\(220\) −19.4654 −1.31236
\(221\) 6.17765 + 2.97500i 0.415554 + 0.200120i
\(222\) −0.439103 + 1.92384i −0.0294707 + 0.129119i
\(223\) 9.35393 4.50461i 0.626385 0.301651i −0.0936325 0.995607i \(-0.529848\pi\)
0.720018 + 0.693956i \(0.244134\pi\)
\(224\) −4.42687 + 2.13187i −0.295783 + 0.142442i
\(225\) −0.0224408 0.0983195i −0.00149605 0.00655464i
\(226\) −12.3827 + 15.5274i −0.823683 + 1.03287i
\(227\) 0.871753 + 1.09314i 0.0578603 + 0.0725545i 0.809920 0.586541i \(-0.199511\pi\)
−0.752059 + 0.659095i \(0.770939\pi\)
\(228\) 0.316415 1.38631i 0.0209551 0.0918104i
\(229\) 1.53344 + 6.71844i 0.101333 + 0.443967i 0.999986 + 0.00530751i \(0.00168944\pi\)
−0.898653 + 0.438660i \(0.855453\pi\)
\(230\) 11.8159 + 14.8167i 0.779121 + 0.976986i
\(231\) 4.69549 0.308940
\(232\) −3.57165 + 5.14434i −0.234490 + 0.337743i
\(233\) −0.133957 −0.00877579 −0.00438789 0.999990i \(-0.501397\pi\)
−0.00438789 + 0.999990i \(0.501397\pi\)
\(234\) −1.88276 2.36091i −0.123080 0.154337i
\(235\) −3.96319 17.3639i −0.258530 1.13269i
\(236\) −3.36173 + 14.7287i −0.218830 + 0.958757i
\(237\) −3.98371 4.99542i −0.258770 0.324487i
\(238\) −3.54685 + 4.44761i −0.229908 + 0.288296i
\(239\) −2.30911 10.1169i −0.149364 0.654405i −0.993062 0.117588i \(-0.962484\pi\)
0.843699 0.536817i \(-0.180373\pi\)
\(240\) 9.90143 4.76828i 0.639135 0.307791i
\(241\) −7.62763 + 3.67328i −0.491339 + 0.236616i −0.663112 0.748520i \(-0.730765\pi\)
0.171773 + 0.985137i \(0.445050\pi\)
\(242\) −11.7583 + 51.5165i −0.755852 + 3.31160i
\(243\) 0.900969 + 0.433884i 0.0577972 + 0.0278337i
\(244\) −8.80974 −0.563986
\(245\) −13.1167 6.31668i −0.837996 0.403558i
\(246\) 1.37344 1.72224i 0.0875676 0.109806i
\(247\) −1.06812 + 1.33938i −0.0679630 + 0.0852229i
\(248\) −3.70024 1.78194i −0.234966 0.113154i
\(249\) 5.15394 0.326618
\(250\) −18.2902 8.80809i −1.15677 0.557072i
\(251\) −1.68037 + 7.36218i −0.106064 + 0.464697i 0.893804 + 0.448458i \(0.148026\pi\)
−0.999868 + 0.0162393i \(0.994831\pi\)
\(252\) 0.916090 0.441166i 0.0577083 0.0277908i
\(253\) 25.9961 12.5191i 1.63436 0.787068i
\(254\) −3.29453 14.4343i −0.206717 0.905686i
\(255\) 5.86631 7.35612i 0.367362 0.460658i
\(256\) 13.0761 + 16.3970i 0.817259 + 1.02481i
\(257\) −4.74187 + 20.7755i −0.295789 + 1.29594i 0.580542 + 0.814230i \(0.302841\pi\)
−0.876332 + 0.481708i \(0.840017\pi\)
\(258\) −5.23664 22.9432i −0.326019 1.42838i
\(259\) 0.499105 + 0.625858i 0.0310129 + 0.0388890i
\(260\) 5.07827 0.314941
\(261\) 3.07120 4.42354i 0.190103 0.273810i
\(262\) −34.3177 −2.12016
\(263\) −16.0972 20.1853i −0.992597 1.24468i −0.969537 0.244943i \(-0.921231\pi\)
−0.0230593 0.999734i \(-0.507341\pi\)
\(264\) −1.63259 7.15286i −0.100479 0.440228i
\(265\) −6.62973 + 29.0467i −0.407261 + 1.78433i
\(266\) −0.886178 1.11123i −0.0543350 0.0681340i
\(267\) −5.80998 + 7.28549i −0.355565 + 0.445865i
\(268\) 2.09076 + 9.16021i 0.127713 + 0.559549i
\(269\) −17.2204 + 8.29293i −1.04995 + 0.505629i −0.877593 0.479406i \(-0.840852\pi\)
−0.172356 + 0.985035i \(0.555138\pi\)
\(270\) −3.73334 + 1.79788i −0.227204 + 0.109415i
\(271\) 0.775056 3.39574i 0.0470813 0.206277i −0.945916 0.324411i \(-0.894834\pi\)
0.992998 + 0.118134i \(0.0376912\pi\)
\(272\) 18.2638 + 8.79538i 1.10741 + 0.533298i
\(273\) −1.22499 −0.0741399
\(274\) 6.16924 + 2.97095i 0.372697 + 0.179481i
\(275\) 0.396683 0.497425i 0.0239209 0.0299958i
\(276\) 3.89562 4.88495i 0.234489 0.294039i
\(277\) 9.16006 + 4.41125i 0.550375 + 0.265047i 0.688337 0.725391i \(-0.258341\pi\)
−0.137962 + 0.990437i \(0.544055\pi\)
\(278\) 24.8508 1.49045
\(279\) 3.18178 + 1.53227i 0.190488 + 0.0917343i
\(280\) 0.434996 1.90584i 0.0259960 0.113896i
\(281\) 0.969638 0.466953i 0.0578437 0.0278561i −0.404738 0.914433i \(-0.632637\pi\)
0.462582 + 0.886576i \(0.346923\pi\)
\(282\) −13.0355 + 6.27758i −0.776255 + 0.373825i
\(283\) −2.03116 8.89909i −0.120740 0.528996i −0.998733 0.0503227i \(-0.983975\pi\)
0.877993 0.478673i \(-0.158882\pi\)
\(284\) −2.79179 + 3.50080i −0.165662 + 0.207734i
\(285\) 1.46569 + 1.83792i 0.0868200 + 0.108869i
\(286\) 4.23919 18.5731i 0.250669 1.09825i
\(287\) −0.198847 0.871208i −0.0117376 0.0514258i
\(288\) −4.11607 5.16139i −0.242542 0.304138i
\(289\) 0.355162 0.0208919
\(290\) 6.39619 + 21.3781i 0.375597 + 1.25537i
\(291\) 15.1681 0.889169
\(292\) 6.03944 + 7.57322i 0.353432 + 0.443189i
\(293\) 3.06458 + 13.4268i 0.179035 + 0.784402i 0.982077 + 0.188480i \(0.0603562\pi\)
−0.803042 + 0.595922i \(0.796787\pi\)
\(294\) −2.63167 + 11.5301i −0.153482 + 0.672448i
\(295\) −15.5721 19.5268i −0.906644 1.13690i
\(296\) 0.779864 0.977918i 0.0453287 0.0568403i
\(297\) 1.40384 + 6.15063i 0.0814591 + 0.356896i
\(298\) 3.40445 1.63949i 0.197214 0.0949734i
\(299\) −6.78205 + 3.26607i −0.392216 + 0.188881i
\(300\) 0.0306572 0.134318i 0.00177000 0.00775486i
\(301\) −8.60121 4.14212i −0.495765 0.238748i
\(302\) −22.8784 −1.31651
\(303\) 4.00173 + 1.92713i 0.229893 + 0.110711i
\(304\) −3.15783 + 3.95979i −0.181114 + 0.227109i
\(305\) 9.08069 11.3868i 0.519959 0.652008i
\(306\) −6.88637 3.31630i −0.393667 0.189580i
\(307\) 3.43747 0.196187 0.0980934 0.995177i \(-0.468726\pi\)
0.0980934 + 0.995177i \(0.468726\pi\)
\(308\) 5.77943 + 2.78323i 0.329314 + 0.158589i
\(309\) 3.42541 15.0077i 0.194865 0.853759i
\(310\) −13.1843 + 6.34923i −0.748819 + 0.360612i
\(311\) 26.9582 12.9824i 1.52866 0.736163i 0.534609 0.845100i \(-0.320459\pi\)
0.994049 + 0.108937i \(0.0347446\pi\)
\(312\) 0.425922 + 1.86609i 0.0241131 + 0.105646i
\(313\) 19.0975 23.9476i 1.07946 1.35360i 0.148315 0.988940i \(-0.452615\pi\)
0.931142 0.364657i \(-0.118814\pi\)
\(314\) −15.0020 18.8119i −0.846613 1.06162i
\(315\) −0.374047 + 1.63880i −0.0210751 + 0.0923362i
\(316\) −1.94234 8.50993i −0.109265 0.478721i
\(317\) 2.76481 + 3.46696i 0.155287 + 0.194724i 0.853389 0.521274i \(-0.174543\pi\)
−0.698102 + 0.715998i \(0.745972\pi\)
\(318\) 24.2030 1.35724
\(319\) 33.8993 2.25141i 1.89799 0.126055i
\(320\) 5.37575 0.300514
\(321\) 4.93600 + 6.18955i 0.275501 + 0.345467i
\(322\) −1.38970 6.08869i −0.0774452 0.339310i
\(323\) −0.964888 + 4.22745i −0.0536878 + 0.235222i
\(324\) 0.851774 + 1.06809i 0.0473208 + 0.0593384i
\(325\) −0.103489 + 0.129772i −0.00574056 + 0.00719844i
\(326\) −4.44164 19.4601i −0.246000 1.07780i
\(327\) 3.77419 1.81755i 0.208713 0.100511i
\(328\) −1.25801 + 0.605827i −0.0694622 + 0.0334512i
\(329\) −1.30604 + 5.72215i −0.0720045 + 0.315472i
\(330\) −23.5529 11.3425i −1.29654 0.624382i
\(331\) −12.6242 −0.693891 −0.346946 0.937885i \(-0.612781\pi\)
−0.346946 + 0.937885i \(0.612781\pi\)
\(332\) 6.34372 + 3.05498i 0.348157 + 0.167664i
\(333\) −0.670593 + 0.840897i −0.0367482 + 0.0460808i
\(334\) −23.1974 + 29.0887i −1.26931 + 1.59166i
\(335\) −13.9949 6.73958i −0.764622 0.368223i
\(336\) −3.62160 −0.197574
\(337\) 15.3978 + 7.41521i 0.838774 + 0.403932i 0.803398 0.595442i \(-0.203023\pi\)
0.0353753 + 0.999374i \(0.488737\pi\)
\(338\) 4.20143 18.4077i 0.228528 1.00125i
\(339\) −9.75279 + 4.69670i −0.529699 + 0.255090i
\(340\) 11.5808 5.57704i 0.628059 0.302458i
\(341\) 4.95768 + 21.7210i 0.268473 + 1.17626i
\(342\) 1.19066 1.49304i 0.0643834 0.0807343i
\(343\) 6.23961 + 7.82423i 0.336908 + 0.422469i
\(344\) −3.31930 + 14.5428i −0.178965 + 0.784096i
\(345\) 2.29850 + 10.0704i 0.123747 + 0.542171i
\(346\) −0.181830 0.228007i −0.00977522 0.0122577i
\(347\) 5.48266 0.294325 0.147162 0.989112i \(-0.452986\pi\)
0.147162 + 0.989112i \(0.452986\pi\)
\(348\) 6.40222 3.62427i 0.343195 0.194281i
\(349\) −20.4824 −1.09640 −0.548198 0.836349i \(-0.684686\pi\)
−0.548198 + 0.836349i \(0.684686\pi\)
\(350\) −0.0858611 0.107666i −0.00458947 0.00575501i
\(351\) −0.366244 1.60462i −0.0195487 0.0856482i
\(352\) 9.26769 40.6044i 0.493970 2.16422i
\(353\) −11.7746 14.7649i −0.626699 0.785856i 0.362571 0.931956i \(-0.381899\pi\)
−0.989270 + 0.146100i \(0.953328\pi\)
\(354\) −12.6501 + 15.8627i −0.672343 + 0.843092i
\(355\) −1.64722 7.21693i −0.0874252 0.383035i
\(356\) −11.4697 + 5.52349i −0.607890 + 0.292745i
\(357\) −2.79356 + 1.34531i −0.147851 + 0.0712012i
\(358\) 5.87826 25.7543i 0.310676 1.36116i
\(359\) 3.87037 + 1.86387i 0.204270 + 0.0983714i 0.533222 0.845975i \(-0.320981\pi\)
−0.328952 + 0.944347i \(0.606695\pi\)
\(360\) 2.62652 0.138430
\(361\) 16.1423 + 7.77373i 0.849595 + 0.409144i
\(362\) 14.7983 18.5565i 0.777781 0.975307i
\(363\) −17.9571 + 22.5175i −0.942505 + 1.18186i
\(364\) −1.50778 0.726108i −0.0790291 0.0380584i
\(365\) −16.0138 −0.838199
\(366\) −10.6597 5.13343i −0.557190 0.268329i
\(367\) −3.04134 + 13.3250i −0.158757 + 0.695558i 0.831409 + 0.555660i \(0.187534\pi\)
−0.990166 + 0.139898i \(0.955323\pi\)
\(368\) −20.0507 + 9.65589i −1.04521 + 0.503348i
\(369\) 1.08175 0.520941i 0.0563135 0.0271191i
\(370\) −0.991716 4.34499i −0.0515569 0.225885i
\(371\) 6.12162 7.67627i 0.317819 0.398532i
\(372\) 3.00805 + 3.77197i 0.155960 + 0.195568i
\(373\) −2.78499 + 12.2018i −0.144201 + 0.631787i 0.850231 + 0.526409i \(0.176462\pi\)
−0.994432 + 0.105377i \(0.966395\pi\)
\(374\) −10.7300 47.0110i −0.554833 2.43088i
\(375\) −6.89877 8.65078i −0.356251 0.446724i
\(376\) 9.17092 0.472954
\(377\) −8.84388 + 0.587364i −0.455483 + 0.0302508i
\(378\) 1.36552 0.0702350
\(379\) 6.92755 + 8.68688i 0.355845 + 0.446215i 0.927244 0.374457i \(-0.122171\pi\)
−0.571400 + 0.820672i \(0.693599\pi\)
\(380\) 0.714626 + 3.13098i 0.0366595 + 0.160616i
\(381\) 1.79567 7.86735i 0.0919951 0.403057i
\(382\) −6.42079 8.05141i −0.328516 0.411946i
\(383\) 9.69544 12.1577i 0.495414 0.621229i −0.469774 0.882787i \(-0.655665\pi\)
0.965188 + 0.261557i \(0.0842360\pi\)
\(384\) 1.96627 + 8.61478i 0.100341 + 0.439621i
\(385\) −9.55458 + 4.60124i −0.486946 + 0.234501i
\(386\) −14.9885 + 7.21806i −0.762892 + 0.367389i
\(387\) 2.85422 12.5051i 0.145088 0.635672i
\(388\) 18.6696 + 8.99081i 0.947806 + 0.456439i
\(389\) −0.482991 −0.0244886 −0.0122443 0.999925i \(-0.503898\pi\)
−0.0122443 + 0.999925i \(0.503898\pi\)
\(390\) 6.14464 + 2.95910i 0.311146 + 0.149840i
\(391\) −11.8794 + 14.8963i −0.600769 + 0.753340i
\(392\) 4.67394 5.86094i 0.236070 0.296022i
\(393\) −16.8524 8.11570i −0.850092 0.409383i
\(394\) 17.6922 0.891318
\(395\) 13.0014 + 6.26114i 0.654171 + 0.315032i
\(396\) −1.91784 + 8.40261i −0.0963752 + 0.422247i
\(397\) 7.00415 3.37302i 0.351528 0.169287i −0.249783 0.968302i \(-0.580359\pi\)
0.601311 + 0.799015i \(0.294645\pi\)
\(398\) −19.6825 + 9.47858i −0.986593 + 0.475118i
\(399\) −0.172384 0.755263i −0.00862998 0.0378104i
\(400\) −0.305959 + 0.383661i −0.0152980 + 0.0191830i
\(401\) −0.967205 1.21284i −0.0482999 0.0605662i 0.757095 0.653305i \(-0.226618\pi\)
−0.805395 + 0.592739i \(0.798047\pi\)
\(402\) −2.80786 + 12.3020i −0.140043 + 0.613569i
\(403\) −1.29339 5.66673i −0.0644286 0.282280i
\(404\) 3.78323 + 4.74401i 0.188222 + 0.236024i
\(405\) −2.25851 −0.112226
\(406\) 1.15763 7.26188i 0.0574524 0.360401i
\(407\) −6.78542 −0.336341
\(408\) 3.02067 + 3.78780i 0.149546 + 0.187524i
\(409\) −2.26265 9.91331i −0.111881 0.490182i −0.999558 0.0297161i \(-0.990540\pi\)
0.887678 0.460465i \(-0.152317\pi\)
\(410\) −1.10707 + 4.85037i −0.0546741 + 0.239543i
\(411\) 2.32694 + 2.91789i 0.114779 + 0.143929i
\(412\) 13.1119 16.4418i 0.645978 0.810031i
\(413\) 1.83148 + 8.02423i 0.0901211 + 0.394846i
\(414\) 7.56010 3.64075i 0.371559 0.178933i
\(415\) −10.4875 + 5.05050i −0.514809 + 0.247919i
\(416\) −2.41782 + 10.5932i −0.118543 + 0.519373i
\(417\) 12.2035 + 5.87689i 0.597607 + 0.287793i
\(418\) 12.0477 0.589273
\(419\) 13.5322 + 6.51676i 0.661091 + 0.318364i 0.734174 0.678961i \(-0.237570\pi\)
−0.0730834 + 0.997326i \(0.523284\pi\)
\(420\) −1.43179 + 1.79541i −0.0698641 + 0.0876069i
\(421\) −5.34856 + 6.70689i −0.260673 + 0.326874i −0.894894 0.446278i \(-0.852749\pi\)
0.634221 + 0.773151i \(0.281321\pi\)
\(422\) 9.57791 + 4.61248i 0.466246 + 0.224532i
\(423\) −7.88593 −0.383427
\(424\) −13.8221 6.65636i −0.671260 0.323262i
\(425\) −0.0934873 + 0.409595i −0.00453480 + 0.0198683i
\(426\) −5.41794 + 2.60914i −0.262500 + 0.126413i
\(427\) −4.32426 + 2.08245i −0.209266 + 0.100777i
\(428\) 2.40664 + 10.5442i 0.116329 + 0.509673i
\(429\) 6.47405 8.11820i 0.312570 0.391950i
\(430\) 33.1385 + 41.5543i 1.59808 + 2.00393i
\(431\) 2.09048 9.15897i 0.100695 0.441172i −0.899298 0.437336i \(-0.855922\pi\)
0.999993 0.00383572i \(-0.00122095\pi\)
\(432\) −1.08277 4.74394i −0.0520950 0.228243i
\(433\) 13.8607 + 17.3808i 0.666102 + 0.835266i 0.993992 0.109450i \(-0.0349090\pi\)
−0.327890 + 0.944716i \(0.606338\pi\)
\(434\) 4.82237 0.231481
\(435\) −1.91466 + 12.0108i −0.0918011 + 0.575872i
\(436\) 5.72280 0.274072
\(437\) −2.96806 3.72183i −0.141982 0.178039i
\(438\) 2.89474 + 12.6827i 0.138316 + 0.606002i
\(439\) 0.625294 2.73959i 0.0298437 0.130754i −0.957812 0.287397i \(-0.907210\pi\)
0.987655 + 0.156643i \(0.0500673\pi\)
\(440\) 10.3314 + 12.9551i 0.492528 + 0.617611i
\(441\) −4.01905 + 5.03973i −0.191383 + 0.239987i
\(442\) 2.79931 + 12.2646i 0.133150 + 0.583366i
\(443\) 4.43329 2.13496i 0.210632 0.101435i −0.325593 0.945510i \(-0.605564\pi\)
0.536225 + 0.844075i \(0.319850\pi\)
\(444\) −1.32384 + 0.637526i −0.0628265 + 0.0302556i
\(445\) 4.68314 20.5182i 0.222002 0.972656i
\(446\) 17.1617 + 8.26464i 0.812630 + 0.391342i
\(447\) 2.05954 0.0974130
\(448\) −1.59611 0.768644i −0.0754089 0.0363150i
\(449\) −23.6873 + 29.7029i −1.11787 + 1.40177i −0.212494 + 0.977162i \(0.568159\pi\)
−0.905378 + 0.424606i \(0.860413\pi\)
\(450\) 0.115362 0.144659i 0.00543822 0.00681931i
\(451\) 6.82452 + 3.28652i 0.321354 + 0.154756i
\(452\) −14.7882 −0.695576
\(453\) −11.2349 5.41045i −0.527862 0.254205i
\(454\) −0.570822 + 2.50094i −0.0267900 + 0.117375i
\(455\) 2.49267 1.20040i 0.116858 0.0562758i
\(456\) −1.09059 + 0.525201i −0.0510716 + 0.0245948i
\(457\) 1.03622 + 4.53998i 0.0484723 + 0.212371i 0.993364 0.115012i \(-0.0366905\pi\)
−0.944892 + 0.327383i \(0.893833\pi\)
\(458\) −7.88300 + 9.88497i −0.368348 + 0.461894i
\(459\) −2.59743 3.25707i −0.121238 0.152027i
\(460\) −3.14007 + 13.7575i −0.146406 + 0.641448i
\(461\) 4.44300 + 19.4661i 0.206931 + 0.906625i 0.966595 + 0.256309i \(0.0825064\pi\)
−0.759664 + 0.650316i \(0.774636\pi\)
\(462\) 5.37126 + 6.73534i 0.249893 + 0.313357i
\(463\) −19.4998 −0.906230 −0.453115 0.891452i \(-0.649687\pi\)
−0.453115 + 0.891452i \(0.649687\pi\)
\(464\) −26.1463 + 1.73650i −1.21381 + 0.0806150i
\(465\) −7.97594 −0.369875
\(466\) −0.153236 0.192151i −0.00709850 0.00890123i
\(467\) −7.69529 33.7153i −0.356095 1.56016i −0.762824 0.646607i \(-0.776188\pi\)
0.406728 0.913549i \(-0.366670\pi\)
\(468\) 0.500340 2.19213i 0.0231282 0.101331i
\(469\) 3.19155 + 4.00207i 0.147372 + 0.184799i
\(470\) 20.3737 25.5478i 0.939768 1.17843i
\(471\) −2.91827 12.7858i −0.134467 0.589137i
\(472\) 11.5869 5.57995i 0.533330 0.256838i
\(473\) 72.9076 35.1104i 3.35230 1.61438i
\(474\) 2.60853 11.4287i 0.119814 0.524938i
\(475\) −0.0945734 0.0455441i −0.00433932 0.00208971i
\(476\) −4.23587 −0.194151
\(477\) 11.8854 + 5.72370i 0.544195 + 0.262070i
\(478\) 11.8705 14.8851i 0.542943 0.680829i
\(479\) 3.84596 4.82268i 0.175726 0.220354i −0.686166 0.727445i \(-0.740708\pi\)
0.861893 + 0.507091i \(0.169279\pi\)
\(480\) 13.4334 + 6.46917i 0.613146 + 0.295276i
\(481\) 1.77023 0.0807154
\(482\) −13.9945 6.73937i −0.637430 0.306970i
\(483\) 0.757454 3.31862i 0.0344654 0.151003i
\(484\) −35.4497 + 17.0717i −1.61135 + 0.775985i
\(485\) −30.8647 + 14.8636i −1.40149 + 0.674923i
\(486\) 0.408260 + 1.78870i 0.0185191 + 0.0811373i
\(487\) 4.08151 5.11806i 0.184951 0.231921i −0.680709 0.732554i \(-0.738328\pi\)
0.865660 + 0.500633i \(0.166899\pi\)
\(488\) 4.67582 + 5.86329i 0.211664 + 0.265419i
\(489\) 2.42090 10.6067i 0.109477 0.479650i
\(490\) −5.94363 26.0408i −0.268506 1.17640i
\(491\) 11.3529 + 14.2361i 0.512349 + 0.642465i 0.968965 0.247199i \(-0.0795100\pi\)
−0.456616 + 0.889664i \(0.650939\pi\)
\(492\) 1.64025 0.0739483
\(493\) −19.5232 + 11.0520i −0.879279 + 0.497756i
\(494\) −3.14309 −0.141414
\(495\) −8.88377 11.1399i −0.399296 0.500701i
\(496\) −3.82383 16.7533i −0.171695 0.752245i
\(497\) −0.542829 + 2.37829i −0.0243492 + 0.106681i
\(498\) 5.89569 + 7.39296i 0.264192 + 0.331287i
\(499\) 10.4457 13.0985i 0.467614 0.586369i −0.490971 0.871176i \(-0.663358\pi\)
0.958585 + 0.284806i \(0.0919293\pi\)
\(500\) −3.36363 14.7370i −0.150426 0.659059i
\(501\) −18.2707 + 8.79869i −0.816273 + 0.393096i
\(502\) −12.4827 + 6.01137i −0.557132 + 0.268301i
\(503\) −0.739155 + 3.23845i −0.0329573 + 0.144395i −0.988730 0.149712i \(-0.952165\pi\)
0.955772 + 0.294108i \(0.0950224\pi\)
\(504\) −0.779836 0.375549i −0.0347367 0.0167283i
\(505\) −10.0313 −0.446389
\(506\) 47.6952 + 22.9688i 2.12031 + 1.02109i
\(507\) 6.41637 8.04588i 0.284961 0.357330i
\(508\) 6.87354 8.61914i 0.304964 0.382413i
\(509\) −16.9609 8.16792i −0.751777 0.362036i 0.0184308 0.999830i \(-0.494133\pi\)
−0.770207 + 0.637794i \(0.779847\pi\)
\(510\) 17.2624 0.764393
\(511\) 4.75462 + 2.28971i 0.210332 + 0.101291i
\(512\) −4.62970 + 20.2840i −0.204606 + 0.896436i
\(513\) 0.937782 0.451612i 0.0414041 0.0199391i
\(514\) −35.2253 + 16.9636i −1.55372 + 0.748232i
\(515\) 7.73632 + 33.8950i 0.340903 + 1.49359i
\(516\) 10.9255 13.7001i 0.480967 0.603114i
\(517\) −31.0191 38.8967i −1.36422 1.71068i
\(518\) −0.326813 + 1.43186i −0.0143594 + 0.0629125i
\(519\) −0.0353704 0.154968i −0.00155259 0.00680234i
\(520\) −2.69532 3.37982i −0.118198 0.148215i
\(521\) −3.09335 −0.135522 −0.0677611 0.997702i \(-0.521586\pi\)
−0.0677611 + 0.997702i \(0.521586\pi\)
\(522\) 9.85847 0.654748i 0.431493 0.0286575i
\(523\) 34.6039 1.51312 0.756561 0.653924i \(-0.226878\pi\)
0.756561 + 0.653924i \(0.226878\pi\)
\(524\) −15.9322 19.9784i −0.696003 0.872760i
\(525\) −0.0167021 0.0731768i −0.000728940 0.00319370i
\(526\) 10.5404 46.1806i 0.459585 2.01357i
\(527\) −9.17285 11.5024i −0.399576 0.501052i
\(528\) 19.1401 24.0009i 0.832964 1.04450i
\(529\) 0.463462 + 2.03056i 0.0201505 + 0.0882852i
\(530\) −49.2494 + 23.7172i −2.13926 + 1.03021i
\(531\) −9.96339 + 4.79811i −0.432374 + 0.208220i
\(532\) 0.235500 1.03179i 0.0102102 0.0447339i
\(533\) −1.78043 0.857410i −0.0771190 0.0371385i
\(534\) −17.0967 −0.739845
\(535\) −16.1093 7.75783i −0.696466 0.335400i
\(536\) 4.98686 6.25333i 0.215400 0.270103i
\(537\) 8.97720 11.2571i 0.387395 0.485778i
\(538\) −31.5944 15.2151i −1.36213 0.655968i
\(539\) −40.6669 −1.75165
\(540\) −2.77988 1.33872i −0.119627 0.0576093i
\(541\) −6.17721 + 27.0641i −0.265579 + 1.16358i 0.649518 + 0.760346i \(0.274971\pi\)
−0.915098 + 0.403232i \(0.867887\pi\)
\(542\) 5.75755 2.77269i 0.247308 0.119097i
\(543\) 11.6554 5.61293i 0.500180 0.240874i
\(544\) 6.11982 + 26.8127i 0.262385 + 1.14959i
\(545\) −5.89881 + 7.39687i −0.252677 + 0.316847i
\(546\) −1.40129 1.75716i −0.0599697 0.0751997i
\(547\) 7.27014 31.8526i 0.310849 1.36192i −0.542272 0.840203i \(-0.682436\pi\)
0.853120 0.521714i \(-0.174707\pi\)
\(548\) 1.13454 + 4.97076i 0.0484653 + 0.212340i
\(549\) −4.02066 5.04175i −0.171598 0.215177i
\(550\) 1.16729 0.0497736
\(551\) −1.60667 5.37000i −0.0684464 0.228769i
\(552\) −5.31878 −0.226382
\(553\) −2.96498 3.71796i −0.126084 0.158104i
\(554\) 4.15074 + 18.1856i 0.176348 + 0.772631i
\(555\) 0.540532 2.36823i 0.0229443 0.100526i
\(556\) 11.5371 + 14.4671i 0.489284 + 0.613543i
\(557\) 27.0722 33.9474i 1.14708 1.43840i 0.266928 0.963717i \(-0.413991\pi\)
0.880157 0.474683i \(-0.157437\pi\)
\(558\) 1.44178 + 6.31683i 0.0610352 + 0.267413i
\(559\) −19.0206 + 9.15986i −0.804488 + 0.387421i
\(560\) 7.36939 3.54891i 0.311414 0.149969i
\(561\) 5.84833 25.6232i 0.246917 1.08181i
\(562\) 1.77900 + 0.856721i 0.0750425 + 0.0361386i
\(563\) −0.551999 −0.0232640 −0.0116320 0.999932i \(-0.503703\pi\)
−0.0116320 + 0.999932i \(0.503703\pi\)
\(564\) −9.70639 4.67435i −0.408713 0.196826i
\(565\) 15.2430 19.1141i 0.641277 0.804136i
\(566\) 10.4416 13.0934i 0.438895 0.550356i
\(567\) 0.670569 + 0.322929i 0.0281612 + 0.0135617i
\(568\) 3.81170 0.159935
\(569\) 25.1874 + 12.1296i 1.05591 + 0.508499i 0.879540 0.475825i \(-0.157850\pi\)
0.176369 + 0.984324i \(0.443565\pi\)
\(570\) −0.959732 + 4.20486i −0.0401988 + 0.176122i
\(571\) −29.9930 + 14.4439i −1.25517 + 0.604457i −0.938893 0.344210i \(-0.888147\pi\)
−0.316276 + 0.948667i \(0.602432\pi\)
\(572\) 12.7806 6.15481i 0.534384 0.257346i
\(573\) −1.24900 5.47224i −0.0521779 0.228606i
\(574\) 1.02222 1.28182i 0.0426667 0.0535023i
\(575\) −0.287573 0.360606i −0.0119926 0.0150383i
\(576\) 0.529650 2.32055i 0.0220688 0.0966895i
\(577\) −4.30983 18.8826i −0.179421 0.786093i −0.981898 0.189410i \(-0.939342\pi\)
0.802477 0.596682i \(-0.203515\pi\)
\(578\) 0.406277 + 0.509455i 0.0168989 + 0.0211905i
\(579\) −9.06736 −0.376827
\(580\) −9.47599 + 13.6485i −0.393469 + 0.566725i
\(581\) 3.83595 0.159142
\(582\) 17.3511 + 21.7575i 0.719225 + 0.901879i
\(583\) 18.5192 + 81.1378i 0.766986 + 3.36038i
\(584\) 1.83486 8.03906i 0.0759271 0.332659i
\(585\) 2.31766 + 2.90626i 0.0958235 + 0.120159i
\(586\) −15.7542 + 19.7551i −0.650799 + 0.816076i
\(587\) −1.29711 5.68302i −0.0535376 0.234564i 0.941079 0.338187i \(-0.109814\pi\)
−0.994617 + 0.103623i \(0.966956\pi\)
\(588\) −7.93412 + 3.82087i −0.327198 + 0.157570i
\(589\) 3.31179 1.59487i 0.136460 0.0657156i
\(590\) 10.1966 44.6742i 0.419787 1.83921i
\(591\) 8.68809 + 4.18397i 0.357380 + 0.172105i
\(592\) 5.23355 0.215098
\(593\) 2.04748 + 0.986017i 0.0840801 + 0.0404909i 0.475451 0.879742i \(-0.342285\pi\)
−0.391371 + 0.920233i \(0.627999\pi\)
\(594\) −7.21676 + 9.04953i −0.296107 + 0.371307i
\(595\) 4.36615 5.47498i 0.178995 0.224452i
\(596\) 2.53498 + 1.22078i 0.103837 + 0.0500053i
\(597\) −11.9070 −0.487323
\(598\) −12.4431 5.99226i −0.508835 0.245042i
\(599\) −6.75720 + 29.6052i −0.276092 + 1.20964i 0.626597 + 0.779343i \(0.284447\pi\)
−0.902689 + 0.430294i \(0.858410\pi\)
\(600\) −0.105666 + 0.0508863i −0.00431381 + 0.00207742i
\(601\) −17.9698 + 8.65379i −0.733003 + 0.352996i −0.762864 0.646559i \(-0.776208\pi\)
0.0298616 + 0.999554i \(0.490493\pi\)
\(602\) −3.89750 17.0761i −0.158850 0.695969i
\(603\) −4.28813 + 5.37714i −0.174626 + 0.218974i
\(604\) −10.6215 13.3189i −0.432181 0.541938i
\(605\) 14.4744 63.4164i 0.588467 2.57824i
\(606\) 1.81332 + 7.94468i 0.0736612 + 0.322731i
\(607\) 21.1629 + 26.5375i 0.858977 + 1.07712i 0.996244 + 0.0865894i \(0.0275968\pi\)
−0.137267 + 0.990534i \(0.543832\pi\)
\(608\) −6.87141 −0.278672
\(609\) 2.28582 3.29233i 0.0926261 0.133412i
\(610\) 26.7212 1.08191
\(611\) 8.09248 + 10.1477i 0.327387 + 0.410530i
\(612\) −1.26643 5.54858i −0.0511923 0.224288i
\(613\) −5.90946 + 25.8910i −0.238681 + 1.04573i 0.703519 + 0.710677i \(0.251611\pi\)
−0.942200 + 0.335052i \(0.891246\pi\)
\(614\) 3.93219 + 4.93081i 0.158690 + 0.198991i
\(615\) −1.69070 + 2.12007i −0.0681755 + 0.0854894i
\(616\) −1.21510 5.32369i −0.0489577 0.214498i
\(617\) 0.763697 0.367777i 0.0307453 0.0148062i −0.418448 0.908241i \(-0.637426\pi\)
0.449193 + 0.893435i \(0.351711\pi\)
\(618\) 25.4459 12.2541i 1.02358 0.492932i
\(619\) −9.82554 + 43.0485i −0.394922 + 1.73027i 0.252016 + 0.967723i \(0.418906\pi\)
−0.646938 + 0.762543i \(0.723951\pi\)
\(620\) −9.81718 4.72770i −0.394267 0.189869i
\(621\) 4.57353 0.183530
\(622\) 49.4603 + 23.8188i 1.98318 + 0.955047i
\(623\) −4.32423 + 5.42241i −0.173246 + 0.217244i
\(624\) −4.99339 + 6.26152i −0.199896 + 0.250661i
\(625\) 22.9694 + 11.0615i 0.918775 + 0.442458i
\(626\) 56.1972 2.24609
\(627\) 5.91628 + 2.84913i 0.236273 + 0.113783i
\(628\) 3.98676 17.4671i 0.159089 0.697015i
\(629\) 4.03695 1.94409i 0.160964 0.0775161i
\(630\) −2.77863 + 1.33812i −0.110703 + 0.0533119i
\(631\) 1.04715 + 4.58785i 0.0416862 + 0.182639i 0.991485 0.130223i \(-0.0415693\pi\)
−0.949798 + 0.312862i \(0.898712\pi\)
\(632\) −4.63285 + 5.80941i −0.184285 + 0.231086i
\(633\) 3.61264 + 4.53011i 0.143589 + 0.180056i
\(634\) −1.81039 + 7.93185i −0.0718999 + 0.315014i
\(635\) 4.05554 + 17.7685i 0.160939 + 0.705120i
\(636\) 11.2364 + 14.0900i 0.445553 + 0.558706i
\(637\) 10.6095 0.420362
\(638\) 42.0075 + 46.0507i 1.66309 + 1.82316i
\(639\) −3.27762 −0.129661
\(640\) −12.4429 15.6029i −0.491850 0.616760i
\(641\) −5.84782 25.6210i −0.230975 1.01197i −0.948833 0.315778i \(-0.897734\pi\)
0.717858 0.696190i \(-0.245123\pi\)
\(642\) −3.23208 + 14.1607i −0.127560 + 0.558878i
\(643\) −13.3662 16.7607i −0.527111 0.660976i 0.444991 0.895535i \(-0.353207\pi\)
−0.972102 + 0.234559i \(0.924636\pi\)
\(644\) 2.89941 3.63575i 0.114253 0.143268i
\(645\) 6.44626 + 28.2429i 0.253821 + 1.11206i
\(646\) −7.16774 + 3.45180i −0.282011 + 0.135809i
\(647\) −28.2997 + 13.6284i −1.11258 + 0.535788i −0.897591 0.440829i \(-0.854685\pi\)
−0.214985 + 0.976617i \(0.568970\pi\)
\(648\) 0.258780 1.13379i 0.0101658 0.0445395i
\(649\) −62.8570 30.2704i −2.46735 1.18822i
\(650\) −0.304532 −0.0119447
\(651\) 2.36812 + 1.14043i 0.0928140 + 0.0446969i
\(652\) 9.26682 11.6202i 0.362917 0.455083i
\(653\) −21.5031 + 26.9641i −0.841483 + 1.05519i 0.156239 + 0.987719i \(0.450063\pi\)
−0.997722 + 0.0674669i \(0.978508\pi\)
\(654\) 6.92452 + 3.33467i 0.270770 + 0.130396i
\(655\) 42.2448 1.65064
\(656\) −5.26371 2.53487i −0.205514 0.0989701i
\(657\) −1.57777 + 6.91266i −0.0615546 + 0.269689i
\(658\) −9.70202 + 4.67225i −0.378224 + 0.182143i
\(659\) −21.3410 + 10.2773i −0.831326 + 0.400346i −0.800612 0.599183i \(-0.795492\pi\)
−0.0307137 + 0.999528i \(0.509778\pi\)
\(660\) −4.33146 18.9774i −0.168602 0.738692i
\(661\) −19.9534 + 25.0208i −0.776099 + 0.973197i −0.999999 0.00141483i \(-0.999550\pi\)
0.223900 + 0.974612i \(0.428121\pi\)
\(662\) −14.4411 18.1086i −0.561270 0.703810i
\(663\) −1.52575 + 6.68477i −0.0592554 + 0.259615i
\(664\) −1.33374 5.84348i −0.0517590 0.226771i
\(665\) 1.09088 + 1.36792i 0.0423024 + 0.0530456i
\(666\) −1.97331 −0.0764642
\(667\) 3.87725 24.3221i 0.150128 0.941757i
\(668\) −27.7038 −1.07189
\(669\) 6.47312 + 8.11704i 0.250265 + 0.313823i
\(670\) −6.34156 27.7842i −0.244996 1.07340i
\(671\) 9.05287 39.6632i 0.349482 1.53118i
\(672\) −3.06349 3.84150i −0.118177 0.148189i
\(673\) 7.45946 9.35386i 0.287541 0.360565i −0.616991 0.786970i \(-0.711649\pi\)
0.904532 + 0.426405i \(0.140220\pi\)
\(674\) 6.97729 + 30.5695i 0.268755 + 1.17749i
\(675\) 0.0908609 0.0437563i 0.00349724 0.00168418i
\(676\) 12.6667 6.09998i 0.487182 0.234615i
\(677\) 8.91349 39.0526i 0.342573 1.50091i −0.451048 0.892500i \(-0.648950\pi\)
0.793621 0.608412i \(-0.208193\pi\)
\(678\) −17.8935 8.61705i −0.687195 0.330936i
\(679\) 11.2892 0.433241
\(680\) −9.85837 4.74754i −0.378051 0.182060i
\(681\) −0.871753 + 1.09314i −0.0334056 + 0.0418893i
\(682\) −25.4861 + 31.9585i −0.975912 + 1.22376i
\(683\) 18.7031 + 9.00695i 0.715655 + 0.344641i 0.756024 0.654543i \(-0.227139\pi\)
−0.0403691 + 0.999185i \(0.512853\pi\)
\(684\) 1.42196 0.0543699
\(685\) −7.59428 3.65721i −0.290162 0.139735i
\(686\) −4.08569 + 17.9006i −0.155992 + 0.683447i
\(687\) −6.20877 + 2.98999i −0.236879 + 0.114075i
\(688\) −56.2332 + 27.0805i −2.14387 + 1.03243i
\(689\) −4.83141 21.1678i −0.184062 0.806429i
\(690\) −11.8159 + 14.8167i −0.449825 + 0.564063i
\(691\) 2.08045 + 2.60881i 0.0791442 + 0.0992437i 0.819827 0.572611i \(-0.194069\pi\)
−0.740683 + 0.671855i \(0.765498\pi\)
\(692\) 0.0483209 0.211708i 0.00183688 0.00804792i
\(693\) 1.04484 + 4.57776i 0.0396903 + 0.173895i
\(694\) 6.27173 + 7.86449i 0.238071 + 0.298532i
\(695\) −30.5911 −1.16039
\(696\) −5.81013 2.33738i −0.220232 0.0885980i
\(697\) −5.00184 −0.189458
\(698\) −23.4302 29.3805i −0.886845 1.11207i
\(699\) −0.0298081 0.130598i −0.00112745 0.00493967i
\(700\) 0.0228174 0.0999697i 0.000862418 0.00377850i
\(701\) 14.9843 + 18.7898i 0.565951 + 0.709680i 0.979645 0.200736i \(-0.0643334\pi\)
−0.413695 + 0.910416i \(0.635762\pi\)
\(702\) 1.88276 2.36091i 0.0710602 0.0891067i
\(703\) 0.249111 + 1.09142i 0.00939538 + 0.0411639i
\(704\) 13.5293 6.51536i 0.509904 0.245557i
\(705\) 16.0466 7.72765i 0.604351 0.291040i
\(706\) 7.70999 33.7797i 0.290169 1.27132i
\(707\) 2.97839 + 1.43432i 0.112014 + 0.0539430i
\(708\) −15.1075 −0.567774
\(709\) 42.6554 + 20.5417i 1.60196 + 0.771461i 0.999641 0.0267971i \(-0.00853079\pi\)
0.602315 + 0.798258i \(0.294245\pi\)
\(710\) 8.46789 10.6184i 0.317794 0.398502i
\(711\) 3.98371 4.99542i 0.149401 0.187343i
\(712\) 9.76372 + 4.70196i 0.365911 + 0.176213i
\(713\) 16.1515 0.604878
\(714\) −5.12535 2.46824i −0.191811 0.0923715i
\(715\) −5.21841 + 22.8634i −0.195158 + 0.855041i
\(716\) 17.7221 8.53454i 0.662308 0.318951i
\(717\) 9.34938 4.50242i 0.349159 0.168146i
\(718\) 1.75380 + 7.68389i 0.0654512 + 0.286760i
\(719\) 18.0229 22.6001i 0.672142 0.842840i −0.322462 0.946582i \(-0.604510\pi\)
0.994604 + 0.103743i \(0.0330819\pi\)
\(720\) 6.85200 + 8.59214i 0.255359 + 0.320210i
\(721\) 2.54945 11.1699i 0.0949465 0.415988i
\(722\) 7.31464 + 32.0475i 0.272223 + 1.19269i
\(723\) −5.27849 6.61901i −0.196309 0.246164i
\(724\) 17.6730 0.656813
\(725\) −0.155669 0.520295i −0.00578140 0.0193233i
\(726\) −52.8413 −1.96113
\(727\) 2.28644 + 2.86711i 0.0847994 + 0.106335i 0.822421 0.568879i \(-0.192623\pi\)
−0.737622 + 0.675214i \(0.764051\pi\)
\(728\) 0.317003 + 1.38888i 0.0117489 + 0.0514754i
\(729\) −0.222521 + 0.974928i −0.00824152 + 0.0361084i
\(730\) −18.3185 22.9706i −0.677997 0.850181i
\(731\) −33.3165 + 41.7776i −1.23226 + 1.54520i
\(732\) −1.96035 8.58887i −0.0724567 0.317454i
\(733\) 37.0632 17.8487i 1.36896 0.659257i 0.402345 0.915488i \(-0.368195\pi\)
0.966616 + 0.256231i \(0.0824808\pi\)
\(734\) −22.5928 + 10.8801i −0.833915 + 0.401592i
\(735\) 3.23956 14.1934i 0.119493 0.523533i
\(736\) −27.2029 13.1002i −1.00271 0.482881i
\(737\) −43.3896 −1.59827
\(738\) 1.98468 + 0.955773i 0.0730572 + 0.0351825i
\(739\) 26.7814 33.5828i 0.985168 1.23536i 0.0132816 0.999912i \(-0.495772\pi\)
0.971886 0.235450i \(-0.0756563\pi\)
\(740\) 2.06907 2.59453i 0.0760605 0.0953768i
\(741\) −1.54348 0.743301i −0.0567012 0.0273058i
\(742\) 18.0137 0.661304
\(743\) −25.4955 12.2780i −0.935340 0.450436i −0.0968168 0.995302i \(-0.530866\pi\)
−0.838523 + 0.544866i \(0.816580\pi\)
\(744\) 0.913885 4.00399i 0.0335046 0.146793i
\(745\) −4.19084 + 2.01820i −0.153541 + 0.0739413i
\(746\) −20.6885 + 9.96304i −0.757458 + 0.364773i
\(747\) 1.14686 + 5.02472i 0.0419614 + 0.183845i
\(748\) 22.3865 28.0717i 0.818530 1.02640i
\(749\) 3.67374 + 4.60673i 0.134236 + 0.168326i
\(750\) 4.51730 19.7916i 0.164949 0.722687i
\(751\) −11.6033 50.8373i −0.423410 1.85508i −0.511961 0.859009i \(-0.671081\pi\)
0.0885513 0.996072i \(-0.471776\pi\)
\(752\) 23.9249 + 30.0008i 0.872450 + 1.09402i
\(753\) −7.55152 −0.275193
\(754\) −10.9592 12.0140i −0.399111 0.437525i
\(755\) 28.1631 1.02496
\(756\) 0.633954 + 0.794953i 0.0230567 + 0.0289122i
\(757\) 9.09782 + 39.8602i 0.330666 + 1.44874i 0.817844 + 0.575439i \(0.195169\pi\)
−0.487179 + 0.873302i \(0.661974\pi\)
\(758\) −4.53615 + 19.8742i −0.164760 + 0.721863i
\(759\) 17.9899 + 22.5586i 0.652991 + 0.818825i
\(760\) 1.70452 2.13740i 0.0618295 0.0775317i
\(761\) 2.91709 + 12.7806i 0.105744 + 0.463296i 0.999880 + 0.0154996i \(0.00493387\pi\)
−0.894136 + 0.447796i \(0.852209\pi\)
\(762\) 13.3393 6.42385i 0.483231 0.232712i
\(763\) 2.80903 1.35276i 0.101694 0.0489732i
\(764\) 1.70631 7.47584i 0.0617322 0.270467i
\(765\) 8.47706 + 4.08234i 0.306489 + 0.147597i