Properties

Label 87.2.g.b.82.2
Level $87$
Weight $2$
Character 87.82
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 82.2
Root \(0.0185039 - 0.0810709i\) of defining polynomial
Character \(\chi\) \(=\) 87.82
Dual form 87.2.g.b.52.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0518468 - 0.0650138i) q^{2} +(0.222521 + 0.974928i) q^{3} +(0.443503 - 1.94311i) q^{4} +(1.20357 + 1.50923i) q^{5} +(0.0518468 - 0.0650138i) q^{6} +(-0.0765305 - 0.335302i) q^{7} +(-0.299165 + 0.144070i) q^{8} +(-0.900969 + 0.433884i) q^{9} +O(q^{10})\) \(q+(-0.0518468 - 0.0650138i) q^{2} +(0.222521 + 0.974928i) q^{3} +(0.443503 - 1.94311i) q^{4} +(1.20357 + 1.50923i) q^{5} +(0.0518468 - 0.0650138i) q^{6} +(-0.0765305 - 0.335302i) q^{7} +(-0.299165 + 0.144070i) q^{8} +(-0.900969 + 0.433884i) q^{9} +(0.0357195 - 0.156498i) q^{10} +(2.18408 + 1.05180i) q^{11} +1.99309 q^{12} +(-3.27160 - 1.57552i) q^{13} +(-0.0178314 + 0.0223599i) q^{14} +(-1.20357 + 1.50923i) q^{15} +(-3.56654 - 1.71755i) q^{16} -6.15354 q^{17} +(0.0749208 + 0.0360799i) q^{18} +(0.300553 - 1.31681i) q^{19} +(3.46640 - 1.66933i) q^{20} +(0.309866 - 0.149223i) q^{21} +(-0.0448561 - 0.196528i) q^{22} +(-2.16114 + 2.70998i) q^{23} +(-0.207029 - 0.259606i) q^{24} +(0.283411 - 1.24171i) q^{25} +(0.0671914 + 0.294385i) q^{26} +(-0.623490 - 0.781831i) q^{27} -0.685471 q^{28} +(-4.26305 - 3.29035i) q^{29} +0.160522 q^{30} +(6.85222 + 8.59242i) q^{31} +(0.221024 + 0.968370i) q^{32} +(-0.539423 + 2.36337i) q^{33} +(0.319041 + 0.400065i) q^{34} +(0.413938 - 0.519062i) q^{35} +(0.443503 + 1.94311i) q^{36} +(2.78149 - 1.33950i) q^{37} +(-0.101193 + 0.0487322i) q^{38} +(0.808018 - 3.54016i) q^{39} +(-0.577502 - 0.278110i) q^{40} +5.28313 q^{41} +(-0.0257671 - 0.0124088i) q^{42} +(-0.00526324 + 0.00659989i) q^{43} +(3.01241 - 3.77744i) q^{44} +(-1.73921 - 0.837560i) q^{45} +0.288234 q^{46} +(5.22270 + 2.51512i) q^{47} +(0.880862 - 3.85931i) q^{48} +(6.20021 - 2.98586i) q^{49} +(-0.0954221 + 0.0459528i) q^{50} +(-1.36929 - 5.99926i) q^{51} +(-4.51238 + 5.65834i) q^{52} +(-2.58271 - 3.23861i) q^{53} +(-0.0185039 + 0.0810709i) q^{54} +(1.04129 + 4.56219i) q^{55} +(0.0712023 + 0.0892849i) q^{56} +1.35067 q^{57} +(0.00710697 + 0.447751i) q^{58} +5.76819 q^{59} +(2.39882 + 3.00802i) q^{60} +(1.38805 + 6.08144i) q^{61} +(0.203360 - 0.890979i) q^{62} +(0.214434 + 0.268891i) q^{63} +(-4.88474 + 6.12527i) q^{64} +(-1.55978 - 6.83384i) q^{65} +(0.181619 - 0.0874630i) q^{66} +(-9.92346 + 4.77889i) q^{67} +(-2.72912 + 11.9570i) q^{68} +(-3.12293 - 1.50393i) q^{69} -0.0552076 q^{70} +(-11.5818 - 5.57748i) q^{71} +(0.207029 - 0.259606i) q^{72} +(0.286311 - 0.359022i) q^{73} +(-0.231297 - 0.111387i) q^{74} +1.27364 q^{75} +(-2.42541 - 1.16802i) q^{76} +(0.185521 - 0.812820i) q^{77} +(-0.272052 + 0.131013i) q^{78} +(11.2434 - 5.41452i) q^{79} +(-1.70040 - 7.44993i) q^{80} +(0.623490 - 0.781831i) q^{81} +(-0.273913 - 0.343476i) q^{82} +(-0.640518 + 2.80629i) q^{83} +(-0.152532 - 0.668285i) q^{84} +(-7.40623 - 9.28712i) q^{85} +0.000701966 q^{86} +(2.25924 - 4.88834i) q^{87} -0.804933 q^{88} +(-7.62150 - 9.55706i) q^{89} +(0.0357195 + 0.156498i) q^{90} +(-0.277897 + 1.21755i) q^{91} +(4.30733 + 5.40122i) q^{92} +(-6.85222 + 8.59242i) q^{93} +(-0.107263 - 0.469948i) q^{94} +(2.34911 - 1.13127i) q^{95} +(-0.894908 + 0.430965i) q^{96} +(0.606191 - 2.65590i) q^{97} +(-0.515584 - 0.248292i) q^{98} -2.42414 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0518468 0.0650138i −0.0366612 0.0459717i 0.763163 0.646206i \(-0.223645\pi\)
−0.799824 + 0.600234i \(0.795074\pi\)
\(3\) 0.222521 + 0.974928i 0.128473 + 0.562875i
\(4\) 0.443503 1.94311i 0.221752 0.971557i
\(5\) 1.20357 + 1.50923i 0.538253 + 0.674948i 0.974372 0.224941i \(-0.0722188\pi\)
−0.436119 + 0.899889i \(0.643647\pi\)
\(6\) 0.0518468 0.0650138i 0.0211664 0.0265418i
\(7\) −0.0765305 0.335302i −0.0289258 0.126732i 0.958404 0.285417i \(-0.0921319\pi\)
−0.987329 + 0.158684i \(0.949275\pi\)
\(8\) −0.299165 + 0.144070i −0.105771 + 0.0509365i
\(9\) −0.900969 + 0.433884i −0.300323 + 0.144628i
\(10\) 0.0357195 0.156498i 0.0112955 0.0494889i
\(11\) 2.18408 + 1.05180i 0.658525 + 0.317129i 0.733134 0.680084i \(-0.238057\pi\)
−0.0746095 + 0.997213i \(0.523771\pi\)
\(12\) 1.99309 0.575354
\(13\) −3.27160 1.57552i −0.907378 0.436970i −0.0788298 0.996888i \(-0.525118\pi\)
−0.828548 + 0.559918i \(0.810833\pi\)
\(14\) −0.0178314 + 0.0223599i −0.00476564 + 0.00597593i
\(15\) −1.20357 + 1.50923i −0.310761 + 0.389682i
\(16\) −3.56654 1.71755i −0.891634 0.429389i
\(17\) −6.15354 −1.49245 −0.746227 0.665692i \(-0.768137\pi\)
−0.746227 + 0.665692i \(0.768137\pi\)
\(18\) 0.0749208 + 0.0360799i 0.0176590 + 0.00850413i
\(19\) 0.300553 1.31681i 0.0689516 0.302097i −0.928680 0.370882i \(-0.879055\pi\)
0.997631 + 0.0687856i \(0.0219125\pi\)
\(20\) 3.46640 1.66933i 0.775110 0.373273i
\(21\) 0.309866 0.149223i 0.0676182 0.0325632i
\(22\) −0.0448561 0.196528i −0.00956336 0.0418998i
\(23\) −2.16114 + 2.70998i −0.450628 + 0.565070i −0.954310 0.298820i \(-0.903407\pi\)
0.503681 + 0.863889i \(0.331979\pi\)
\(24\) −0.207029 0.259606i −0.0422595 0.0529918i
\(25\) 0.283411 1.24171i 0.0566823 0.248341i
\(26\) 0.0671914 + 0.294385i 0.0131773 + 0.0577336i
\(27\) −0.623490 0.781831i −0.119991 0.150464i
\(28\) −0.685471 −0.129542
\(29\) −4.26305 3.29035i −0.791628 0.611003i
\(30\) 0.160522 0.0293072
\(31\) 6.85222 + 8.59242i 1.23070 + 1.54324i 0.741285 + 0.671190i \(0.234217\pi\)
0.489411 + 0.872053i \(0.337212\pi\)
\(32\) 0.221024 + 0.968370i 0.0390719 + 0.171185i
\(33\) −0.539423 + 2.36337i −0.0939015 + 0.411409i
\(34\) 0.319041 + 0.400065i 0.0547152 + 0.0686106i
\(35\) 0.413938 0.519062i 0.0699683 0.0877375i
\(36\) 0.443503 + 1.94311i 0.0739172 + 0.323852i
\(37\) 2.78149 1.33950i 0.457275 0.220212i −0.191043 0.981582i \(-0.561187\pi\)
0.648318 + 0.761370i \(0.275473\pi\)
\(38\) −0.101193 + 0.0487322i −0.0164158 + 0.00790541i
\(39\) 0.808018 3.54016i 0.129386 0.566879i
\(40\) −0.577502 0.278110i −0.0913111 0.0439731i
\(41\) 5.28313 0.825086 0.412543 0.910938i \(-0.364641\pi\)
0.412543 + 0.910938i \(0.364641\pi\)
\(42\) −0.0257671 0.0124088i −0.00397595 0.00191472i
\(43\) −0.00526324 + 0.00659989i −0.000802636 + 0.00100647i −0.782233 0.622986i \(-0.785919\pi\)
0.781430 + 0.623993i \(0.214491\pi\)
\(44\) 3.01241 3.77744i 0.454138 0.569470i
\(45\) −1.73921 0.837560i −0.259266 0.124856i
\(46\) 0.288234 0.0424978
\(47\) 5.22270 + 2.51512i 0.761809 + 0.366868i 0.774105 0.633057i \(-0.218200\pi\)
−0.0122968 + 0.999924i \(0.503914\pi\)
\(48\) 0.880862 3.85931i 0.127141 0.557043i
\(49\) 6.20021 2.98586i 0.885745 0.426552i
\(50\) −0.0954221 + 0.0459528i −0.0134947 + 0.00649871i
\(51\) −1.36929 5.99926i −0.191739 0.840065i
\(52\) −4.51238 + 5.65834i −0.625754 + 0.784671i
\(53\) −2.58271 3.23861i −0.354762 0.444857i 0.572143 0.820154i \(-0.306112\pi\)
−0.926905 + 0.375297i \(0.877541\pi\)
\(54\) −0.0185039 + 0.0810709i −0.00251806 + 0.0110324i
\(55\) 1.04129 + 4.56219i 0.140408 + 0.615166i
\(56\) 0.0712023 + 0.0892849i 0.00951481 + 0.0119312i
\(57\) 1.35067 0.178901
\(58\) 0.00710697 + 0.447751i 0.000933191 + 0.0587926i
\(59\) 5.76819 0.750955 0.375477 0.926832i \(-0.377479\pi\)
0.375477 + 0.926832i \(0.377479\pi\)
\(60\) 2.39882 + 3.00802i 0.309686 + 0.388334i
\(61\) 1.38805 + 6.08144i 0.177722 + 0.778649i 0.982679 + 0.185316i \(0.0593310\pi\)
−0.804957 + 0.593333i \(0.797812\pi\)
\(62\) 0.203360 0.890979i 0.0258268 0.113154i
\(63\) 0.214434 + 0.268891i 0.0270161 + 0.0338771i
\(64\) −4.88474 + 6.12527i −0.610593 + 0.765659i
\(65\) −1.55978 6.83384i −0.193467 0.847634i
\(66\) 0.181619 0.0874630i 0.0223557 0.0107660i
\(67\) −9.92346 + 4.77889i −1.21234 + 0.583834i −0.927170 0.374642i \(-0.877766\pi\)
−0.285174 + 0.958476i \(0.592051\pi\)
\(68\) −2.72912 + 11.9570i −0.330954 + 1.45000i
\(69\) −3.12293 1.50393i −0.375957 0.181051i
\(70\) −0.0552076 −0.00659856
\(71\) −11.5818 5.57748i −1.37450 0.661925i −0.406682 0.913570i \(-0.633314\pi\)
−0.967820 + 0.251645i \(0.919029\pi\)
\(72\) 0.207029 0.259606i 0.0243986 0.0305948i
\(73\) 0.286311 0.359022i 0.0335102 0.0420204i −0.764794 0.644275i \(-0.777159\pi\)
0.798304 + 0.602254i \(0.205731\pi\)
\(74\) −0.231297 0.111387i −0.0268878 0.0129485i
\(75\) 1.27364 0.147067
\(76\) −2.42541 1.16802i −0.278214 0.133981i
\(77\) 0.185521 0.812820i 0.0211421 0.0926295i
\(78\) −0.272052 + 0.131013i −0.0308039 + 0.0148344i
\(79\) 11.2434 5.41452i 1.26498 0.609181i 0.323491 0.946231i \(-0.395143\pi\)
0.941487 + 0.337050i \(0.109429\pi\)
\(80\) −1.70040 7.44993i −0.190110 0.832927i
\(81\) 0.623490 0.781831i 0.0692766 0.0868702i
\(82\) −0.273913 0.343476i −0.0302487 0.0379306i
\(83\) −0.640518 + 2.80629i −0.0703060 + 0.308031i −0.997839 0.0657114i \(-0.979068\pi\)
0.927533 + 0.373742i \(0.121925\pi\)
\(84\) −0.152532 0.668285i −0.0166426 0.0729159i
\(85\) −7.40623 9.28712i −0.803318 1.00733i
\(86\) 0.000701966 0 7.56950e−5 0
\(87\) 2.25924 4.88834i 0.242216 0.524085i
\(88\) −0.804933 −0.0858061
\(89\) −7.62150 9.55706i −0.807878 1.01305i −0.999501 0.0315781i \(-0.989947\pi\)
0.191624 0.981468i \(-0.438625\pi\)
\(90\) 0.0357195 + 0.156498i 0.00376517 + 0.0164963i
\(91\) −0.277897 + 1.21755i −0.0291316 + 0.127634i
\(92\) 4.30733 + 5.40122i 0.449070 + 0.563116i
\(93\) −6.85222 + 8.59242i −0.710543 + 0.890992i
\(94\) −0.107263 0.469948i −0.0110633 0.0484715i
\(95\) 2.34911 1.13127i 0.241013 0.116066i
\(96\) −0.894908 + 0.430965i −0.0913362 + 0.0439852i
\(97\) 0.606191 2.65590i 0.0615494 0.269666i −0.934784 0.355215i \(-0.884408\pi\)
0.996334 + 0.0855498i \(0.0272647\pi\)
\(98\) −0.515584 0.248292i −0.0520818 0.0250813i
\(99\) −2.42414 −0.243636
\(100\) −2.28708 1.10140i −0.228708 0.110140i
\(101\) −11.3909 + 14.2838i −1.13344 + 1.42129i −0.240765 + 0.970583i \(0.577398\pi\)
−0.892673 + 0.450704i \(0.851173\pi\)
\(102\) −0.319041 + 0.400065i −0.0315898 + 0.0396124i
\(103\) 14.4782 + 6.97235i 1.42658 + 0.687006i 0.978359 0.206916i \(-0.0663425\pi\)
0.448224 + 0.893921i \(0.352057\pi\)
\(104\) 1.20573 0.118232
\(105\) 0.598158 + 0.288058i 0.0583742 + 0.0281115i
\(106\) −0.0766494 + 0.335823i −0.00744485 + 0.0326180i
\(107\) 14.5741 7.01851i 1.40893 0.678505i 0.433978 0.900923i \(-0.357110\pi\)
0.974951 + 0.222419i \(0.0713953\pi\)
\(108\) −1.79571 + 0.864767i −0.172792 + 0.0832123i
\(109\) −2.04709 8.96888i −0.196075 0.859063i −0.973245 0.229771i \(-0.926202\pi\)
0.777169 0.629292i \(-0.216655\pi\)
\(110\) 0.242618 0.304233i 0.0231327 0.0290075i
\(111\) 1.92485 + 2.41369i 0.182699 + 0.229097i
\(112\) −0.302950 + 1.32731i −0.0286261 + 0.125419i
\(113\) 4.50744 + 19.7484i 0.424024 + 1.85777i 0.508078 + 0.861311i \(0.330356\pi\)
−0.0840533 + 0.996461i \(0.526787\pi\)
\(114\) −0.0700281 0.0878124i −0.00655873 0.00822439i
\(115\) −6.69107 −0.623945
\(116\) −8.28421 + 6.82431i −0.769169 + 0.633621i
\(117\) 3.63120 0.335704
\(118\) −0.299062 0.375012i −0.0275309 0.0345227i
\(119\) 0.470934 + 2.06329i 0.0431704 + 0.189142i
\(120\) 0.142631 0.624908i 0.0130204 0.0570460i
\(121\) −3.19446 4.00573i −0.290406 0.364157i
\(122\) 0.323412 0.405546i 0.0292803 0.0367164i
\(123\) 1.17561 + 5.15067i 0.106001 + 0.464420i
\(124\) 19.7350 9.50389i 1.77226 0.853475i
\(125\) 10.9112 5.25455i 0.975926 0.469981i
\(126\) 0.00636395 0.0278823i 0.000566946 0.00248395i
\(127\) −8.61739 4.14992i −0.764670 0.368246i 0.0105441 0.999944i \(-0.496644\pi\)
−0.775214 + 0.631699i \(0.782358\pi\)
\(128\) 2.63803 0.233171
\(129\) −0.00760560 0.00366266i −0.000669636 0.000322480i
\(130\) −0.363425 + 0.455720i −0.0318745 + 0.0399693i
\(131\) 10.4762 13.1367i 0.915307 1.14776i −0.0733108 0.997309i \(-0.523356\pi\)
0.988618 0.150449i \(-0.0480721\pi\)
\(132\) 4.35306 + 2.09632i 0.378885 + 0.182461i
\(133\) −0.464530 −0.0402799
\(134\) 0.825193 + 0.397392i 0.0712859 + 0.0343295i
\(135\) 0.429550 1.88198i 0.0369697 0.161975i
\(136\) 1.84093 0.886543i 0.157858 0.0760204i
\(137\) 5.18170 2.49538i 0.442703 0.213194i −0.199234 0.979952i \(-0.563845\pi\)
0.641937 + 0.766757i \(0.278131\pi\)
\(138\) 0.0641381 + 0.281008i 0.00545980 + 0.0239209i
\(139\) 0.976909 1.22501i 0.0828603 0.103904i −0.738673 0.674064i \(-0.764547\pi\)
0.821534 + 0.570160i \(0.193119\pi\)
\(140\) −0.825014 1.03453i −0.0697264 0.0874341i
\(141\) −1.28990 + 5.65142i −0.108629 + 0.475935i
\(142\) 0.237864 + 1.04215i 0.0199611 + 0.0874552i
\(143\) −5.48830 6.88211i −0.458955 0.575511i
\(144\) 3.95856 0.329880
\(145\) −0.164981 10.3941i −0.0137009 0.863183i
\(146\) −0.0381857 −0.00316027
\(147\) 4.29068 + 5.38034i 0.353889 + 0.443763i
\(148\) −1.36919 5.99883i −0.112547 0.493101i
\(149\) −2.81077 + 12.3148i −0.230267 + 1.00887i 0.719151 + 0.694854i \(0.244531\pi\)
−0.949418 + 0.314014i \(0.898326\pi\)
\(150\) −0.0660341 0.0828042i −0.00539166 0.00676093i
\(151\) −6.40179 + 8.02760i −0.520971 + 0.653277i −0.970815 0.239831i \(-0.922908\pi\)
0.449844 + 0.893107i \(0.351480\pi\)
\(152\) 0.0997981 + 0.437244i 0.00809469 + 0.0354652i
\(153\) 5.54415 2.66992i 0.448218 0.215850i
\(154\) −0.0624632 + 0.0300807i −0.00503343 + 0.00242397i
\(155\) −4.72080 + 20.6832i −0.379184 + 1.66131i
\(156\) −6.52057 3.14014i −0.522064 0.251413i
\(157\) −3.78665 −0.302207 −0.151104 0.988518i \(-0.548283\pi\)
−0.151104 + 0.988518i \(0.548283\pi\)
\(158\) −0.934952 0.450249i −0.0743808 0.0358199i
\(159\) 2.58271 3.23861i 0.204822 0.256839i
\(160\) −1.19548 + 1.49908i −0.0945106 + 0.118513i
\(161\) 1.07405 + 0.517237i 0.0846473 + 0.0407640i
\(162\) −0.0831558 −0.00653334
\(163\) 5.47952 + 2.63880i 0.429189 + 0.206687i 0.635991 0.771696i \(-0.280591\pi\)
−0.206802 + 0.978383i \(0.566306\pi\)
\(164\) 2.34308 10.2657i 0.182964 0.801618i
\(165\) −4.21610 + 2.03037i −0.328223 + 0.158064i
\(166\) 0.215657 0.103855i 0.0167382 0.00806069i
\(167\) 1.70796 + 7.48305i 0.132166 + 0.579056i 0.997028 + 0.0770460i \(0.0245488\pi\)
−0.864862 + 0.502010i \(0.832594\pi\)
\(168\) −0.0712023 + 0.0892849i −0.00549338 + 0.00688848i
\(169\) 0.115724 + 0.145113i 0.00890183 + 0.0111625i
\(170\) −0.219802 + 0.963014i −0.0168580 + 0.0738598i
\(171\) 0.300553 + 1.31681i 0.0229839 + 0.100699i
\(172\) 0.0104901 + 0.0131541i 0.000799861 + 0.00100299i
\(173\) −14.9932 −1.13991 −0.569956 0.821675i \(-0.693040\pi\)
−0.569956 + 0.821675i \(0.693040\pi\)
\(174\) −0.434944 + 0.106563i −0.0329730 + 0.00807851i
\(175\) −0.438036 −0.0331124
\(176\) −5.98308 7.50255i −0.450992 0.565526i
\(177\) 1.28354 + 5.62357i 0.0964771 + 0.422694i
\(178\) −0.226191 + 0.991006i −0.0169537 + 0.0742790i
\(179\) −10.0259 12.5720i −0.749369 0.939679i 0.250225 0.968188i \(-0.419495\pi\)
−0.999594 + 0.0285091i \(0.990924\pi\)
\(180\) −2.39882 + 3.00802i −0.178797 + 0.224205i
\(181\) 1.26245 + 5.53117i 0.0938375 + 0.411129i 0.999929 0.0119539i \(-0.00380512\pi\)
−0.906091 + 0.423083i \(0.860948\pi\)
\(182\) 0.0935655 0.0450588i 0.00693554 0.00333998i
\(183\) −5.62010 + 2.70650i −0.415450 + 0.200070i
\(184\) 0.256109 1.12209i 0.0188806 0.0827213i
\(185\) 5.36933 + 2.58573i 0.394761 + 0.190107i
\(186\) 0.913892 0.0670098
\(187\) −13.4398 6.47228i −0.982817 0.473300i
\(188\) 7.20344 9.03283i 0.525365 0.658787i
\(189\) −0.214434 + 0.268891i −0.0155978 + 0.0195590i
\(190\) −0.195342 0.0940716i −0.0141716 0.00682467i
\(191\) 0.636893 0.0460839 0.0230420 0.999734i \(-0.492665\pi\)
0.0230420 + 0.999734i \(0.492665\pi\)
\(192\) −7.05866 3.39927i −0.509415 0.245321i
\(193\) 2.52413 11.0589i 0.181691 0.796039i −0.799135 0.601152i \(-0.794709\pi\)
0.980826 0.194887i \(-0.0624341\pi\)
\(194\) −0.204099 + 0.0982890i −0.0146535 + 0.00705674i
\(195\) 6.31542 3.04135i 0.452257 0.217795i
\(196\) −3.05206 13.3720i −0.218004 0.955140i
\(197\) −10.5545 + 13.2349i −0.751976 + 0.942949i −0.999665 0.0258911i \(-0.991758\pi\)
0.247688 + 0.968840i \(0.420329\pi\)
\(198\) 0.125684 + 0.157603i 0.00893198 + 0.0112004i
\(199\) −1.93102 + 8.46037i −0.136887 + 0.599740i 0.859222 + 0.511603i \(0.170948\pi\)
−0.996108 + 0.0881362i \(0.971909\pi\)
\(200\) 0.0941063 + 0.412306i 0.00665432 + 0.0291545i
\(201\) −6.86725 8.61126i −0.484378 0.607391i
\(202\) 1.51922 0.106892
\(203\) −0.777008 + 1.68122i −0.0545353 + 0.117999i
\(204\) −12.2645 −0.858689
\(205\) 6.35862 + 7.97346i 0.444105 + 0.556891i
\(206\) −0.297351 1.30278i −0.0207174 0.0907689i
\(207\) 0.771301 3.37929i 0.0536091 0.234877i
\(208\) 8.96224 + 11.2383i 0.621419 + 0.779235i
\(209\) 2.04145 2.55989i 0.141210 0.177072i
\(210\) −0.0122848 0.0538234i −0.000847734 0.00371417i
\(211\) −11.4887 + 5.53267i −0.790916 + 0.380885i −0.785313 0.619099i \(-0.787498\pi\)
−0.00560320 + 0.999984i \(0.501784\pi\)
\(212\) −7.43843 + 3.58216i −0.510873 + 0.246024i
\(213\) 2.86046 12.5325i 0.195995 0.858712i
\(214\) −1.21192 0.583629i −0.0828451 0.0398961i
\(215\) −0.0162954 −0.00111134
\(216\) 0.299165 + 0.144070i 0.0203556 + 0.00980274i
\(217\) 2.35665 2.95515i 0.159980 0.200608i
\(218\) −0.476966 + 0.598096i −0.0323042 + 0.0405082i
\(219\) 0.413731 + 0.199242i 0.0279574 + 0.0134636i
\(220\) 9.32667 0.628804
\(221\) 20.1319 + 9.69502i 1.35422 + 0.652158i
\(222\) 0.0571257 0.250284i 0.00383403 0.0167980i
\(223\) −17.2436 + 8.30407i −1.15472 + 0.556082i −0.910447 0.413626i \(-0.864262\pi\)
−0.244268 + 0.969708i \(0.578548\pi\)
\(224\) 0.307781 0.148220i 0.0205645 0.00990334i
\(225\) 0.283411 + 1.24171i 0.0188941 + 0.0827804i
\(226\) 1.05022 1.31694i 0.0698597 0.0876013i
\(227\) −15.4320 19.3511i −1.02426 1.28438i −0.958060 0.286569i \(-0.907485\pi\)
−0.0661958 0.997807i \(-0.521086\pi\)
\(228\) 0.599028 2.62451i 0.0396716 0.173813i
\(229\) 4.32439 + 18.9464i 0.285764 + 1.25201i 0.890277 + 0.455419i \(0.150510\pi\)
−0.604514 + 0.796595i \(0.706632\pi\)
\(230\) 0.346910 + 0.435012i 0.0228746 + 0.0286838i
\(231\) 0.833724 0.0548550
\(232\) 1.74940 + 0.370180i 0.114854 + 0.0243035i
\(233\) 18.2842 1.19784 0.598918 0.800810i \(-0.295598\pi\)
0.598918 + 0.800810i \(0.295598\pi\)
\(234\) −0.188266 0.236078i −0.0123073 0.0154329i
\(235\) 2.48999 + 10.9094i 0.162429 + 0.711649i
\(236\) 2.55821 11.2083i 0.166525 0.729596i
\(237\) 7.78066 + 9.75663i 0.505408 + 0.633761i
\(238\) 0.109726 0.137592i 0.00711250 0.00891879i
\(239\) −1.82330 7.98840i −0.117939 0.516727i −0.999040 0.0437983i \(-0.986054\pi\)
0.881101 0.472928i \(-0.156803\pi\)
\(240\) 6.88477 3.31553i 0.444410 0.214017i
\(241\) 6.43502 3.09894i 0.414516 0.199620i −0.214989 0.976616i \(-0.568972\pi\)
0.629506 + 0.776996i \(0.283257\pi\)
\(242\) −0.0948052 + 0.415369i −0.00609431 + 0.0267009i
\(243\) 0.900969 + 0.433884i 0.0577972 + 0.0278337i
\(244\) 12.4325 0.795912
\(245\) 11.9688 + 5.76385i 0.764656 + 0.368239i
\(246\) 0.273913 0.343476i 0.0174641 0.0218993i
\(247\) −3.05795 + 3.83454i −0.194572 + 0.243986i
\(248\) −3.28786 1.58335i −0.208779 0.100543i
\(249\) −2.87846 −0.182415
\(250\) −0.907328 0.436946i −0.0573845 0.0276349i
\(251\) −0.516642 + 2.26356i −0.0326102 + 0.142874i −0.988612 0.150486i \(-0.951916\pi\)
0.956002 + 0.293360i \(0.0947735\pi\)
\(252\) 0.617588 0.297415i 0.0389044 0.0187354i
\(253\) −7.57044 + 3.64573i −0.475950 + 0.229205i
\(254\) 0.176982 + 0.775409i 0.0111048 + 0.0486535i
\(255\) 7.40623 9.28712i 0.463796 0.581582i
\(256\) 9.63271 + 12.0790i 0.602045 + 0.754940i
\(257\) 5.06951 22.2110i 0.316228 1.38548i −0.527884 0.849316i \(-0.677015\pi\)
0.844112 0.536167i \(-0.180128\pi\)
\(258\) 0.000156202 0 0.000684367i 9.72472e−6 0 4.26068e-5i
\(259\) −0.662005 0.830127i −0.0411350 0.0515816i
\(260\) −13.9707 −0.866426
\(261\) 5.26850 + 1.11484i 0.326112 + 0.0690067i
\(262\) −1.39722 −0.0863207
\(263\) −0.595714 0.747002i −0.0367333 0.0460621i 0.763126 0.646250i \(-0.223664\pi\)
−0.799859 + 0.600188i \(0.795092\pi\)
\(264\) −0.179114 0.784752i −0.0110237 0.0482981i
\(265\) 1.77934 7.79580i 0.109304 0.478892i
\(266\) 0.0240844 + 0.0302009i 0.00147671 + 0.00185173i
\(267\) 7.62150 9.55706i 0.466428 0.584883i
\(268\) 4.88484 + 21.4019i 0.298389 + 1.30733i
\(269\) −13.6464 + 6.57178i −0.832038 + 0.400688i −0.800879 0.598826i \(-0.795634\pi\)
−0.0311589 + 0.999514i \(0.509920\pi\)
\(270\) −0.144625 + 0.0696480i −0.00880163 + 0.00423864i
\(271\) 1.83597 8.04392i 0.111527 0.488633i −0.888055 0.459737i \(-0.847944\pi\)
0.999582 0.0288962i \(-0.00919922\pi\)
\(272\) 21.9468 + 10.5690i 1.33072 + 0.640842i
\(273\) −1.24886 −0.0755844
\(274\) −0.430889 0.207505i −0.0260309 0.0125358i
\(275\) 1.92502 2.41389i 0.116083 0.145563i
\(276\) −4.30733 + 5.40122i −0.259271 + 0.325115i
\(277\) −15.0761 7.26026i −0.905834 0.436227i −0.0778412 0.996966i \(-0.524803\pi\)
−0.827992 + 0.560739i \(0.810517\pi\)
\(278\) −0.130292 −0.00781439
\(279\) −9.90175 4.76843i −0.592802 0.285479i
\(280\) −0.0490544 + 0.214921i −0.00293156 + 0.0128440i
\(281\) 19.9509 9.60786i 1.19017 0.573157i 0.269313 0.963053i \(-0.413203\pi\)
0.920859 + 0.389896i \(0.127489\pi\)
\(282\) 0.434298 0.209147i 0.0258620 0.0124545i
\(283\) 3.92964 + 17.2169i 0.233593 + 1.02344i 0.946633 + 0.322314i \(0.104461\pi\)
−0.713040 + 0.701123i \(0.752682\pi\)
\(284\) −15.9742 + 20.0310i −0.947896 + 1.18862i
\(285\) 1.62563 + 2.03848i 0.0962941 + 0.120749i
\(286\) −0.162882 + 0.713631i −0.00963139 + 0.0421979i
\(287\) −0.404320 1.77144i −0.0238663 0.104565i
\(288\) −0.619296 0.776572i −0.0364924 0.0457600i
\(289\) 20.8661 1.22742
\(290\) −0.667206 + 0.549627i −0.0391797 + 0.0322752i
\(291\) 2.72420 0.159695
\(292\) −0.570642 0.715562i −0.0333943 0.0418751i
\(293\) −5.15017 22.5644i −0.300876 1.31823i −0.868808 0.495150i \(-0.835113\pi\)
0.567931 0.823076i \(-0.307744\pi\)
\(294\) 0.127339 0.557907i 0.00742654 0.0325378i
\(295\) 6.94243 + 8.70553i 0.404204 + 0.506856i
\(296\) −0.639144 + 0.801461i −0.0371495 + 0.0465840i
\(297\) −0.539423 2.36337i −0.0313005 0.137136i
\(298\) 0.946362 0.455744i 0.0548213 0.0264005i
\(299\) 11.3400 5.46105i 0.655809 0.315821i
\(300\) 0.564863 2.47483i 0.0326124 0.142884i
\(301\) 0.00261575 + 0.00125968i 0.000150770 + 7.26068e-5i
\(302\) 0.853817 0.0491317
\(303\) −16.4604 7.92689i −0.945623 0.455388i
\(304\) −3.33362 + 4.18023i −0.191196 + 0.239753i
\(305\) −7.50768 + 9.41434i −0.429889 + 0.539063i
\(306\) −0.461028 0.222020i −0.0263552 0.0126920i
\(307\) −22.9984 −1.31259 −0.656293 0.754506i \(-0.727876\pi\)
−0.656293 + 0.754506i \(0.727876\pi\)
\(308\) −1.49712 0.720977i −0.0853065 0.0410815i
\(309\) −3.57583 + 15.6667i −0.203422 + 0.891249i
\(310\) 1.58945 0.765439i 0.0902747 0.0434740i
\(311\) −3.67659 + 1.77055i −0.208480 + 0.100399i −0.535210 0.844719i \(-0.679768\pi\)
0.326730 + 0.945118i \(0.394053\pi\)
\(312\) 0.268301 + 1.17550i 0.0151895 + 0.0665497i
\(313\) 17.9270 22.4797i 1.01329 1.27063i 0.0509742 0.998700i \(-0.483767\pi\)
0.962318 0.271928i \(-0.0876612\pi\)
\(314\) 0.196325 + 0.246184i 0.0110793 + 0.0138930i
\(315\) −0.147733 + 0.647260i −0.00832380 + 0.0364689i
\(316\) −5.53457 24.2485i −0.311344 1.36409i
\(317\) 7.18877 + 9.01443i 0.403762 + 0.506301i 0.941594 0.336751i \(-0.109328\pi\)
−0.537832 + 0.843052i \(0.680757\pi\)
\(318\) −0.344459 −0.0193163
\(319\) −5.85005 11.6703i −0.327540 0.653409i
\(320\) −15.1236 −0.845434
\(321\) 10.0856 + 12.6469i 0.562922 + 0.705882i
\(322\) −0.0220587 0.0966455i −0.00122928 0.00538584i
\(323\) −1.84947 + 8.10304i −0.102907 + 0.450865i
\(324\) −1.24267 1.55826i −0.0690371 0.0865698i
\(325\) −2.88354 + 3.61584i −0.159950 + 0.200571i
\(326\) −0.112537 0.493058i −0.00623286 0.0273080i
\(327\) 8.28849 3.99153i 0.458354 0.220732i
\(328\) −1.58053 + 0.761142i −0.0872700 + 0.0420270i
\(329\) 0.443628 1.94366i 0.0244580 0.107158i
\(330\) 0.350593 + 0.168837i 0.0192995 + 0.00929416i
\(331\) 12.3038 0.676277 0.338139 0.941096i \(-0.390203\pi\)
0.338139 + 0.941096i \(0.390203\pi\)
\(332\) 5.16888 + 2.48920i 0.283679 + 0.136613i
\(333\) −1.92485 + 2.41369i −0.105481 + 0.132269i
\(334\) 0.397950 0.499013i 0.0217748 0.0273048i
\(335\) −19.1560 9.22506i −1.04661 0.504019i
\(336\) −1.36145 −0.0742730
\(337\) −27.5590 13.2717i −1.50123 0.722956i −0.510640 0.859794i \(-0.670592\pi\)
−0.990593 + 0.136838i \(0.956306\pi\)
\(338\) 0.00343445 0.0150473i 0.000186809 0.000818465i
\(339\) −18.2503 + 8.78886i −0.991218 + 0.477345i
\(340\) −21.3306 + 10.2723i −1.15681 + 0.557093i
\(341\) 5.92832 + 25.9737i 0.321037 + 1.40655i
\(342\) 0.0700281 0.0878124i 0.00378668 0.00474835i
\(343\) −2.97671 3.73267i −0.160727 0.201545i
\(344\) 0.000623729 0.00273273i 3.36292e−5 0.000147339i
\(345\) −1.48890 6.52331i −0.0801598 0.351203i
\(346\) 0.777349 + 0.974765i 0.0417906 + 0.0524037i
\(347\) −2.30431 −0.123702 −0.0618508 0.998085i \(-0.519700\pi\)
−0.0618508 + 0.998085i \(0.519700\pi\)
\(348\) −8.49662 6.55795i −0.455467 0.351543i
\(349\) 9.12305 0.488345 0.244173 0.969732i \(-0.421484\pi\)
0.244173 + 0.969732i \(0.421484\pi\)
\(350\) 0.0227108 + 0.0284784i 0.00121394 + 0.00152223i
\(351\) 0.808018 + 3.54016i 0.0431288 + 0.188960i
\(352\) −0.535795 + 2.34747i −0.0285579 + 0.125121i
\(353\) −9.08165 11.3880i −0.483368 0.606124i 0.479020 0.877804i \(-0.340992\pi\)
−0.962388 + 0.271680i \(0.912421\pi\)
\(354\) 0.299062 0.375012i 0.0158950 0.0199317i
\(355\) −5.52177 24.1924i −0.293065 1.28400i
\(356\) −21.9506 + 10.5709i −1.16338 + 0.560255i
\(357\) −1.90677 + 0.918253i −0.100917 + 0.0485991i
\(358\) −0.297547 + 1.30364i −0.0157259 + 0.0688995i
\(359\) −3.37960 1.62753i −0.178368 0.0858976i 0.342569 0.939493i \(-0.388703\pi\)
−0.520937 + 0.853595i \(0.674417\pi\)
\(360\) 0.640979 0.0337825
\(361\) 15.4748 + 7.45225i 0.814461 + 0.392224i
\(362\) 0.294148 0.368851i 0.0154601 0.0193864i
\(363\) 3.19446 4.00573i 0.167666 0.210246i
\(364\) 2.24259 + 1.07997i 0.117543 + 0.0566060i
\(365\) 0.886443 0.0463986
\(366\) 0.467344 + 0.225061i 0.0244285 + 0.0117641i
\(367\) −3.10389 + 13.5990i −0.162022 + 0.709864i 0.827013 + 0.562182i \(0.190038\pi\)
−0.989035 + 0.147681i \(0.952819\pi\)
\(368\) 12.3623 5.95338i 0.644430 0.310341i
\(369\) −4.75993 + 2.29226i −0.247792 + 0.119330i
\(370\) −0.110274 0.483143i −0.00573288 0.0251174i
\(371\) −0.888257 + 1.11384i −0.0461160 + 0.0578276i
\(372\) 13.6571 + 17.1254i 0.708086 + 0.887912i
\(373\) 1.70453 7.46802i 0.0882571 0.386679i −0.911436 0.411441i \(-0.865026\pi\)
0.999693 + 0.0247617i \(0.00788271\pi\)
\(374\) 0.276024 + 1.20934i 0.0142729 + 0.0625335i
\(375\) 7.55077 + 9.46837i 0.389920 + 0.488944i
\(376\) −1.92480 −0.0992641
\(377\) 8.76297 + 17.4812i 0.451316 + 0.900329i
\(378\) 0.0285993 0.00147099
\(379\) −7.83725 9.82760i −0.402573 0.504810i 0.538681 0.842510i \(-0.318923\pi\)
−0.941254 + 0.337700i \(0.890351\pi\)
\(380\) −1.15635 5.06630i −0.0593195 0.259896i
\(381\) 2.12832 9.32478i 0.109037 0.477723i
\(382\) −0.0330208 0.0414068i −0.00168949 0.00211856i
\(383\) 14.6837 18.4128i 0.750305 0.940852i −0.249315 0.968422i \(-0.580206\pi\)
0.999620 + 0.0275703i \(0.00877700\pi\)
\(384\) 0.587018 + 2.57189i 0.0299561 + 0.131246i
\(385\) 1.45002 0.698293i 0.0738999 0.0355883i
\(386\) −0.849851 + 0.409267i −0.0432563 + 0.0208311i
\(387\) 0.00187843 0.00822993i 9.54859e−5 0.000418351i
\(388\) −4.89187 2.35580i −0.248347 0.119598i
\(389\) −21.2485 −1.07734 −0.538671 0.842516i \(-0.681073\pi\)
−0.538671 + 0.842516i \(0.681073\pi\)
\(390\) −0.525164 0.252906i −0.0265927 0.0128064i
\(391\) 13.2986 16.6760i 0.672542 0.843340i
\(392\) −1.42471 + 1.78653i −0.0719588 + 0.0902335i
\(393\) 15.1385 + 7.29032i 0.763636 + 0.367748i
\(394\) 1.40767 0.0709173
\(395\) 21.7040 + 10.4521i 1.09204 + 0.525901i
\(396\) −1.07512 + 4.71039i −0.0540266 + 0.236706i
\(397\) −13.2705 + 6.39072i −0.666026 + 0.320741i −0.736171 0.676796i \(-0.763368\pi\)
0.0701450 + 0.997537i \(0.477654\pi\)
\(398\) 0.650158 0.313100i 0.0325895 0.0156943i
\(399\) −0.103368 0.452883i −0.00517486 0.0226725i
\(400\) −3.14350 + 3.94182i −0.157175 + 0.197091i
\(401\) −7.87447 9.87428i −0.393233 0.493098i 0.545323 0.838226i \(-0.316407\pi\)
−0.938556 + 0.345128i \(0.887836\pi\)
\(402\) −0.203806 + 0.892932i −0.0101649 + 0.0445354i
\(403\) −8.88021 38.9067i −0.442355 1.93808i
\(404\) 22.7031 + 28.4688i 1.12952 + 1.41637i
\(405\) 1.93038 0.0959213
\(406\) 0.149588 0.0366496i 0.00742393 0.00181889i
\(407\) 7.48388 0.370962
\(408\) 1.27396 + 1.59750i 0.0630704 + 0.0790878i
\(409\) 7.51172 + 32.9110i 0.371430 + 1.62734i 0.722766 + 0.691093i \(0.242871\pi\)
−0.351335 + 0.936250i \(0.614272\pi\)
\(410\) 0.188711 0.826797i 0.00931977 0.0408326i
\(411\) 3.58585 + 4.49651i 0.176877 + 0.221797i
\(412\) 19.9692 25.0406i 0.983812 1.23366i
\(413\) −0.441443 1.93409i −0.0217220 0.0951702i
\(414\) −0.259690 + 0.125060i −0.0127631 + 0.00614637i
\(415\) −5.00625 + 2.41088i −0.245747 + 0.118346i
\(416\) 0.802583 3.51634i 0.0393499 0.172403i
\(417\) 1.41167 + 0.679827i 0.0691300 + 0.0332912i
\(418\) −0.272271 −0.0133172
\(419\) 22.2013 + 10.6916i 1.08461 + 0.522319i 0.888787 0.458321i \(-0.151549\pi\)
0.195819 + 0.980640i \(0.437263\pi\)
\(420\) 0.825014 1.03453i 0.0402565 0.0504801i
\(421\) 7.64133 9.58193i 0.372416 0.466995i −0.559942 0.828532i \(-0.689177\pi\)
0.932358 + 0.361537i \(0.117748\pi\)
\(422\) 0.955354 + 0.460074i 0.0465059 + 0.0223961i
\(423\) −5.79676 −0.281848
\(424\) 1.23924 + 0.596788i 0.0601830 + 0.0289826i
\(425\) −1.74398 + 7.64090i −0.0845957 + 0.370638i
\(426\) −0.963090 + 0.463800i −0.0466619 + 0.0224712i
\(427\) 1.93289 0.930832i 0.0935392 0.0450461i
\(428\) −7.17411 31.4318i −0.346774 1.51931i
\(429\) 5.48830 6.88211i 0.264978 0.332272i
\(430\) 0.000844866 0.00105943i 4.07431e−5 5.10902e-5i
\(431\) 1.86817 8.18500i 0.0899867 0.394257i −0.909797 0.415053i \(-0.863763\pi\)
0.999784 + 0.0207960i \(0.00662003\pi\)
\(432\) 0.880862 + 3.85931i 0.0423805 + 0.185681i
\(433\) 5.76203 + 7.22535i 0.276905 + 0.347228i 0.900764 0.434309i \(-0.143007\pi\)
−0.623859 + 0.781537i \(0.714436\pi\)
\(434\) −0.314310 −0.0150874
\(435\) 10.0968 2.47375i 0.484104 0.118607i
\(436\) −18.3354 −0.878108
\(437\) 2.91899 + 3.66030i 0.139634 + 0.175096i
\(438\) −0.00849712 0.0372283i −0.000406008 0.00177884i
\(439\) −3.87697 + 16.9861i −0.185038 + 0.810704i 0.794146 + 0.607727i \(0.207919\pi\)
−0.979184 + 0.202976i \(0.934939\pi\)
\(440\) −0.968794 1.21483i −0.0461854 0.0579147i
\(441\) −4.29068 + 5.38034i −0.204318 + 0.256207i
\(442\) −0.413465 1.81151i −0.0196665 0.0861647i
\(443\) −26.1256 + 12.5814i −1.24127 + 0.597762i −0.935156 0.354235i \(-0.884741\pi\)
−0.306109 + 0.951997i \(0.599027\pi\)
\(444\) 5.54375 2.66973i 0.263095 0.126700i
\(445\) 5.25079 23.0052i 0.248911 1.09055i
\(446\) 1.43390 + 0.690532i 0.0678973 + 0.0326976i
\(447\) −12.6315 −0.597449
\(448\) 2.42765 + 1.16909i 0.114696 + 0.0552345i
\(449\) −8.67883 + 10.8829i −0.409579 + 0.513596i −0.943244 0.332100i \(-0.892243\pi\)
0.533665 + 0.845696i \(0.320814\pi\)
\(450\) 0.0660341 0.0828042i 0.00311288 0.00390343i
\(451\) 11.5388 + 5.55678i 0.543339 + 0.261658i
\(452\) 40.3724 1.89896
\(453\) −9.25086 4.45498i −0.434643 0.209313i
\(454\) −0.457989 + 2.00658i −0.0214945 + 0.0941736i
\(455\) −2.17203 + 1.04599i −0.101826 + 0.0490370i
\(456\) −0.404074 + 0.194592i −0.0189225 + 0.00911260i
\(457\) 0.222385 + 0.974330i 0.0104027 + 0.0455773i 0.979863 0.199672i \(-0.0639875\pi\)
−0.969460 + 0.245249i \(0.921130\pi\)
\(458\) 1.00757 1.26346i 0.0470807 0.0590374i
\(459\) 3.83667 + 4.81103i 0.179080 + 0.224560i
\(460\) −2.96751 + 13.0015i −0.138361 + 0.606198i
\(461\) −3.45431 15.1343i −0.160883 0.704876i −0.989437 0.144966i \(-0.953693\pi\)
0.828553 0.559910i \(-0.189164\pi\)
\(462\) −0.0432259 0.0542036i −0.00201105 0.00252178i
\(463\) 35.8295 1.66514 0.832568 0.553923i \(-0.186870\pi\)
0.832568 + 0.553923i \(0.186870\pi\)
\(464\) 9.55296 + 19.0572i 0.443485 + 0.884708i
\(465\) −21.2151 −0.983826
\(466\) −0.947976 1.18872i −0.0439141 0.0550666i
\(467\) 0.929323 + 4.07163i 0.0430039 + 0.188413i 0.991868 0.127273i \(-0.0406225\pi\)
−0.948864 + 0.315686i \(0.897765\pi\)
\(468\) 1.61045 7.05583i 0.0744430 0.326156i
\(469\) 2.36182 + 2.96163i 0.109059 + 0.136755i
\(470\) 0.580162 0.727500i 0.0267609 0.0335571i
\(471\) −0.842608 3.69171i −0.0388253 0.170105i
\(472\) −1.72564 + 0.831026i −0.0794291 + 0.0382510i
\(473\) −0.0184371 + 0.00887883i −0.000847738 + 0.000408249i
\(474\) 0.230914 1.01170i 0.0106062 0.0464689i
\(475\) −1.54991 0.746397i −0.0711148 0.0342471i
\(476\) 4.21808 0.193335
\(477\) 3.73212 + 1.79729i 0.170882 + 0.0822924i
\(478\) −0.424824 + 0.532713i −0.0194310 + 0.0243657i
\(479\) −11.5627 + 14.4992i −0.528315 + 0.662486i −0.972351 0.233523i \(-0.924975\pi\)
0.444037 + 0.896009i \(0.353546\pi\)
\(480\) −1.72751 0.831926i −0.0788498 0.0379720i
\(481\) −11.2103 −0.511147
\(482\) −0.535109 0.257695i −0.0243736 0.0117377i
\(483\) −0.265269 + 1.16222i −0.0120702 + 0.0528829i
\(484\) −9.20035 + 4.43065i −0.418198 + 0.201393i
\(485\) 4.73796 2.28168i 0.215140 0.103606i
\(486\) −0.0185039 0.0810709i −0.000839354 0.00367745i
\(487\) 12.1972 15.2948i 0.552708 0.693074i −0.424483 0.905436i \(-0.639544\pi\)
0.977191 + 0.212362i \(0.0681157\pi\)
\(488\) −1.29141 1.61938i −0.0584595 0.0733058i
\(489\) −1.35333 + 5.92933i −0.0611997 + 0.268133i
\(490\) −0.245812 1.07697i −0.0111046 0.0486526i
\(491\) 1.49134 + 1.87008i 0.0673030 + 0.0843953i 0.814343 0.580383i \(-0.197097\pi\)
−0.747040 + 0.664779i \(0.768526\pi\)
\(492\) 10.5297 0.474717
\(493\) 26.2329 + 20.2473i 1.18147 + 0.911894i
\(494\) 0.407843 0.0183497
\(495\) −2.91763 3.65859i −0.131138 0.164442i
\(496\) −9.68078 42.4142i −0.434680 1.90446i
\(497\) −0.983782 + 4.31023i −0.0441287 + 0.193340i
\(498\) 0.149239 + 0.187140i 0.00668756 + 0.00838594i
\(499\) −10.8423 + 13.5958i −0.485367 + 0.608631i −0.962859 0.270005i \(-0.912974\pi\)
0.477492 + 0.878636i \(0.341546\pi\)
\(500\) −5.37104 23.5321i −0.240200 1.05239i
\(501\) −6.91538 + 3.33027i −0.308957 + 0.148786i
\(502\) 0.173949 0.0837693i 0.00776371 0.00373881i
\(503\) −4.48348 + 19.6434i −0.199909 + 0.875857i 0.771081 + 0.636737i \(0.219716\pi\)
−0.970990 + 0.239120i \(0.923141\pi\)
\(504\) −0.102890 0.0495494i −0.00458310 0.00220710i
\(505\) −35.2673 −1.56937
\(506\) 0.629526 + 0.303164i 0.0279858 + 0.0134773i
\(507\) −0.115724 + 0.145113i −0.00513947 + 0.00644470i
\(508\) −11.8856 + 14.9041i −0.527338 + 0.661261i
\(509\) −26.0740 12.5566i −1.15571 0.556560i −0.244964 0.969532i \(-0.578776\pi\)
−0.910743 + 0.412973i \(0.864491\pi\)
\(510\) −0.987780 −0.0437396
\(511\) −0.142292 0.0685244i −0.00629465 0.00303134i
\(512\) 1.45991 6.39630i 0.0645197 0.282679i
\(513\) −1.21691 + 0.586035i −0.0537281 + 0.0258741i
\(514\) −1.70686 + 0.821980i −0.0752863 + 0.0362560i
\(515\) 6.90270 + 30.2427i 0.304169 + 1.33265i
\(516\) −0.0104901 + 0.0131541i −0.000461800 + 0.000579079i
\(517\) 8.76139 + 10.9864i 0.385325 + 0.483183i
\(518\) −0.0196469 + 0.0860789i −0.000863237 + 0.00378209i
\(519\) −3.33630 14.6173i −0.146447 0.641628i
\(520\) 1.45119 + 1.81973i 0.0636387 + 0.0798004i
\(521\) −3.28970 −0.144125 −0.0720623 0.997400i \(-0.522958\pi\)
−0.0720623 + 0.997400i \(0.522958\pi\)
\(522\) −0.200675 0.400326i −0.00878331 0.0175218i
\(523\) −0.291341 −0.0127395 −0.00636974 0.999980i \(-0.502028\pi\)
−0.00636974 + 0.999980i \(0.502028\pi\)
\(524\) −20.8799 26.1826i −0.912142 1.14379i
\(525\) −0.0974722 0.427054i −0.00425404 0.0186382i
\(526\) −0.0176796 + 0.0774593i −0.000770867 + 0.00337739i
\(527\) −42.1655 52.8738i −1.83676 2.30322i
\(528\) 5.98308 7.50255i 0.260380 0.326506i
\(529\) 2.44450 + 10.7101i 0.106283 + 0.465655i
\(530\) −0.599088 + 0.288505i −0.0260227 + 0.0125319i
\(531\) −5.19696 + 2.50273i −0.225529 + 0.108609i
\(532\) −0.206021 + 0.902635i −0.00893212 + 0.0391342i
\(533\) −17.2843 8.32367i −0.748665 0.360538i
\(534\) −1.01649 −0.0439879
\(535\) 28.1335 + 13.5484i 1.21632 + 0.585747i
\(536\) 2.28026 2.85935i 0.0984921 0.123505i
\(537\) 10.0259 12.5720i 0.432648 0.542524i
\(538\) 1.13478 + 0.546482i 0.0489239 + 0.0235605i
\(539\) 16.6823 0.718556
\(540\) −3.46640 1.66933i −0.149170 0.0718364i
\(541\) −6.15415 + 26.9631i −0.264588 + 1.15923i 0.651625 + 0.758542i \(0.274088\pi\)
−0.916212 + 0.400693i \(0.868769\pi\)
\(542\) −0.618155 + 0.297688i −0.0265520 + 0.0127868i
\(543\) −5.11157 + 2.46160i −0.219359 + 0.105638i
\(544\) −1.36008 5.95891i −0.0583130 0.255486i
\(545\) 11.0723 13.8842i 0.474285 0.594734i
\(546\) 0.0647494 + 0.0811931i 0.00277102 + 0.00347475i
\(547\) −1.12752 + 4.93998i −0.0482091 + 0.211218i −0.993296 0.115602i \(-0.963120\pi\)
0.945086 + 0.326821i \(0.105977\pi\)
\(548\) −2.55070 11.1754i −0.108961 0.477387i
\(549\) −3.88923 4.87694i −0.165988 0.208143i
\(550\) −0.256742 −0.0109475
\(551\) −5.61404 + 4.62469i −0.239166 + 0.197019i
\(552\) 1.15094 0.0489874
\(553\) −2.67596 3.35555i −0.113793 0.142692i
\(554\) 0.309629 + 1.35657i 0.0131549 + 0.0576353i
\(555\) −1.32612 + 5.81009i −0.0562905 + 0.246625i
\(556\) −1.94706 2.44154i −0.0825739 0.103544i
\(557\) 10.0780 12.6374i 0.427019 0.535465i −0.521051 0.853525i \(-0.674460\pi\)
0.948070 + 0.318060i \(0.103031\pi\)
\(558\) 0.203360 + 0.890979i 0.00860892 + 0.0377181i
\(559\) 0.0276175 0.0132999i 0.00116809 0.000562524i
\(560\) −2.36784 + 1.14029i −0.100060 + 0.0481862i
\(561\) 3.31936 14.5431i 0.140144 0.614009i
\(562\) −1.65904 0.798949i −0.0699822 0.0337016i
\(563\) 7.45712 0.314280 0.157140 0.987576i \(-0.449773\pi\)
0.157140 + 0.987576i \(0.449773\pi\)
\(564\) 10.4093 + 5.01284i 0.438310 + 0.211079i
\(565\) −24.3799 + 30.5714i −1.02567 + 1.28615i
\(566\) 0.915595 1.14812i 0.0384853 0.0482591i
\(567\) −0.309866 0.149223i −0.0130131 0.00626679i
\(568\) 4.26841 0.179098
\(569\) −15.8967 7.65544i −0.666424 0.320933i 0.0699080 0.997553i \(-0.477729\pi\)
−0.736332 + 0.676621i \(0.763444\pi\)
\(570\) 0.0482454 0.211377i 0.00202078 0.00885361i
\(571\) −26.3470 + 12.6880i −1.10259 + 0.530978i −0.894471 0.447126i \(-0.852448\pi\)
−0.208116 + 0.978104i \(0.566733\pi\)
\(572\) −15.8068 + 7.61216i −0.660916 + 0.318280i
\(573\) 0.141722 + 0.620924i 0.00592052 + 0.0259395i
\(574\) −0.0942056 + 0.118130i −0.00393206 + 0.00493065i
\(575\) 2.75251 + 3.45154i 0.114788 + 0.143939i
\(576\) 1.74334 7.63809i 0.0726394 0.318254i
\(577\) 3.80051 + 16.6511i 0.158217 + 0.693196i 0.990347 + 0.138614i \(0.0442647\pi\)
−0.832129 + 0.554582i \(0.812878\pi\)
\(578\) −1.08184 1.35658i −0.0449986 0.0564265i
\(579\) 11.3433 0.471412
\(580\) −20.2701 4.28924i −0.841670 0.178101i
\(581\) 0.989975 0.0410711
\(582\) −0.141241 0.177111i −0.00585463 0.00734147i
\(583\) −2.23447 9.78986i −0.0925424 0.405455i
\(584\) −0.0339297 + 0.148656i −0.00140402 + 0.00615142i
\(585\) 4.37041 + 5.48032i 0.180694 + 0.226583i
\(586\) −1.19998 + 1.50472i −0.0495706 + 0.0621596i
\(587\) 7.58007 + 33.2104i 0.312863 + 1.37074i 0.849794 + 0.527115i \(0.176726\pi\)
−0.536931 + 0.843626i \(0.680416\pi\)
\(588\) 12.3575 5.95108i 0.509617 0.245418i
\(589\) 13.3740 6.44059i 0.551067 0.265380i
\(590\) 0.206037 0.902708i 0.00848242 0.0371639i
\(591\) −15.2517 7.34482i −0.627370 0.302126i
\(592\) −12.2210 −0.502278
\(593\) 38.6075 + 18.5924i 1.58542 + 0.763499i 0.998921 0.0464494i \(-0.0147906\pi\)
0.586501 + 0.809948i \(0.300505\pi\)
\(594\) −0.125684 + 0.157603i −0.00515688 + 0.00646653i
\(595\) −2.54719 + 3.19407i −0.104424 + 0.130944i
\(596\) 22.6825 + 10.9233i 0.929110 + 0.447436i
\(597\) −8.67794 −0.355164
\(598\) −0.942986 0.454118i −0.0385616 0.0185703i
\(599\) −1.26691 + 5.55071i −0.0517646 + 0.226796i −0.994193 0.107613i \(-0.965679\pi\)
0.942428 + 0.334408i \(0.108536\pi\)
\(600\) −0.381028 + 0.183494i −0.0155554 + 0.00749110i
\(601\) 8.07342 3.88796i 0.329322 0.158593i −0.261915 0.965091i \(-0.584354\pi\)
0.591237 + 0.806498i \(0.298640\pi\)
\(602\) −5.37218e−5 0 0.000235371i −2.18954e−6 0 9.59299e-6i
\(603\) 6.86725 8.61126i 0.279656 0.350678i
\(604\) 12.7593 + 15.9997i 0.519169 + 0.651018i
\(605\) 2.20081 9.64236i 0.0894755 0.392018i
\(606\) 0.338059 + 1.48113i 0.0137327 + 0.0601670i
\(607\) 17.6557 + 22.1395i 0.716621 + 0.898614i 0.998141 0.0609410i \(-0.0194101\pi\)
−0.281520 + 0.959555i \(0.590839\pi\)
\(608\) 1.34159 0.0544086
\(609\) −1.81197 0.383420i −0.0734247 0.0155370i
\(610\) 1.00131 0.0405419
\(611\) −13.1239 16.4569i −0.530938 0.665775i
\(612\) −2.72912 11.9570i −0.110318 0.483335i
\(613\) 7.12340 31.2097i 0.287712 1.26055i −0.599945 0.800041i \(-0.704811\pi\)
0.887657 0.460506i \(-0.152332\pi\)
\(614\) 1.19239 + 1.49521i 0.0481210 + 0.0603418i
\(615\) −6.35862 + 7.97346i −0.256404 + 0.321521i
\(616\) 0.0616019 + 0.269896i 0.00248201 + 0.0108744i
\(617\) 5.49638 2.64692i 0.221276 0.106561i −0.319962 0.947430i \(-0.603670\pi\)
0.541238 + 0.840870i \(0.317956\pi\)
\(618\) 1.20395 0.579791i 0.0484299 0.0233226i
\(619\) −0.158208 + 0.693153i −0.00635890 + 0.0278602i −0.978008 0.208568i \(-0.933120\pi\)
0.971649 + 0.236428i \(0.0759768\pi\)
\(620\) 38.0961 + 18.3461i 1.52998 + 0.736797i
\(621\) 3.46619 0.139094
\(622\) 0.305730 + 0.147232i 0.0122587 + 0.00590346i
\(623\) −2.62122 + 3.28691i −0.105017 + 0.131687i
\(624\) −8.96224 + 11.2383i −0.358777 + 0.449892i
\(625\) 15.3252 + 7.38021i 0.613006 + 0.295208i
\(626\) −2.39095 −0.0955615
\(627\) 2.94998 + 1.42063i 0.117811 + 0.0567347i
\(628\) −1.67939 + 7.35788i −0.0670149 + 0.293612i
\(629\) −17.1160 + 8.24265i −0.682461 + 0.328656i
\(630\) 0.0497403 0.0239537i 0.00198170 0.000954337i
\(631\) 6.02722 + 26.4070i 0.239940 + 1.05125i 0.941070 + 0.338212i \(0.109822\pi\)
−0.701130 + 0.713033i \(0.747321\pi\)
\(632\) −2.58355 + 3.23967i −0.102768 + 0.128867i
\(633\) −7.95044 9.96954i −0.316002 0.396253i
\(634\) 0.213348 0.934739i 0.00847313 0.0371232i
\(635\) −4.10846 18.0003i −0.163039 0.714322i
\(636\) −5.14755 6.45483i −0.204114 0.255951i
\(637\) −24.9889 −0.990095
\(638\) −0.455421 + 0.985399i −0.0180303 + 0.0390123i
\(639\) 12.8548 0.508527
\(640\) 3.17506 + 3.98140i 0.125505 + 0.157379i
\(641\) −6.11273 26.7816i −0.241438 1.05781i −0.939709 0.341976i \(-0.888904\pi\)
0.698270 0.715834i \(-0.253953\pi\)
\(642\) 0.299319 1.31140i 0.0118132 0.0517570i
\(643\) −16.5799 20.7905i −0.653848 0.819899i 0.338810 0.940855i \(-0.389976\pi\)
−0.992658 + 0.120956i \(0.961404\pi\)
\(644\) 1.48140 1.85761i 0.0583752 0.0732002i
\(645\) −0.00362608 0.0158869i −0.000142777 0.000625545i
\(646\) 0.622699 0.299876i 0.0244997 0.0117985i
\(647\) 21.9390 10.5653i 0.862510 0.415363i 0.0503045 0.998734i \(-0.483981\pi\)
0.812206 + 0.583371i \(0.198267\pi\)
\(648\) −0.0738877 + 0.323723i −0.00290258 + 0.0127170i
\(649\) 12.5982 + 6.06697i 0.494522 + 0.238149i
\(650\) 0.384582 0.0150846
\(651\) 3.40546 + 1.63998i 0.133470 + 0.0642760i
\(652\) 7.55767 9.47702i 0.295981 0.371149i
\(653\) 12.9368 16.2223i 0.506257 0.634826i −0.461371 0.887207i \(-0.652642\pi\)
0.967628 + 0.252381i \(0.0812137\pi\)
\(654\) −0.689236 0.331918i −0.0269513 0.0129790i
\(655\) 32.4351 1.26734
\(656\) −18.8425 9.07406i −0.735675 0.354283i
\(657\) −0.102183 + 0.447694i −0.00398654 + 0.0174662i
\(658\) −0.149366 + 0.0719307i −0.00582288 + 0.00280415i
\(659\) 12.0386 5.79749i 0.468958 0.225838i −0.184454 0.982841i \(-0.559052\pi\)
0.653411 + 0.757003i \(0.273337\pi\)
\(660\) 2.07538 + 9.09284i 0.0807841 + 0.353938i
\(661\) 21.5768 27.0564i 0.839240 1.05237i −0.158643 0.987336i \(-0.550712\pi\)
0.997883 0.0650374i \(-0.0207167\pi\)
\(662\) −0.637912 0.799916i −0.0247932 0.0310896i
\(663\) −4.97217 + 21.7845i −0.193103 + 0.846040i
\(664\) −0.212683 0.931825i −0.00825370 0.0361618i
\(665\) −0.559095 0.701083i −0.0216808 0.0271868i
\(666\) 0.256721 0.00994772
\(667\) 18.1298 4.44187i 0.701989 0.171990i
\(668\) 15.2979 0.591894
\(669\) −11.9329 14.9634i −0.461354 0.578519i
\(670\) 0.393423 + 1.72370i 0.0151992 + 0.0665922i
\(671\) −3.36483 + 14.7423i −0.129898 + 0.569120i
\(672\) 0.212991 + 0.267083i 0.00821632 + 0.0103029i
\(673\) 23.0254 28.8729i 0.887562 1.11297i −0.105387 0.994431i \(-0.533608\pi\)
0.992950 0.118537i \(-0.0378204\pi\)
\(674\) 0.566001 + 2.47981i 0.0218015 + 0.0955187i
\(675\) −1.14751 + 0.552611i −0.0441677 + 0.0212700i
\(676\) 0.333295 0.160506i 0.0128190 0.00617332i
\(677\) 0.875640 3.83643i 0.0336536 0.147446i −0.955310 0.295607i \(-0.904478\pi\)
0.988963 + 0.148161i \(0.0473353\pi\)
\(678\) 1.51761 + 0.730845i 0.0582836 + 0.0280679i
\(679\) −0.936920 −0.0359557
\(680\) 3.55368 + 1.71136i 0.136277 + 0.0656278i
\(681\) 15.4320 19.3511i 0.591354 0.741535i
\(682\) 1.38128 1.73207i 0.0528921 0.0663245i
\(683\) −3.50044 1.68572i −0.133941 0.0645024i 0.365713 0.930728i \(-0.380825\pi\)
−0.499654 + 0.866225i \(0.666539\pi\)
\(684\) 2.69201 0.102931
\(685\) 10.0026 + 4.81702i 0.382182 + 0.184049i
\(686\) −0.0883426 + 0.387054i −0.00337294 + 0.0147778i
\(687\) −17.5091 + 8.43194i −0.668014 + 0.321699i
\(688\) 0.0301072 0.0144989i 0.00114783 0.000552764i
\(689\) 3.34708 + 14.6645i 0.127514 + 0.558674i
\(690\) −0.346910 + 0.435012i −0.0132066 + 0.0165606i
\(691\) 4.78202 + 5.99646i 0.181917 + 0.228116i 0.864425 0.502761i \(-0.167683\pi\)
−0.682509 + 0.730877i \(0.739111\pi\)
\(692\) −6.64953 + 29.1335i −0.252777 + 1.10749i
\(693\) 0.185521 + 0.812820i 0.00704736 + 0.0308765i
\(694\) 0.119471 + 0.149812i 0.00453505 + 0.00568678i
\(695\) 3.02459 0.114729
\(696\) 0.0283787 + 1.78791i 0.00107569 + 0.0677705i
\(697\) −32.5100 −1.23140
\(698\) −0.473001 0.593124i −0.0179033 0.0224501i
\(699\) 4.06861 + 17.8257i 0.153889 + 0.674232i
\(700\) −0.194270 + 0.851154i −0.00734273 + 0.0321706i
\(701\) 24.5309 + 30.7608i 0.926520 + 1.16182i 0.986523 + 0.163621i \(0.0523174\pi\)
−0.0600034 + 0.998198i \(0.519111\pi\)
\(702\) 0.188266 0.236078i 0.00710564 0.00891019i
\(703\) −0.927874 4.06528i −0.0349954 0.153325i
\(704\) −17.1112 + 8.24033i −0.644903 + 0.310569i
\(705\) −10.0818 + 4.85513i −0.379702 + 0.182855i
\(706\) −0.269525 + 1.18087i −0.0101437 + 0.0444425i
\(707\) 5.66113 + 2.72625i 0.212909 + 0.102531i
\(708\) 11.4965 0.432065
\(709\) −33.8628 16.3075i −1.27175 0.612440i −0.328490 0.944508i \(-0.606540\pi\)
−0.943256 + 0.332067i \(0.892254\pi\)
\(710\) −1.28656 + 1.61329i −0.0482836 + 0.0605457i
\(711\) −7.78066 + 9.75663i −0.291797 + 0.365902i
\(712\) 3.65698 + 1.76111i 0.137051 + 0.0660003i
\(713\) −38.0939 −1.42663
\(714\) 0.158559 + 0.0763580i 0.00593392 + 0.00285763i
\(715\) 3.78113 16.5662i 0.141406 0.619542i
\(716\) −28.8754 + 13.9057i −1.07913 + 0.519679i
\(717\) 7.38239 3.55517i 0.275700 0.132770i
\(718\) 0.0694094 + 0.304102i 0.00259034 + 0.0113490i
\(719\) 2.88863 3.62223i 0.107728 0.135086i −0.725045 0.688702i \(-0.758181\pi\)
0.832772 + 0.553616i \(0.186752\pi\)
\(720\) 4.76441 + 5.97438i 0.177559 + 0.222652i
\(721\) 1.22982 5.38818i 0.0458007 0.200666i
\(722\) −0.317817 1.39245i −0.0118279 0.0518216i
\(723\) 4.45317 + 5.58410i 0.165615 + 0.207675i
\(724\) 11.3076 0.420244
\(725\) −5.29385 + 4.36093i −0.196609 + 0.161961i
\(726\) −0.426051 −0.0158122
\(727\) 3.43787 + 4.31095i 0.127503 + 0.159884i 0.841485 0.540280i \(-0.181682\pi\)
−0.713982 + 0.700164i \(0.753110\pi\)
\(728\) −0.0922753 0.404285i −0.00341995 0.0149838i
\(729\) −0.222521 + 0.974928i −0.00824152 + 0.0361084i
\(730\) −0.0459592 0.0576311i −0.00170103 0.00213302i
\(731\) 0.0323876 0.0406127i 0.00119790 0.00150212i
\(732\) 2.76650 + 12.1208i 0.102253 + 0.447999i
\(733\) −39.1400 + 18.8488i −1.44567 + 0.696197i −0.981837 0.189727i \(-0.939240\pi\)
−0.463831 + 0.885924i \(0.653525\pi\)
\(734\) 1.04505 0.503271i 0.0385736 0.0185761i
\(735\) −2.95604 + 12.9512i −0.109035 + 0.477714i
\(736\) −3.10193 1.49381i −0.114339 0.0550625i
\(737\) −26.7000 −0.983509
\(738\) 0.395816 + 0.190615i 0.0145702 + 0.00701664i
\(739\) 27.6111 34.6233i 1.01569 1.27364i 0.0542802 0.998526i \(-0.482714\pi\)
0.961412 0.275112i \(-0.0887150\pi\)
\(740\) 7.40569 9.28645i 0.272239 0.341377i
\(741\) −4.41886 2.12801i −0.162331 0.0781744i
\(742\) 0.118468 0.00434910
\(743\) 31.8973 + 15.3609i 1.17020 + 0.563538i 0.915041 0.403362i \(-0.132158\pi\)
0.255157 + 0.966900i \(0.417873\pi\)
\(744\) 0.812034 3.55775i 0.0297706 0.130434i
\(745\) −21.9688 + 10.5796i −0.804876 + 0.387608i
\(746\) −0.573899 + 0.276375i −0.0210119 + 0.0101188i
\(747\) −0.640518 2.80629i −0.0234353 0.102677i
\(748\) −18.5370 + 23.2446i −0.677779 + 0.849908i
\(749\) −3.46868 4.34959i −0.126743 0.158930i
\(750\) 0.224092 0.981809i 0.00818267 0.0358506i
\(751\) 0.791159 + 3.46629i 0.0288698 + 0.126487i 0.987309 0.158809i \(-0.0507654\pi\)
−0.958440 + 0.285296i \(0.907908\pi\)
\(752\) −14.3071 17.9405i −0.521726 0.654224i
\(753\) −2.32177 −0.0846100
\(754\) 0.682189 1.47606i 0.0248439 0.0537549i
\(755\) −19.8205 −0.721342
\(756\) 0.427384 + 0.535923i 0.0155438 + 0.0194913i
\(757\) −4.80769 21.0639i −0.174739 0.765580i −0.984005 0.178139i \(-0.942992\pi\)
0.809267 0.587441i \(-0.199865\pi\)
\(758\) −0.232594 + 1.01906i −0.00844818 + 0.0370139i
\(759\) −5.23891 6.56938i −0.190160 0.238453i
\(760\) −0.539788 + 0.676873i −0.0195802 + 0.0245528i
\(761\) −3.67857 16.1169i −0.133348 0.584236i −0.996809 0.0798205i \(-0.974565\pi\)
0.863461 0.504415i \(-0.168292\pi\)
\(762\) −0.716586 + 0.345090i −0.0259592 + 0.0125013i
\(763\) −2.85062 + 1.37278i −0.103199 + 0.0496981i
\(764\) 0.282464 1.23755i 0.0102192