Properties

Label 87.2.g.b.82.1
Level $87$
Weight $2$
Character 87.82
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 82.1
Root \(0.488787 - 2.14152i\) of defining polynomial
Character \(\chi\) \(=\) 87.82
Dual form 87.2.g.b.52.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36955 - 1.71736i) q^{2} +(0.222521 + 0.974928i) q^{3} +(-0.628623 + 2.75418i) q^{4} +(-2.54240 - 3.18806i) q^{5} +(1.36955 - 1.71736i) q^{6} +(-0.811607 - 3.55588i) q^{7} +(1.63274 - 0.786286i) q^{8} +(-0.900969 + 0.433884i) q^{9} +O(q^{10})\) \(q+(-1.36955 - 1.71736i) q^{2} +(0.222521 + 0.974928i) q^{3} +(-0.628623 + 2.75418i) q^{4} +(-2.54240 - 3.18806i) q^{5} +(1.36955 - 1.71736i) q^{6} +(-0.811607 - 3.55588i) q^{7} +(1.63274 - 0.786286i) q^{8} +(-0.900969 + 0.433884i) q^{9} +(-1.99312 + 8.73243i) q^{10} +(3.17840 + 1.53064i) q^{11} -2.82501 q^{12} +(-0.834784 - 0.402011i) q^{13} +(-4.99521 + 6.26379i) q^{14} +(2.54240 - 3.18806i) q^{15} +(1.50403 + 0.724302i) q^{16} +1.61861 q^{17} +(1.97906 + 0.953065i) q^{18} +(0.886987 - 3.88614i) q^{19} +(10.3787 - 4.99812i) q^{20} +(3.28613 - 1.58252i) q^{21} +(-1.72433 - 7.55476i) q^{22} +(0.963772 - 1.20853i) q^{23} +(1.12989 + 1.41684i) q^{24} +(-2.58737 + 11.3360i) q^{25} +(0.452881 + 1.98420i) q^{26} +(-0.623490 - 0.781831i) q^{27} +10.3037 q^{28} +(5.19154 + 1.43104i) q^{29} -8.95700 q^{30} +(-1.00241 - 1.25699i) q^{31} +(-1.62246 - 7.10847i) q^{32} +(-0.785001 + 3.43931i) q^{33} +(-2.21677 - 2.77975i) q^{34} +(-9.27296 + 11.6279i) q^{35} +(-0.628623 - 2.75418i) q^{36} +(4.77878 - 2.30134i) q^{37} +(-7.88869 + 3.79899i) q^{38} +(0.206175 - 0.903310i) q^{39} +(-6.65780 - 3.20623i) q^{40} -6.71590 q^{41} +(-7.21828 - 3.47614i) q^{42} +(2.76166 - 3.46301i) q^{43} +(-6.21367 + 7.79170i) q^{44} +(3.67387 + 1.76924i) q^{45} -3.39542 q^{46} +(-3.00732 - 1.44825i) q^{47} +(-0.371464 + 1.62749i) q^{48} +(-5.67882 + 2.73478i) q^{49} +(23.0116 - 11.0818i) q^{50} +(0.360175 + 1.57803i) q^{51} +(1.63197 - 2.04643i) q^{52} +(1.27081 + 1.59355i) q^{53} +(-0.488787 + 2.14152i) q^{54} +(-3.20099 - 14.0244i) q^{55} +(-4.12109 - 5.16768i) q^{56} +3.98608 q^{57} +(-4.65248 - 10.8756i) q^{58} +7.29049 q^{59} +(7.18229 + 9.00630i) q^{60} +(1.33636 + 5.85497i) q^{61} +(-0.785846 + 3.44302i) q^{62} +(2.27407 + 2.85160i) q^{63} +(-7.90414 + 9.91148i) q^{64} +(0.840715 + 3.68341i) q^{65} +(6.98165 - 3.36219i) q^{66} +(-8.54330 + 4.11424i) q^{67} +(-1.01750 + 4.45795i) q^{68} +(1.39269 + 0.670684i) q^{69} +32.6692 q^{70} +(-7.61102 - 3.66527i) q^{71} +(-1.12989 + 1.41684i) q^{72} +(4.71831 - 5.91657i) q^{73} +(-10.4970 - 5.05509i) q^{74} -11.6275 q^{75} +(10.1456 + 4.88584i) q^{76} +(2.86316 - 12.5443i) q^{77} +(-1.83368 + 0.883053i) q^{78} +(-0.259377 + 0.124909i) q^{79} +(-1.51471 - 6.63640i) q^{80} +(0.623490 - 0.781831i) q^{81} +(9.19777 + 11.5336i) q^{82} +(1.44139 - 6.31514i) q^{83} +(2.29280 + 10.0454i) q^{84} +(-4.11515 - 5.16024i) q^{85} -9.72949 q^{86} +(-0.239930 + 5.37982i) q^{87} +6.39303 q^{88} +(10.2934 + 12.9075i) q^{89} +(-1.99312 - 8.73243i) q^{90} +(-0.751987 + 3.29467i) q^{91} +(2.72266 + 3.41411i) q^{92} +(1.00241 - 1.25699i) q^{93} +(1.63151 + 7.14811i) q^{94} +(-14.6443 + 7.05234i) q^{95} +(6.56921 - 3.16357i) q^{96} +(-2.23682 + 9.80015i) q^{97} +(12.4740 + 6.00718i) q^{98} -3.52776 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36955 1.71736i −0.968419 1.21436i −0.976747 0.214394i \(-0.931222\pi\)
0.00832808 0.999965i \(-0.497349\pi\)
\(3\) 0.222521 + 0.974928i 0.128473 + 0.562875i
\(4\) −0.628623 + 2.75418i −0.314312 + 1.37709i
\(5\) −2.54240 3.18806i −1.13699 1.42575i −0.889547 0.456844i \(-0.848980\pi\)
−0.247447 0.968901i \(-0.579592\pi\)
\(6\) 1.36955 1.71736i 0.559117 0.701111i
\(7\) −0.811607 3.55588i −0.306759 1.34400i −0.859709 0.510784i \(-0.829355\pi\)
0.552951 0.833214i \(-0.313502\pi\)
\(8\) 1.63274 0.786286i 0.577261 0.277994i
\(9\) −0.900969 + 0.433884i −0.300323 + 0.144628i
\(10\) −1.99312 + 8.73243i −0.630280 + 2.76144i
\(11\) 3.17840 + 1.53064i 0.958325 + 0.461505i 0.846597 0.532234i \(-0.178647\pi\)
0.111728 + 0.993739i \(0.464362\pi\)
\(12\) −2.82501 −0.815510
\(13\) −0.834784 0.402011i −0.231527 0.111498i 0.314524 0.949250i \(-0.398155\pi\)
−0.546051 + 0.837752i \(0.683870\pi\)
\(14\) −4.99521 + 6.26379i −1.33503 + 1.67407i
\(15\) 2.54240 3.18806i 0.656444 0.823154i
\(16\) 1.50403 + 0.724302i 0.376007 + 0.181075i
\(17\) 1.61861 0.392571 0.196286 0.980547i \(-0.437112\pi\)
0.196286 + 0.980547i \(0.437112\pi\)
\(18\) 1.97906 + 0.953065i 0.466469 + 0.224640i
\(19\) 0.886987 3.88614i 0.203489 0.891542i −0.765304 0.643669i \(-0.777411\pi\)
0.968793 0.247873i \(-0.0797316\pi\)
\(20\) 10.3787 4.99812i 2.32075 1.11761i
\(21\) 3.28613 1.58252i 0.717093 0.345334i
\(22\) −1.72433 7.55476i −0.367627 1.61068i
\(23\) 0.963772 1.20853i 0.200960 0.251996i −0.671132 0.741338i \(-0.734192\pi\)
0.872092 + 0.489342i \(0.162763\pi\)
\(24\) 1.12989 + 1.41684i 0.230638 + 0.289211i
\(25\) −2.58737 + 11.3360i −0.517473 + 2.26720i
\(26\) 0.452881 + 1.98420i 0.0888173 + 0.389134i
\(27\) −0.623490 0.781831i −0.119991 0.150464i
\(28\) 10.3037 1.94722
\(29\) 5.19154 + 1.43104i 0.964046 + 0.265737i
\(30\) −8.95700 −1.63532
\(31\) −1.00241 1.25699i −0.180039 0.225762i 0.683620 0.729838i \(-0.260404\pi\)
−0.863659 + 0.504076i \(0.831833\pi\)
\(32\) −1.62246 7.10847i −0.286813 1.25661i
\(33\) −0.785001 + 3.43931i −0.136651 + 0.598708i
\(34\) −2.21677 2.77975i −0.380174 0.476723i
\(35\) −9.27296 + 11.6279i −1.56742 + 1.96548i
\(36\) −0.628623 2.75418i −0.104771 0.459030i
\(37\) 4.77878 2.30134i 0.785626 0.378338i 0.00233856 0.999997i \(-0.499256\pi\)
0.783287 + 0.621660i \(0.213541\pi\)
\(38\) −7.88869 + 3.79899i −1.27972 + 0.616278i
\(39\) 0.206175 0.903310i 0.0330143 0.144645i
\(40\) −6.65780 3.20623i −1.05269 0.506949i
\(41\) −6.71590 −1.04885 −0.524423 0.851458i \(-0.675719\pi\)
−0.524423 + 0.851458i \(0.675719\pi\)
\(42\) −7.21828 3.47614i −1.11381 0.536380i
\(43\) 2.76166 3.46301i 0.421149 0.528105i −0.525317 0.850906i \(-0.676053\pi\)
0.946467 + 0.322802i \(0.104625\pi\)
\(44\) −6.21367 + 7.79170i −0.936747 + 1.17464i
\(45\) 3.67387 + 1.76924i 0.547668 + 0.263743i
\(46\) −3.39542 −0.500628
\(47\) −3.00732 1.44825i −0.438663 0.211249i 0.201499 0.979489i \(-0.435419\pi\)
−0.640162 + 0.768240i \(0.721133\pi\)
\(48\) −0.371464 + 1.62749i −0.0536162 + 0.234908i
\(49\) −5.67882 + 2.73478i −0.811260 + 0.390682i
\(50\) 23.0116 11.0818i 3.25433 1.56720i
\(51\) 0.360175 + 1.57803i 0.0504346 + 0.220969i
\(52\) 1.63197 2.04643i 0.226314 0.283789i
\(53\) 1.27081 + 1.59355i 0.174560 + 0.218891i 0.861413 0.507905i \(-0.169580\pi\)
−0.686853 + 0.726796i \(0.741009\pi\)
\(54\) −0.488787 + 2.14152i −0.0665155 + 0.291424i
\(55\) −3.20099 14.0244i −0.431621 1.89106i
\(56\) −4.12109 5.16768i −0.550703 0.690560i
\(57\) 3.98608 0.527970
\(58\) −4.65248 10.8756i −0.610900 1.42804i
\(59\) 7.29049 0.949141 0.474571 0.880217i \(-0.342603\pi\)
0.474571 + 0.880217i \(0.342603\pi\)
\(60\) 7.18229 + 9.00630i 0.927229 + 1.16271i
\(61\) 1.33636 + 5.85497i 0.171103 + 0.749652i 0.985546 + 0.169408i \(0.0541856\pi\)
−0.814443 + 0.580244i \(0.802957\pi\)
\(62\) −0.785846 + 3.44302i −0.0998026 + 0.437264i
\(63\) 2.27407 + 2.85160i 0.286506 + 0.359268i
\(64\) −7.90414 + 9.91148i −0.988018 + 1.23893i
\(65\) 0.840715 + 3.68341i 0.104278 + 0.456871i
\(66\) 6.98165 3.36219i 0.859382 0.413857i
\(67\) −8.54330 + 4.11424i −1.04373 + 0.502634i −0.875553 0.483123i \(-0.839503\pi\)
−0.168178 + 0.985757i \(0.553788\pi\)
\(68\) −1.01750 + 4.45795i −0.123390 + 0.540606i
\(69\) 1.39269 + 0.670684i 0.167660 + 0.0807409i
\(70\) 32.6692 3.90471
\(71\) −7.61102 3.66527i −0.903262 0.434988i −0.0761959 0.997093i \(-0.524277\pi\)
−0.827066 + 0.562105i \(0.809992\pi\)
\(72\) −1.12989 + 1.41684i −0.133159 + 0.166976i
\(73\) 4.71831 5.91657i 0.552236 0.692482i −0.424865 0.905257i \(-0.639679\pi\)
0.977101 + 0.212775i \(0.0682500\pi\)
\(74\) −10.4970 5.05509i −1.22025 0.587643i
\(75\) −11.6275 −1.34263
\(76\) 10.1456 + 4.88584i 1.16377 + 0.560445i
\(77\) 2.86316 12.5443i 0.326287 1.42956i
\(78\) −1.83368 + 0.883053i −0.207623 + 0.0999860i
\(79\) −0.259377 + 0.124909i −0.0291822 + 0.0140534i −0.448418 0.893824i \(-0.648012\pi\)
0.419236 + 0.907877i \(0.362298\pi\)
\(80\) −1.51471 6.63640i −0.169350 0.741972i
\(81\) 0.623490 0.781831i 0.0692766 0.0868702i
\(82\) 9.19777 + 11.5336i 1.01572 + 1.27368i
\(83\) 1.44139 6.31514i 0.158213 0.693176i −0.832135 0.554573i \(-0.812882\pi\)
0.990348 0.138603i \(-0.0442613\pi\)
\(84\) 2.29280 + 10.0454i 0.250165 + 1.09604i
\(85\) −4.11515 5.16024i −0.446351 0.559707i
\(86\) −9.72949 −1.04916
\(87\) −0.239930 + 5.37982i −0.0257232 + 0.576777i
\(88\) 6.39303 0.681499
\(89\) 10.2934 + 12.9075i 1.09110 + 1.36819i 0.924062 + 0.382243i \(0.124848\pi\)
0.167036 + 0.985951i \(0.446580\pi\)
\(90\) −1.99312 8.73243i −0.210093 0.920479i
\(91\) −0.751987 + 3.29467i −0.0788296 + 0.345375i
\(92\) 2.72266 + 3.41411i 0.283857 + 0.355946i
\(93\) 1.00241 1.25699i 0.103945 0.130344i
\(94\) 1.63151 + 7.14811i 0.168277 + 0.737272i
\(95\) −14.6443 + 7.05234i −1.50248 + 0.723555i
\(96\) 6.56921 3.16357i 0.670467 0.322880i
\(97\) −2.23682 + 9.80015i −0.227115 + 0.995054i 0.724864 + 0.688892i \(0.241902\pi\)
−0.951979 + 0.306163i \(0.900955\pi\)
\(98\) 12.4740 + 6.00718i 1.26007 + 0.606817i
\(99\) −3.52776 −0.354554
\(100\) −29.5949 14.2521i −2.95949 1.42521i
\(101\) 5.13707 6.44168i 0.511158 0.640971i −0.457548 0.889185i \(-0.651272\pi\)
0.968705 + 0.248214i \(0.0798435\pi\)
\(102\) 2.21677 2.77975i 0.219493 0.275236i
\(103\) −6.87172 3.30925i −0.677091 0.326070i 0.0635423 0.997979i \(-0.479760\pi\)
−0.740634 + 0.671909i \(0.765474\pi\)
\(104\) −1.67908 −0.164647
\(105\) −13.3998 6.45301i −1.30769 0.629749i
\(106\) 0.996260 4.36490i 0.0967653 0.423957i
\(107\) 15.0981 7.27087i 1.45959 0.702902i 0.475360 0.879792i \(-0.342318\pi\)
0.984231 + 0.176890i \(0.0566037\pi\)
\(108\) 2.54524 1.22573i 0.244916 0.117945i
\(109\) 2.82860 + 12.3929i 0.270931 + 1.18702i 0.908917 + 0.416977i \(0.136910\pi\)
−0.637987 + 0.770047i \(0.720232\pi\)
\(110\) −19.7011 + 24.7045i −1.87843 + 2.35548i
\(111\) 3.30702 + 4.14687i 0.313888 + 0.393603i
\(112\) 1.35485 5.93600i 0.128022 0.560899i
\(113\) 1.88360 + 8.25259i 0.177194 + 0.776338i 0.982918 + 0.184046i \(0.0589196\pi\)
−0.805723 + 0.592292i \(0.798223\pi\)
\(114\) −5.45915 6.84555i −0.511296 0.641145i
\(115\) −6.30316 −0.587773
\(116\) −7.20486 + 13.3989i −0.668954 + 1.24405i
\(117\) 0.926540 0.0856587
\(118\) −9.98471 12.5204i −0.919167 1.15260i
\(119\) −1.31368 5.75560i −0.120425 0.527615i
\(120\) 1.64434 7.20433i 0.150107 0.657662i
\(121\) 0.901012 + 1.12983i 0.0819101 + 0.102712i
\(122\) 8.22489 10.3137i 0.744647 0.933758i
\(123\) −1.49443 6.54751i −0.134748 0.590370i
\(124\) 4.09211 1.97066i 0.367482 0.176970i
\(125\) 24.3486 11.7257i 2.17781 1.04878i
\(126\) 1.78277 7.81082i 0.158822 0.695843i
\(127\) 16.0419 + 7.72538i 1.42349 + 0.685516i 0.977775 0.209659i \(-0.0672354\pi\)
0.445715 + 0.895175i \(0.352950\pi\)
\(128\) 13.2642 1.17240
\(129\) 3.99072 + 1.92183i 0.351363 + 0.169207i
\(130\) 5.17436 6.48844i 0.453821 0.569074i
\(131\) 7.06407 8.85807i 0.617191 0.773933i −0.370755 0.928731i \(-0.620901\pi\)
0.987946 + 0.154798i \(0.0494726\pi\)
\(132\) −8.97902 4.32407i −0.781523 0.376362i
\(133\) −14.5386 −1.26065
\(134\) 18.7661 + 9.03729i 1.62115 + 0.780703i
\(135\) −0.907370 + 3.97545i −0.0780940 + 0.342152i
\(136\) 2.64278 1.27269i 0.226616 0.109133i
\(137\) −7.48927 + 3.60664i −0.639851 + 0.308136i −0.725534 0.688186i \(-0.758407\pi\)
0.0856826 + 0.996322i \(0.472693\pi\)
\(138\) −0.755553 3.31029i −0.0643169 0.281791i
\(139\) −1.94077 + 2.43365i −0.164614 + 0.206419i −0.857296 0.514824i \(-0.827857\pi\)
0.692682 + 0.721243i \(0.256429\pi\)
\(140\) −26.1962 32.8490i −2.21398 2.77624i
\(141\) 0.742747 3.25419i 0.0625506 0.274052i
\(142\) 4.12908 + 18.0907i 0.346504 + 1.51814i
\(143\) −2.03795 2.55550i −0.170422 0.213702i
\(144\) −1.66934 −0.139112
\(145\) −8.63673 20.1892i −0.717241 1.67662i
\(146\) −16.6229 −1.37572
\(147\) −3.92987 4.92790i −0.324130 0.406446i
\(148\) 3.33425 + 14.6083i 0.274073 + 1.20079i
\(149\) −3.37249 + 14.7758i −0.276285 + 1.21048i 0.626165 + 0.779691i \(0.284624\pi\)
−0.902450 + 0.430794i \(0.858234\pi\)
\(150\) 15.9245 + 19.9687i 1.30023 + 1.63044i
\(151\) 0.423281 0.530778i 0.0344461 0.0431941i −0.764310 0.644849i \(-0.776920\pi\)
0.798756 + 0.601655i \(0.205492\pi\)
\(152\) −1.60740 7.04249i −0.130378 0.571221i
\(153\) −1.45832 + 0.702290i −0.117898 + 0.0567768i
\(154\) −25.4644 + 12.2630i −2.05198 + 0.988181i
\(155\) −1.45882 + 6.39152i −0.117175 + 0.513379i
\(156\) 2.35827 + 1.13568i 0.188813 + 0.0909274i
\(157\) −6.23584 −0.497674 −0.248837 0.968545i \(-0.580048\pi\)
−0.248837 + 0.968545i \(0.580048\pi\)
\(158\) 0.569745 + 0.274375i 0.0453265 + 0.0218281i
\(159\) −1.27081 + 1.59355i −0.100782 + 0.126377i
\(160\) −18.5373 + 23.2450i −1.46550 + 1.83768i
\(161\) −5.07960 2.44621i −0.400329 0.192788i
\(162\) −2.19659 −0.172580
\(163\) 13.7996 + 6.64551i 1.08086 + 0.520517i 0.887593 0.460629i \(-0.152376\pi\)
0.193271 + 0.981145i \(0.438090\pi\)
\(164\) 4.22177 18.4968i 0.329665 1.44436i
\(165\) 12.9605 6.24146i 1.00898 0.485897i
\(166\) −12.8194 + 6.17352i −0.994981 + 0.479158i
\(167\) 3.51273 + 15.3903i 0.271823 + 1.19094i 0.907859 + 0.419276i \(0.137716\pi\)
−0.636036 + 0.771660i \(0.719427\pi\)
\(168\) 4.12109 5.16768i 0.317949 0.398695i
\(169\) −7.57012 9.49263i −0.582317 0.730202i
\(170\) −3.22609 + 14.1344i −0.247430 + 1.08406i
\(171\) 0.886987 + 3.88614i 0.0678296 + 0.297181i
\(172\) 7.80172 + 9.78304i 0.594875 + 0.745950i
\(173\) −3.44502 −0.261920 −0.130960 0.991388i \(-0.541806\pi\)
−0.130960 + 0.991388i \(0.541806\pi\)
\(174\) 9.56770 6.95589i 0.725325 0.527325i
\(175\) 42.4094 3.20585
\(176\) 3.67176 + 4.60425i 0.276770 + 0.347058i
\(177\) 1.62229 + 7.10771i 0.121939 + 0.534248i
\(178\) 8.06955 35.3550i 0.604838 2.64997i
\(179\) −7.50542 9.41150i −0.560981 0.703448i 0.417758 0.908559i \(-0.362816\pi\)
−0.978739 + 0.205110i \(0.934245\pi\)
\(180\) −7.18229 + 9.00630i −0.535336 + 0.671290i
\(181\) −0.538337 2.35861i −0.0400143 0.175314i 0.950972 0.309277i \(-0.100087\pi\)
−0.990986 + 0.133963i \(0.957230\pi\)
\(182\) 6.68803 3.22078i 0.495750 0.238740i
\(183\) −5.41080 + 2.60571i −0.399978 + 0.192619i
\(184\) 0.623337 2.73102i 0.0459530 0.201333i
\(185\) −19.4863 9.38413i −1.43266 0.689935i
\(186\) −3.53156 −0.258947
\(187\) 5.14461 + 2.47751i 0.376211 + 0.181174i
\(188\) 5.87921 7.37230i 0.428785 0.537680i
\(189\) −2.27407 + 2.85160i −0.165414 + 0.207423i
\(190\) 32.1676 + 15.4911i 2.33368 + 1.12384i
\(191\) 5.83662 0.422323 0.211162 0.977451i \(-0.432275\pi\)
0.211162 + 0.977451i \(0.432275\pi\)
\(192\) −11.4218 5.50046i −0.824298 0.396961i
\(193\) −4.44827 + 19.4891i −0.320193 + 1.40286i 0.517015 + 0.855976i \(0.327043\pi\)
−0.837209 + 0.546883i \(0.815814\pi\)
\(194\) 19.8939 9.58038i 1.42830 0.687831i
\(195\) −3.40399 + 1.63927i −0.243764 + 0.117391i
\(196\) −3.96222 17.3596i −0.283016 1.23997i
\(197\) −7.30267 + 9.15726i −0.520294 + 0.652428i −0.970671 0.240411i \(-0.922718\pi\)
0.450378 + 0.892838i \(0.351289\pi\)
\(198\) 4.83145 + 6.05845i 0.343356 + 0.430555i
\(199\) 3.70461 16.2310i 0.262613 1.15058i −0.655792 0.754941i \(-0.727665\pi\)
0.918405 0.395641i \(-0.129478\pi\)
\(200\) 4.68884 + 20.5431i 0.331551 + 1.45262i
\(201\) −5.91215 7.41360i −0.417011 0.522915i
\(202\) −18.0982 −1.27338
\(203\) 0.875104 19.6220i 0.0614202 1.37719i
\(204\) −4.57260 −0.320146
\(205\) 17.0745 + 21.4107i 1.19253 + 1.49539i
\(206\) 3.72800 + 16.3334i 0.259742 + 1.13800i
\(207\) −0.343966 + 1.50701i −0.0239073 + 0.104745i
\(208\) −0.964361 1.20927i −0.0668664 0.0838478i
\(209\) 8.76749 10.9941i 0.606460 0.760476i
\(210\) 7.26957 + 31.8501i 0.501648 + 2.19786i
\(211\) 21.8426 10.5189i 1.50371 0.724148i 0.512778 0.858521i \(-0.328616\pi\)
0.990931 + 0.134373i \(0.0429019\pi\)
\(212\) −5.18779 + 2.49831i −0.356299 + 0.171584i
\(213\) 1.87977 8.23580i 0.128799 0.564307i
\(214\) −33.1644 15.9711i −2.26707 1.09176i
\(215\) −18.0615 −1.23179
\(216\) −1.63274 0.786286i −0.111094 0.0535000i
\(217\) −3.65613 + 4.58465i −0.248195 + 0.311226i
\(218\) 17.4092 21.8304i 1.17910 1.47854i
\(219\) 6.81815 + 3.28345i 0.460728 + 0.221875i
\(220\) 40.6381 2.73982
\(221\) −1.35119 0.650700i −0.0908910 0.0437708i
\(222\) 2.59255 11.3587i 0.174000 0.762346i
\(223\) −25.5135 + 12.2867i −1.70851 + 0.822776i −0.716362 + 0.697729i \(0.754194\pi\)
−0.992151 + 0.125048i \(0.960092\pi\)
\(224\) −23.9601 + 11.5386i −1.60090 + 0.770953i
\(225\) −2.58737 11.3360i −0.172491 0.755733i
\(226\) 11.5930 14.5372i 0.771155 0.966998i
\(227\) 6.15022 + 7.71213i 0.408204 + 0.511872i 0.942856 0.333201i \(-0.108129\pi\)
−0.534652 + 0.845073i \(0.679557\pi\)
\(228\) −2.50575 + 10.9784i −0.165947 + 0.727061i
\(229\) −3.48401 15.2644i −0.230230 1.00870i −0.949449 0.313920i \(-0.898358\pi\)
0.719219 0.694783i \(-0.244500\pi\)
\(230\) 8.63251 + 10.8248i 0.569211 + 0.713768i
\(231\) 12.8669 0.846581
\(232\) 9.60165 1.74553i 0.630379 0.114600i
\(233\) −19.7879 −1.29635 −0.648176 0.761491i \(-0.724468\pi\)
−0.648176 + 0.761491i \(0.724468\pi\)
\(234\) −1.26894 1.59121i −0.0829535 0.104020i
\(235\) 3.02869 + 13.2695i 0.197570 + 0.865610i
\(236\) −4.58298 + 20.0793i −0.298326 + 1.30705i
\(237\) −0.179495 0.225079i −0.0116594 0.0146205i
\(238\) −8.08531 + 10.1387i −0.524093 + 0.657191i
\(239\) 2.07678 + 9.09899i 0.134336 + 0.588564i 0.996621 + 0.0821407i \(0.0261757\pi\)
−0.862285 + 0.506424i \(0.830967\pi\)
\(240\) 6.13295 2.95347i 0.395880 0.190646i
\(241\) 22.1401 10.6621i 1.42617 0.686807i 0.447888 0.894089i \(-0.352176\pi\)
0.978281 + 0.207282i \(0.0664619\pi\)
\(242\) 0.706352 3.09473i 0.0454060 0.198937i
\(243\) 0.900969 + 0.433884i 0.0577972 + 0.0278337i
\(244\) −16.9657 −1.08612
\(245\) 23.1564 + 11.1516i 1.47941 + 0.712447i
\(246\) −9.19777 + 11.5336i −0.586428 + 0.735358i
\(247\) −2.30271 + 2.88751i −0.146518 + 0.183728i
\(248\) −2.62503 1.26415i −0.166690 0.0802736i
\(249\) 6.47754 0.410498
\(250\) −53.4840 25.7565i −3.38262 1.62899i
\(251\) −1.03735 + 4.54494i −0.0654771 + 0.286874i −0.997057 0.0766624i \(-0.975574\pi\)
0.931580 + 0.363536i \(0.118431\pi\)
\(252\) −9.28335 + 4.47062i −0.584796 + 0.281623i
\(253\) 4.91308 2.36602i 0.308883 0.148750i
\(254\) −8.70294 38.1301i −0.546071 2.39249i
\(255\) 4.11515 5.16024i 0.257701 0.323147i
\(256\) −2.35770 2.95647i −0.147356 0.184779i
\(257\) 6.30942 27.6434i 0.393571 1.72435i −0.258344 0.966053i \(-0.583177\pi\)
0.651915 0.758292i \(-0.273966\pi\)
\(258\) −2.16502 9.48555i −0.134788 0.590545i
\(259\) −12.0618 15.1250i −0.749482 0.939821i
\(260\) −10.6733 −0.661928
\(261\) −5.29832 + 0.963208i −0.327958 + 0.0596211i
\(262\) −24.8871 −1.53753
\(263\) −16.6977 20.9383i −1.02963 1.29111i −0.955856 0.293836i \(-0.905068\pi\)
−0.0737713 0.997275i \(-0.523503\pi\)
\(264\) 1.42258 + 6.23274i 0.0875539 + 0.383599i
\(265\) 1.84943 8.10287i 0.113609 0.497756i
\(266\) 19.9113 + 24.9680i 1.22084 + 1.53089i
\(267\) −10.2934 + 12.9075i −0.629946 + 0.789927i
\(268\) −5.96083 26.1161i −0.364115 1.59529i
\(269\) 0.707757 0.340838i 0.0431527 0.0207812i −0.412183 0.911101i \(-0.635234\pi\)
0.455336 + 0.890320i \(0.349519\pi\)
\(270\) 8.06998 3.88630i 0.491123 0.236513i
\(271\) 2.70395 11.8468i 0.164253 0.719641i −0.823971 0.566631i \(-0.808246\pi\)
0.988225 0.153009i \(-0.0488965\pi\)
\(272\) 2.43444 + 1.17236i 0.147610 + 0.0710850i
\(273\) −3.37940 −0.204530
\(274\) 16.4509 + 7.92231i 0.993832 + 0.478604i
\(275\) −25.5750 + 32.0701i −1.54223 + 1.93390i
\(276\) −2.72266 + 3.41411i −0.163885 + 0.205505i
\(277\) 14.2206 + 6.84830i 0.854435 + 0.411474i 0.809222 0.587503i \(-0.199889\pi\)
0.0452134 + 0.998977i \(0.485603\pi\)
\(278\) 6.83744 0.410083
\(279\) 1.44853 + 0.697575i 0.0867212 + 0.0417627i
\(280\) −5.99746 + 26.2766i −0.358417 + 1.57033i
\(281\) −18.0845 + 8.70903i −1.07883 + 0.519537i −0.886942 0.461880i \(-0.847175\pi\)
−0.191887 + 0.981417i \(0.561461\pi\)
\(282\) −6.60585 + 3.18121i −0.393373 + 0.189438i
\(283\) 0.435154 + 1.90654i 0.0258672 + 0.113332i 0.986213 0.165479i \(-0.0529170\pi\)
−0.960346 + 0.278811i \(0.910060\pi\)
\(284\) 14.8793 18.6580i 0.882923 1.10715i
\(285\) −10.1342 12.7079i −0.600298 0.752750i
\(286\) −1.59766 + 6.99979i −0.0944714 + 0.413906i
\(287\) 5.45067 + 23.8809i 0.321743 + 1.40965i
\(288\) 4.54604 + 5.70055i 0.267878 + 0.335908i
\(289\) −14.3801 −0.845888
\(290\) −22.8438 + 42.4826i −1.34143 + 2.49466i
\(291\) −10.0522 −0.589269
\(292\) 13.3293 + 16.7144i 0.780035 + 0.978134i
\(293\) 0.537209 + 2.35367i 0.0313841 + 0.137503i 0.988193 0.153216i \(-0.0489629\pi\)
−0.956809 + 0.290718i \(0.906106\pi\)
\(294\) −3.08083 + 13.4980i −0.179678 + 0.787220i
\(295\) −18.5353 23.2426i −1.07917 1.35323i
\(296\) 5.99299 7.51497i 0.348336 0.436799i
\(297\) −0.785001 3.43931i −0.0455504 0.199569i
\(298\) 29.9943 14.4445i 1.73752 0.836747i
\(299\) −1.29038 + 0.621416i −0.0746248 + 0.0359374i
\(300\) 7.30933 32.0243i 0.422005 1.84892i
\(301\) −14.5555 7.00954i −0.838963 0.404023i
\(302\) −1.49124 −0.0858114
\(303\) 7.42328 + 3.57486i 0.426456 + 0.205371i
\(304\) 4.14879 5.20242i 0.237950 0.298379i
\(305\) 15.2685 19.1460i 0.874269 1.09630i
\(306\) 3.20333 + 1.54264i 0.183122 + 0.0881870i
\(307\) −1.11367 −0.0635606 −0.0317803 0.999495i \(-0.510118\pi\)
−0.0317803 + 0.999495i \(0.510118\pi\)
\(308\) 32.7494 + 15.7713i 1.86607 + 0.898653i
\(309\) 1.69718 7.43581i 0.0965490 0.423009i
\(310\) 12.9745 6.24819i 0.736902 0.354873i
\(311\) −3.99119 + 1.92206i −0.226320 + 0.108990i −0.543608 0.839339i \(-0.682942\pi\)
0.317288 + 0.948329i \(0.397228\pi\)
\(312\) −0.373631 1.63698i −0.0211527 0.0926759i
\(313\) −18.7672 + 23.5333i −1.06078 + 1.33018i −0.119399 + 0.992846i \(0.538097\pi\)
−0.941385 + 0.337334i \(0.890475\pi\)
\(314\) 8.54030 + 10.7092i 0.481957 + 0.604355i
\(315\) 3.30948 14.4998i 0.186468 0.816970i
\(316\) −0.180973 0.792892i −0.0101805 0.0446037i
\(317\) −3.87230 4.85571i −0.217490 0.272724i 0.661103 0.750295i \(-0.270089\pi\)
−0.878593 + 0.477571i \(0.841517\pi\)
\(318\) 4.47715 0.251066
\(319\) 14.3104 + 12.4948i 0.801230 + 0.699574i
\(320\) 51.6939 2.88978
\(321\) 10.4482 + 13.1017i 0.583163 + 0.731263i
\(322\) 2.75575 + 12.0737i 0.153572 + 0.672843i
\(323\) 1.43569 6.29016i 0.0798838 0.349994i
\(324\) 1.76136 + 2.20868i 0.0978535 + 0.122704i
\(325\) 6.71708 8.42296i 0.372597 0.467221i
\(326\) −7.48644 32.8002i −0.414635 1.81664i
\(327\) −11.4528 + 5.51536i −0.633339 + 0.305000i
\(328\) −10.9653 + 5.28062i −0.605458 + 0.291573i
\(329\) −2.70904 + 11.8691i −0.149354 + 0.654364i
\(330\) −28.4690 13.7099i −1.56717 0.754707i
\(331\) 10.0058 0.549967 0.274984 0.961449i \(-0.411328\pi\)
0.274984 + 0.961449i \(0.411328\pi\)
\(332\) 16.4869 + 7.93969i 0.904838 + 0.435747i
\(333\) −3.30702 + 4.14687i −0.181223 + 0.227247i
\(334\) 21.6198 27.1104i 1.18298 1.48342i
\(335\) 34.8369 + 16.7766i 1.90334 + 0.916602i
\(336\) 6.08865 0.332163
\(337\) 24.5924 + 11.8431i 1.33963 + 0.645133i 0.959999 0.280004i \(-0.0903358\pi\)
0.379634 + 0.925137i \(0.376050\pi\)
\(338\) −5.93462 + 26.0013i −0.322801 + 1.41428i
\(339\) −7.62654 + 3.67275i −0.414217 + 0.199476i
\(340\) 16.7991 8.09003i 0.911060 0.438743i
\(341\) −1.26208 5.52955i −0.0683456 0.299442i
\(342\) 5.45915 6.84555i 0.295197 0.370165i
\(343\) −1.58499 1.98752i −0.0855816 0.107316i
\(344\) 1.78616 7.82566i 0.0963030 0.421931i
\(345\) −1.40259 6.14513i −0.0755127 0.330843i
\(346\) 4.71813 + 5.91635i 0.253648 + 0.318065i
\(347\) 1.19493 0.0641473 0.0320736 0.999486i \(-0.489789\pi\)
0.0320736 + 0.999486i \(0.489789\pi\)
\(348\) −14.6662 4.04269i −0.786189 0.216711i
\(349\) 7.25120 0.388148 0.194074 0.980987i \(-0.437830\pi\)
0.194074 + 0.980987i \(0.437830\pi\)
\(350\) −58.0819 72.8324i −3.10461 3.89305i
\(351\) 0.206175 + 0.903310i 0.0110048 + 0.0482151i
\(352\) 5.72366 25.0770i 0.305072 1.33661i
\(353\) −3.28176 4.11519i −0.174670 0.219030i 0.686788 0.726858i \(-0.259020\pi\)
−0.861459 + 0.507828i \(0.830449\pi\)
\(354\) 9.98471 12.5204i 0.530681 0.665453i
\(355\) 7.66510 + 33.5830i 0.406821 + 1.78240i
\(356\) −42.0203 + 20.2359i −2.22707 + 1.07250i
\(357\) 5.31897 2.56148i 0.281510 0.135568i
\(358\) −5.88390 + 25.7791i −0.310974 + 1.36247i
\(359\) 13.1799 + 6.34711i 0.695609 + 0.334987i 0.748055 0.663636i \(-0.230988\pi\)
−0.0524468 + 0.998624i \(0.516702\pi\)
\(360\) 7.38960 0.389466
\(361\) 2.80304 + 1.34988i 0.147529 + 0.0710461i
\(362\) −3.31331 + 4.15476i −0.174144 + 0.218369i
\(363\) −0.901012 + 1.12983i −0.0472908 + 0.0593008i
\(364\) −8.60139 4.14221i −0.450835 0.217111i
\(365\) −30.8582 −1.61519
\(366\) 11.8853 + 5.72367i 0.621255 + 0.299181i
\(367\) −1.23570 + 5.41395i −0.0645030 + 0.282606i −0.996885 0.0788683i \(-0.974869\pi\)
0.932382 + 0.361474i \(0.117726\pi\)
\(368\) 2.32488 1.11960i 0.121193 0.0583634i
\(369\) 6.05081 2.91392i 0.314993 0.151693i
\(370\) 10.5716 + 46.3172i 0.549591 + 2.40792i
\(371\) 4.63508 5.81221i 0.240641 0.301755i
\(372\) 2.83183 + 3.55100i 0.146823 + 0.184111i
\(373\) −6.61909 + 29.0001i −0.342724 + 1.50157i 0.450575 + 0.892738i \(0.351219\pi\)
−0.793299 + 0.608832i \(0.791638\pi\)
\(374\) −2.79102 12.2282i −0.144320 0.632307i
\(375\) 16.8498 + 21.1290i 0.870119 + 1.09109i
\(376\) −6.04891 −0.311949
\(377\) −3.75852 3.28166i −0.193574 0.169014i
\(378\) 8.01169 0.412077
\(379\) −1.22348 1.53420i −0.0628460 0.0788064i 0.749415 0.662101i \(-0.230335\pi\)
−0.812261 + 0.583294i \(0.801763\pi\)
\(380\) −10.2176 44.7664i −0.524154 2.29647i
\(381\) −3.96202 + 17.3588i −0.202981 + 0.889316i
\(382\) −7.99356 10.0236i −0.408986 0.512852i
\(383\) −7.36748 + 9.23852i −0.376460 + 0.472067i −0.933582 0.358365i \(-0.883334\pi\)
0.557121 + 0.830431i \(0.311906\pi\)
\(384\) 2.95156 + 12.9316i 0.150621 + 0.659914i
\(385\) −47.2713 + 22.7647i −2.40917 + 1.16020i
\(386\) 39.5621 19.0521i 2.01366 0.969726i
\(387\) −0.985625 + 4.31831i −0.0501022 + 0.219512i
\(388\) −25.5853 12.3212i −1.29889 0.625515i
\(389\) 11.9013 0.603422 0.301711 0.953399i \(-0.402442\pi\)
0.301711 + 0.953399i \(0.402442\pi\)
\(390\) 7.47716 + 3.60081i 0.378621 + 0.182334i
\(391\) 1.55997 1.95614i 0.0788912 0.0989265i
\(392\) −7.12172 + 8.93036i −0.359701 + 0.451051i
\(393\) 10.2079 + 4.91586i 0.514919 + 0.247972i
\(394\) 25.7277 1.29614
\(395\) 1.05766 + 0.509342i 0.0532166 + 0.0256278i
\(396\) 2.21763 9.71609i 0.111440 0.488252i
\(397\) −17.7291 + 8.53790i −0.889799 + 0.428505i −0.822194 0.569207i \(-0.807250\pi\)
−0.0676053 + 0.997712i \(0.521536\pi\)
\(398\) −32.9481 + 15.8670i −1.65154 + 0.795340i
\(399\) −3.23513 14.1740i −0.161959 0.709590i
\(400\) −12.1022 + 15.1756i −0.605108 + 0.758781i
\(401\) −12.7980 16.0482i −0.639102 0.801408i 0.351789 0.936079i \(-0.385574\pi\)
−0.990890 + 0.134671i \(0.957002\pi\)
\(402\) −4.63485 + 20.3066i −0.231165 + 1.01280i
\(403\) 0.331477 + 1.45229i 0.0165120 + 0.0723439i
\(404\) 14.5123 + 18.1978i 0.722012 + 0.905375i
\(405\) −4.07769 −0.202622
\(406\) −34.8965 + 25.3704i −1.73189 + 1.25911i
\(407\) 18.7114 0.927490
\(408\) 1.82886 + 2.29331i 0.0905419 + 0.113536i
\(409\) −7.16116 31.3751i −0.354097 1.55140i −0.767620 0.640905i \(-0.778559\pi\)
0.413524 0.910493i \(-0.364298\pi\)
\(410\) 13.3856 58.6461i 0.661067 2.89633i
\(411\) −5.18273 6.49894i −0.255645 0.320569i
\(412\) 13.4340 16.8457i 0.661845 0.829928i
\(413\) −5.91702 25.9241i −0.291157 1.27564i
\(414\) 3.05917 1.47322i 0.150350 0.0724047i
\(415\) −23.7976 + 11.4603i −1.16818 + 0.562566i
\(416\) −1.50328 + 6.58628i −0.0737041 + 0.322919i
\(417\) −2.80449 1.35057i −0.137337 0.0661379i
\(418\) −30.8884 −1.51080
\(419\) −1.42979 0.688551i −0.0698499 0.0336379i 0.398633 0.917111i \(-0.369485\pi\)
−0.468483 + 0.883473i \(0.655199\pi\)
\(420\) 26.1962 32.8490i 1.27824 1.60287i
\(421\) 3.65562 4.58401i 0.178164 0.223411i −0.684728 0.728799i \(-0.740079\pi\)
0.862892 + 0.505388i \(0.168650\pi\)
\(422\) −47.9793 23.1056i −2.33560 1.12476i
\(423\) 3.33787 0.162293
\(424\) 3.32790 + 1.60263i 0.161617 + 0.0778306i
\(425\) −4.18795 + 18.3486i −0.203145 + 0.890037i
\(426\) −16.7183 + 8.05110i −0.810004 + 0.390077i
\(427\) 19.7350 9.50387i 0.955043 0.459924i
\(428\) 10.5343 + 46.1536i 0.509192 + 2.23092i
\(429\) 2.03795 2.55550i 0.0983930 0.123381i
\(430\) 24.7362 + 31.0182i 1.19289 + 1.49583i
\(431\) 1.88305 8.25019i 0.0907034 0.397397i −0.909113 0.416549i \(-0.863239\pi\)
0.999817 + 0.0191516i \(0.00609653\pi\)
\(432\) −0.371464 1.62749i −0.0178721 0.0783027i
\(433\) 7.92985 + 9.94372i 0.381084 + 0.477864i 0.934969 0.354729i \(-0.115427\pi\)
−0.553885 + 0.832593i \(0.686855\pi\)
\(434\) 12.8808 0.618297
\(435\) 17.7612 12.9127i 0.851584 0.619117i
\(436\) −35.9104 −1.71980
\(437\) −3.84167 4.81731i −0.183772 0.230443i
\(438\) −3.69893 16.2061i −0.176742 0.774357i
\(439\) 1.67011 7.31721i 0.0797098 0.349232i −0.919308 0.393538i \(-0.871251\pi\)
0.999018 + 0.0443069i \(0.0141080\pi\)
\(440\) −16.2536 20.3814i −0.774860 0.971644i
\(441\) 3.92987 4.92790i 0.187136 0.234662i
\(442\) 0.733039 + 3.21165i 0.0348671 + 0.152763i
\(443\) 10.5038 5.05834i 0.499048 0.240329i −0.167388 0.985891i \(-0.553533\pi\)
0.666436 + 0.745562i \(0.267819\pi\)
\(444\) −13.5001 + 6.50130i −0.640686 + 0.308538i
\(445\) 14.9801 65.6320i 0.710124 3.11126i
\(446\) 56.0428 + 26.9888i 2.65370 + 1.27796i
\(447\) −15.1558 −0.716847
\(448\) 41.6591 + 20.0620i 1.96821 + 0.947839i
\(449\) −12.1276 + 15.2075i −0.572337 + 0.717687i −0.980784 0.195094i \(-0.937499\pi\)
0.408448 + 0.912782i \(0.366070\pi\)
\(450\) −15.9245 + 19.9687i −0.750688 + 0.941333i
\(451\) −21.3458 10.2796i −1.00514 0.484048i
\(452\) −23.9132 −1.12478
\(453\) 0.611659 + 0.294559i 0.0287383 + 0.0138396i
\(454\) 4.82149 21.1243i 0.226284 0.991413i
\(455\) 12.4155 5.97897i 0.582046 0.280298i
\(456\) 6.50824 3.13420i 0.304776 0.146772i
\(457\) −3.80789 16.6835i −0.178126 0.780419i −0.982495 0.186290i \(-0.940354\pi\)
0.804369 0.594130i \(-0.202503\pi\)
\(458\) −21.4431 + 26.8888i −1.00197 + 1.25643i
\(459\) −1.00919 1.26548i −0.0471049 0.0590677i
\(460\) 3.96232 17.3600i 0.184744 0.809416i
\(461\) −1.89815 8.31633i −0.0884056 0.387330i 0.911296 0.411752i \(-0.135083\pi\)
−0.999702 + 0.0244213i \(0.992226\pi\)
\(462\) −17.6219 22.0972i −0.819845 1.02805i
\(463\) 1.49772 0.0696050 0.0348025 0.999394i \(-0.488920\pi\)
0.0348025 + 0.999394i \(0.488920\pi\)
\(464\) 6.77172 + 5.91256i 0.314369 + 0.274484i
\(465\) −6.55589 −0.304022
\(466\) 27.1006 + 33.9831i 1.25541 + 1.57424i
\(467\) 4.76878 + 20.8934i 0.220673 + 0.966831i 0.956973 + 0.290176i \(0.0937140\pi\)
−0.736300 + 0.676655i \(0.763429\pi\)
\(468\) −0.582445 + 2.55186i −0.0269235 + 0.117960i
\(469\) 21.5636 + 27.0398i 0.995712 + 1.24858i
\(470\) 18.6407 23.3747i 0.859831 1.07819i
\(471\) −1.38760 6.07949i −0.0639374 0.280128i
\(472\) 11.9035 5.73242i 0.547902 0.263856i
\(473\) 14.0783 6.77975i 0.647321 0.311733i
\(474\) −0.140715 + 0.616515i −0.00646328 + 0.0283175i
\(475\) 41.7583 + 20.1098i 1.91600 + 0.922699i
\(476\) 16.6778 0.764424
\(477\) −1.83638 0.884354i −0.0840821 0.0404918i
\(478\) 12.7820 16.0281i 0.584635 0.733109i
\(479\) −17.8030 + 22.3242i −0.813439 + 1.02002i 0.185860 + 0.982576i \(0.440493\pi\)
−0.999299 + 0.0374436i \(0.988079\pi\)
\(480\) −26.7872 12.9000i −1.22266 0.588803i
\(481\) −4.91441 −0.224078
\(482\) −48.6327 23.4203i −2.21516 1.06677i
\(483\) 1.25456 5.49658i 0.0570844 0.250103i
\(484\) −3.67816 + 1.77131i −0.167189 + 0.0805140i
\(485\) 36.9304 17.7847i 1.67692 0.807563i
\(486\) −0.488787 2.14152i −0.0221718 0.0971412i
\(487\) 15.6842 19.6674i 0.710720 0.891214i −0.287053 0.957915i \(-0.592676\pi\)
0.997773 + 0.0667002i \(0.0212471\pi\)
\(488\) 6.78561 + 8.50888i 0.307170 + 0.385179i
\(489\) −3.40821 + 14.9323i −0.154124 + 0.675263i
\(490\) −12.5627 55.0407i −0.567524 2.48648i
\(491\) −13.5202 16.9537i −0.610156 0.765111i 0.376766 0.926308i \(-0.377036\pi\)
−0.986922 + 0.161197i \(0.948465\pi\)
\(492\) 18.9725 0.855345
\(493\) 8.40310 + 2.31629i 0.378457 + 0.104321i
\(494\) 8.11259 0.365003
\(495\) 8.96897 + 11.2467i 0.403125 + 0.505503i
\(496\) −0.597221 2.61659i −0.0268160 0.117489i
\(497\) −6.85613 + 30.0387i −0.307539 + 1.34742i
\(498\) −8.87133 11.1243i −0.397534 0.498491i
\(499\) 3.54720 4.44805i 0.158795 0.199122i −0.696069 0.717975i \(-0.745069\pi\)
0.854864 + 0.518853i \(0.173641\pi\)
\(500\) 16.9885 + 74.4316i 0.759750 + 3.32868i
\(501\) −14.2228 + 6.84932i −0.635426 + 0.306005i
\(502\) 9.22602 4.44302i 0.411778 0.198302i
\(503\) 2.10721 9.23230i 0.0939560 0.411648i −0.905976 0.423330i \(-0.860861\pi\)
0.999932 + 0.0116814i \(0.00371840\pi\)
\(504\) 5.95514 + 2.86785i 0.265263 + 0.127744i
\(505\) −33.5970 −1.49505
\(506\) −10.7920 5.19717i −0.479764 0.231042i
\(507\) 7.57012 9.49263i 0.336201 0.421582i
\(508\) −31.3614 + 39.3259i −1.39144 + 1.74481i
\(509\) 27.5641 + 13.2742i 1.22176 + 0.588368i 0.929801 0.368064i \(-0.119979\pi\)
0.291957 + 0.956431i \(0.405693\pi\)
\(510\) −14.4979 −0.641979
\(511\) −24.8680 11.9758i −1.10010 0.529779i
\(512\) 4.05479 17.7652i 0.179198 0.785117i
\(513\) −3.59134 + 1.72950i −0.158561 + 0.0763591i
\(514\) −56.1148 + 27.0234i −2.47512 + 1.19195i
\(515\) 6.92055 + 30.3209i 0.304956 + 1.33610i
\(516\) −7.80172 + 9.78304i −0.343451 + 0.430674i
\(517\) −7.34173 9.20624i −0.322889 0.404890i
\(518\) −9.45588 + 41.4289i −0.415467 + 1.82028i
\(519\) −0.766589 3.35865i −0.0336495 0.147428i
\(520\) 4.26889 + 5.35301i 0.187203 + 0.234745i
\(521\) 8.99098 0.393902 0.196951 0.980413i \(-0.436896\pi\)
0.196951 + 0.980413i \(0.436896\pi\)
\(522\) 8.91050 + 7.77998i 0.390002 + 0.340521i
\(523\) −1.43930 −0.0629362 −0.0314681 0.999505i \(-0.510018\pi\)
−0.0314681 + 0.999505i \(0.510018\pi\)
\(524\) 19.9561 + 25.0241i 0.871785 + 1.09318i
\(525\) 9.43698 + 41.3461i 0.411864 + 1.80449i
\(526\) −13.0903 + 57.3522i −0.570763 + 2.50067i
\(527\) −1.62252 2.03458i −0.0706781 0.0886275i
\(528\) −3.67176 + 4.60425i −0.159793 + 0.200374i
\(529\) 4.58629 + 20.0938i 0.199404 + 0.873645i
\(530\) −16.4485 + 7.92116i −0.714476 + 0.344073i
\(531\) −6.56851 + 3.16323i −0.285049 + 0.137272i
\(532\) 9.13928 40.0418i 0.396238 1.73603i
\(533\) 5.60632 + 2.69986i 0.242837 + 0.116944i
\(534\) 36.2642 1.56931
\(535\) −61.5654 29.6483i −2.66170 1.28181i
\(536\) −10.7140 + 13.4350i −0.462775 + 0.580302i
\(537\) 7.50542 9.41150i 0.323883 0.406136i
\(538\) −1.55465 0.748681i −0.0670258 0.0322779i
\(539\) −22.2355 −0.957753
\(540\) −10.3787 4.99812i −0.446628 0.215085i
\(541\) 6.01572 26.3566i 0.258636 1.13316i −0.664075 0.747666i \(-0.731174\pi\)
0.922711 0.385493i \(-0.125969\pi\)
\(542\) −24.0484 + 11.5811i −1.03297 + 0.497451i
\(543\) 2.17968 1.04968i 0.0935391 0.0450461i
\(544\) −2.62614 11.5059i −0.112595 0.493310i
\(545\) 32.3179 40.5254i 1.38435 1.73592i
\(546\) 4.62826 + 5.80365i 0.198071 + 0.248373i
\(547\) 8.29422 36.3394i 0.354635 1.55376i −0.411701 0.911319i \(-0.635065\pi\)
0.766336 0.642440i \(-0.222078\pi\)
\(548\) −5.22541 22.8940i −0.223218 0.977984i
\(549\) −3.74439 4.69532i −0.159807 0.200391i
\(550\) 90.1022 3.84197
\(551\) 10.1660 18.9058i 0.433088 0.805413i
\(552\) 2.80125 0.119229
\(553\) 0.654676 + 0.820938i 0.0278397 + 0.0349098i
\(554\) −7.71488 33.8011i −0.327774 1.43607i
\(555\) 4.81273 21.0860i 0.204289 0.895049i
\(556\) −5.48269 6.87508i −0.232518 0.291568i
\(557\) 19.8070 24.8372i 0.839249 1.05239i −0.158633 0.987338i \(-0.550709\pi\)
0.997882 0.0650476i \(-0.0207199\pi\)
\(558\) −0.785846 3.44302i −0.0332675 0.145755i
\(559\) −3.69756 + 1.78065i −0.156390 + 0.0753135i
\(560\) −22.3689 + 10.7723i −0.945259 + 0.455213i
\(561\) −1.27061 + 5.56692i −0.0536453 + 0.235036i
\(562\) 39.7242 + 19.1302i 1.67566 + 0.806957i
\(563\) 13.4735 0.567842 0.283921 0.958848i \(-0.408365\pi\)
0.283921 + 0.958848i \(0.408365\pi\)
\(564\) 8.49570 + 4.09132i 0.357734 + 0.172275i
\(565\) 21.5209 26.9864i 0.905392 1.13533i
\(566\) 2.67825 3.35842i 0.112575 0.141165i
\(567\) −3.28613 1.58252i −0.138005 0.0664595i
\(568\) −15.3088 −0.642342
\(569\) 4.98991 + 2.40302i 0.209188 + 0.100740i 0.535544 0.844507i \(-0.320107\pi\)
−0.326356 + 0.945247i \(0.605821\pi\)
\(570\) −7.94475 + 34.8082i −0.332769 + 1.45796i
\(571\) −37.2132 + 17.9209i −1.55732 + 0.749968i −0.996933 0.0782596i \(-0.975064\pi\)
−0.560392 + 0.828228i \(0.689349\pi\)
\(572\) 8.31942 4.00642i 0.347852 0.167517i
\(573\) 1.29877 + 5.69029i 0.0542569 + 0.237715i
\(574\) 33.5473 42.0670i 1.40024 1.75584i
\(575\) 11.2063 + 14.0522i 0.467334 + 0.586018i
\(576\) 2.82095 12.3594i 0.117540 0.514975i
\(577\) 8.85347 + 38.7896i 0.368575 + 1.61483i 0.730698 + 0.682701i \(0.239195\pi\)
−0.362123 + 0.932130i \(0.617948\pi\)
\(578\) 19.6943 + 24.6958i 0.819174 + 1.02721i
\(579\) −19.9903 −0.830770
\(580\) 61.0340 11.0957i 2.53430 0.460722i
\(581\) −23.6257 −0.980161
\(582\) 13.7670 + 17.2632i 0.570660 + 0.715584i
\(583\) 1.60001 + 7.01011i 0.0662657 + 0.290329i
\(584\) 3.05165 13.3702i 0.126278 0.553261i
\(585\) −2.35563 2.95387i −0.0973934 0.122127i
\(586\) 3.30637 4.14605i 0.136585 0.171272i
\(587\) −8.61390 37.7400i −0.355534 1.55769i −0.764181 0.645002i \(-0.776856\pi\)
0.408647 0.912692i \(-0.366001\pi\)
\(588\) 16.0427 7.72577i 0.661590 0.318605i
\(589\) −5.77396 + 2.78059i −0.237912 + 0.114572i
\(590\) −14.5308 + 63.6638i −0.598225 + 2.62100i
\(591\) −10.5527 5.08189i −0.434079 0.209041i
\(592\) 8.85427 0.363908
\(593\) 1.26777 + 0.610524i 0.0520610 + 0.0250712i 0.459733 0.888057i \(-0.347945\pi\)
−0.407672 + 0.913128i \(0.633659\pi\)
\(594\) −4.83145 + 6.05845i −0.198237 + 0.248581i
\(595\) −15.0093 + 18.8211i −0.615322 + 0.771590i
\(596\) −38.5753 18.5769i −1.58011 0.760939i
\(597\) 16.6484 0.681373
\(598\) 2.83444 + 1.36500i 0.115909 + 0.0558188i
\(599\) −6.84151 + 29.9746i −0.279537 + 1.22473i 0.618845 + 0.785513i \(0.287601\pi\)
−0.898381 + 0.439217i \(0.855256\pi\)
\(600\) −18.9847 + 9.14256i −0.775048 + 0.373244i
\(601\) 11.9409 5.75041i 0.487078 0.234564i −0.174193 0.984712i \(-0.555732\pi\)
0.661271 + 0.750147i \(0.270017\pi\)
\(602\) 7.89652 + 34.5969i 0.321838 + 1.41007i
\(603\) 5.91215 7.41360i 0.240761 0.301905i
\(604\) 1.19577 + 1.49945i 0.0486553 + 0.0610118i
\(605\) 1.31125 5.74496i 0.0533099 0.233566i
\(606\) −4.02723 17.6444i −0.163595 0.716756i
\(607\) 6.14313 + 7.70324i 0.249342 + 0.312665i 0.890713 0.454566i \(-0.150206\pi\)
−0.641371 + 0.767231i \(0.721634\pi\)
\(608\) −29.0636 −1.17869
\(609\) 19.3247 3.51314i 0.783078 0.142359i
\(610\) −53.7916 −2.17796
\(611\) 1.92825 + 2.41795i 0.0780087 + 0.0978198i
\(612\) −1.01750 4.45795i −0.0411299 0.180202i
\(613\) 5.13236 22.4863i 0.207294 0.908214i −0.759064 0.651015i \(-0.774343\pi\)
0.966358 0.257199i \(-0.0827996\pi\)
\(614\) 1.52523 + 1.91258i 0.0615533 + 0.0771854i
\(615\) −17.0745 + 21.4107i −0.688509 + 0.863363i
\(616\) −5.18863 22.7329i −0.209056 0.915933i
\(617\) 1.93195 0.930376i 0.0777772 0.0374555i −0.394591 0.918857i \(-0.629114\pi\)
0.472368 + 0.881401i \(0.343399\pi\)
\(618\) −15.0944 + 7.26906i −0.607184 + 0.292405i
\(619\) −6.61917 + 29.0005i −0.266047 + 1.16563i 0.648522 + 0.761196i \(0.275388\pi\)
−0.914569 + 0.404431i \(0.867470\pi\)
\(620\) −16.6863 8.03572i −0.670140 0.322722i
\(621\) −1.54577 −0.0620296
\(622\) 8.76701 + 4.22197i 0.351525 + 0.169286i
\(623\) 37.5434 47.0780i 1.50415 1.88614i
\(624\) 0.964361 1.20927i 0.0386053 0.0484096i
\(625\) −46.9059 22.5887i −1.87624 0.903548i
\(626\) 66.1178 2.64260
\(627\) 12.6694 + 6.10125i 0.505966 + 0.243661i
\(628\) 3.91999 17.1746i 0.156425 0.685342i
\(629\) 7.73499 3.72497i 0.308414 0.148524i
\(630\) −29.4339 + 14.1746i −1.17267 + 0.564730i
\(631\) 1.00667 + 4.41052i 0.0400750 + 0.175580i 0.991005 0.133827i \(-0.0427266\pi\)
−0.950930 + 0.309407i \(0.899869\pi\)
\(632\) −0.325281 + 0.407889i −0.0129390 + 0.0162250i
\(633\) 15.1156 + 18.9543i 0.600790 + 0.753367i
\(634\) −3.03571 + 13.3003i −0.120563 + 0.528222i
\(635\) −16.1559 70.7836i −0.641127 2.80896i
\(636\) −3.59006 4.50179i −0.142355 0.178508i
\(637\) 5.84000 0.231389
\(638\) 1.85923 41.6885i 0.0736076 1.65046i
\(639\) 8.44759 0.334182
\(640\) −33.7228 42.2871i −1.33301 1.67154i
\(641\) 6.84340 + 29.9829i 0.270298 + 1.18425i 0.909662 + 0.415349i \(0.136340\pi\)
−0.639364 + 0.768904i \(0.720802\pi\)
\(642\) 8.19093 35.8868i 0.323270 1.41634i
\(643\) 10.5190 + 13.1905i 0.414831 + 0.520181i 0.944717 0.327888i \(-0.106337\pi\)
−0.529886 + 0.848069i \(0.677765\pi\)
\(644\) 9.93045 12.4524i 0.391315 0.490693i
\(645\) −4.01907 17.6087i −0.158251 0.693342i
\(646\) −12.7687 + 6.14910i −0.502380 + 0.241933i
\(647\) −12.7316 + 6.13122i −0.500531 + 0.241043i −0.667075 0.744991i \(-0.732454\pi\)
0.166543 + 0.986034i \(0.446739\pi\)
\(648\) 0.403254 1.76677i 0.0158413 0.0694053i
\(649\) 23.1721 + 11.1591i 0.909586 + 0.438034i
\(650\) −23.6647 −0.928205
\(651\) −5.28327 2.54429i −0.207068 0.0997185i
\(652\) −26.9777 + 33.8289i −1.05653 + 1.32484i
\(653\) −24.1439 + 30.2755i −0.944823 + 1.18477i 0.0378238 + 0.999284i \(0.487957\pi\)
−0.982647 + 0.185486i \(0.940614\pi\)
\(654\) 25.1570 + 12.1150i 0.983717 + 0.473733i
\(655\) −46.1997 −1.80517
\(656\) −10.1009 4.86433i −0.394374 0.189920i
\(657\) −1.68394 + 7.37784i −0.0656969 + 0.287837i
\(658\) 24.0937 11.6029i 0.939271 0.452329i
\(659\) −15.6609 + 7.54188i −0.610061 + 0.293790i −0.713291 0.700868i \(-0.752796\pi\)
0.103231 + 0.994657i \(0.467082\pi\)
\(660\) 9.04282 + 39.6192i 0.351991 + 1.54217i
\(661\) 0.597977 0.749840i 0.0232586 0.0291654i −0.770066 0.637964i \(-0.779777\pi\)
0.793325 + 0.608799i \(0.208348\pi\)
\(662\) −13.7034 17.1835i −0.532599 0.667858i
\(663\) 0.333717 1.46211i 0.0129605 0.0567836i
\(664\) −2.61209 11.4443i −0.101369 0.444126i
\(665\) 36.9628 + 46.3498i 1.43335 + 1.79737i
\(666\) 11.6508 0.451460
\(667\) 6.73292 4.89495i 0.260700 0.189533i
\(668\) −44.5958 −1.72546
\(669\) −17.6559 22.1398i −0.682617 0.855975i
\(670\) −18.8995 82.8040i −0.730150 3.19900i
\(671\) −4.71435 + 20.6549i −0.181996 + 0.797375i
\(672\) −16.5809 20.7918i −0.639622 0.802061i
\(673\) −18.7737 + 23.5415i −0.723673 + 0.907458i −0.998540 0.0540246i \(-0.982795\pi\)
0.274866 + 0.961483i \(0.411366\pi\)
\(674\) −13.3417 58.4537i −0.513903 2.25155i
\(675\) 10.4760 5.04499i 0.403223 0.194182i
\(676\) 30.9031 14.8822i 1.18858 0.572391i
\(677\) −9.29384 + 40.7190i −0.357191 + 1.56496i 0.402964 + 0.915216i \(0.367980\pi\)
−0.760155 + 0.649742i \(0.774877\pi\)
\(678\) 16.7524 + 8.06752i 0.643371 + 0.309831i
\(679\) 36.6636 1.40702
\(680\) −10.7764 5.18964i −0.413256 0.199014i
\(681\) −6.15022 + 7.71213i −0.235677 + 0.295529i
\(682\) −7.76776 + 9.74046i −0.297443 + 0.372981i
\(683\) −36.2797 17.4714i −1.38820 0.668524i −0.417473 0.908689i \(-0.637084\pi\)
−0.970732 + 0.240165i \(0.922798\pi\)
\(684\) −11.2607 −0.430564
\(685\) 30.5389 + 14.7068i 1.16683 + 0.561916i
\(686\) −1.24256 + 5.44402i −0.0474412 + 0.207854i
\(687\) 14.1065 6.79332i 0.538195 0.259181i
\(688\) 6.66188 3.20819i 0.253982 0.122311i
\(689\) −0.420231 1.84115i −0.0160095 0.0701423i
\(690\) −8.63251 + 10.8248i −0.328634 + 0.412094i
\(691\) 25.7995 + 32.3515i 0.981458 + 1.23071i 0.973014 + 0.230746i \(0.0741165\pi\)
0.00844425 + 0.999964i \(0.497312\pi\)
\(692\) 2.16562 9.48820i 0.0823245 0.360687i
\(693\) 2.86316 + 12.5443i 0.108762 + 0.476519i
\(694\) −1.63652 2.05213i −0.0621215 0.0778978i
\(695\) 12.6928 0.481467
\(696\) 3.83833 + 8.97250i 0.145492 + 0.340102i
\(697\) −10.8704 −0.411747
\(698\) −9.93089 12.4529i −0.375890 0.471351i
\(699\) −4.40323 19.2918i −0.166545 0.729684i
\(700\) −26.6596 + 116.803i −1.00764 + 4.41474i
\(701\) 1.42703 + 1.78944i 0.0538981 + 0.0675861i 0.808050 0.589114i \(-0.200523\pi\)
−0.754152 + 0.656700i \(0.771952\pi\)
\(702\) 1.26894 1.59121i 0.0478932 0.0600562i
\(703\) −4.70462 20.6123i −0.177438 0.777406i
\(704\) −40.2934 + 19.4043i −1.51862 + 0.731327i
\(705\) −12.2629 + 5.90551i −0.461848 + 0.222414i
\(706\) −2.57275 + 11.2719i −0.0968266 + 0.424225i
\(707\) −27.0752 13.0387i −1.01827 0.490371i
\(708\) −20.5957 −0.774034
\(709\) 24.6036 + 11.8485i 0.924009 + 0.444979i 0.834501 0.551007i \(-0.185756\pi\)
0.0895083 + 0.995986i \(0.471470\pi\)
\(710\) 47.1764 59.1574i 1.77050 2.22014i
\(711\) 0.179495 0.225079i 0.00673157 0.00844113i
\(712\) 26.9554 + 12.9811i 1.01020 + 0.486486i
\(713\) −2.48521 −0.0930717
\(714\) −11.6836 5.62653i −0.437248 0.210568i
\(715\) −2.96584 + 12.9942i −0.110916 + 0.485956i
\(716\) 30.6390 14.7550i 1.14503 0.551420i
\(717\) −8.40873 + 4.04943i −0.314030 + 0.151229i
\(718\) −7.15027 31.3274i −0.266846 1.16913i
\(719\) −11.8932 + 14.9135i −0.443540 + 0.556181i −0.952472 0.304625i \(-0.901469\pi\)
0.508933 + 0.860806i \(0.330040\pi\)
\(720\) 4.24413 + 5.32198i 0.158170 + 0.198338i
\(721\) −6.19016 + 27.1209i −0.230534 + 1.01003i
\(722\) −1.52069 6.66257i −0.0565941 0.247955i
\(723\) 15.3214 + 19.2125i 0.569810 + 0.714519i
\(724\) 6.83444 0.254000
\(725\) −29.6547 + 55.1487i −1.10135 + 2.04817i
\(726\) 3.17432 0.117810
\(727\) −18.2417 22.8744i −0.676547 0.848363i 0.318484 0.947928i \(-0.396826\pi\)
−0.995031 + 0.0995652i \(0.968255\pi\)
\(728\) 1.36275 + 5.97062i 0.0505070 + 0.221286i
\(729\) −0.222521 + 0.974928i −0.00824152 + 0.0361084i
\(730\) 42.2619 + 52.9947i 1.56418 + 1.96142i
\(731\) 4.47006 5.60528i 0.165331 0.207319i
\(732\) −3.77522 16.5403i −0.139536 0.611348i
\(733\) −18.8742 + 9.08933i −0.697134 + 0.335722i −0.748664 0.662949i \(-0.769304\pi\)
0.0515302 + 0.998671i \(0.483590\pi\)
\(734\) 10.9901 5.29254i 0.405651 0.195351i
\(735\) −5.71917 + 25.0573i −0.210955 + 0.924253i
\(736\) −10.1545 4.89014i −0.374299 0.180253i
\(737\) −33.4515 −1.23220
\(738\) −13.2912 6.40068i −0.489254 0.235612i
\(739\) −21.0504 + 26.3964i −0.774353 + 0.971008i −0.999995 0.00320223i \(-0.998981\pi\)
0.225642 + 0.974210i \(0.427552\pi\)
\(740\) 38.0952 47.7698i 1.40041 1.75605i
\(741\) −3.32752 1.60245i −0.122239 0.0588674i
\(742\) −16.3297 −0.599480
\(743\) 39.9078 + 19.2186i 1.46407 + 0.705061i 0.984974 0.172700i \(-0.0552491\pi\)
0.479099 + 0.877761i \(0.340963\pi\)
\(744\) 0.648330 2.84052i 0.0237689 0.104138i
\(745\) 55.6805 26.8143i 2.03998 0.982401i
\(746\) 58.8690 28.3498i 2.15535 1.03796i
\(747\) 1.44139 + 6.31514i 0.0527377 + 0.231059i
\(748\) −10.0575 + 12.6117i −0.367740 + 0.461131i
\(749\) −38.1081 47.7861i −1.39244 1.74606i
\(750\) 13.2095 57.8744i 0.482341 2.11327i
\(751\) 1.70282 + 7.46053i 0.0621367 + 0.272239i 0.996447 0.0842221i \(-0.0268405\pi\)
−0.934310 + 0.356461i \(0.883983\pi\)
\(752\) −3.47412 4.35641i −0.126688 0.158862i
\(753\) −4.66182 −0.169886
\(754\) −0.488312 + 10.9492i −0.0177833 + 0.398745i
\(755\) −2.76830 −0.100749
\(756\) −6.42428 8.05579i −0.233649 0.292986i
\(757\) −3.62389 15.8773i −0.131713 0.577070i −0.997109 0.0759828i \(-0.975791\pi\)
0.865397 0.501088i \(-0.167067\pi\)
\(758\) −0.959153 + 4.20232i −0.0348380 + 0.152635i
\(759\) 3.39996 + 4.26341i 0.123411 + 0.154752i
\(760\) −18.3652 + 23.0293i −0.666178 + 0.835360i
\(761\) 6.35279 + 27.8334i 0.230288 + 1.00896i 0.949401 + 0.314066i \(0.101691\pi\)
−0.719113 + 0.694894i \(0.755451\pi\)
\(762\) 35.2375 16.9695i 1.27652 0.614740i
\(763\) 41.7720 20.1163i 1.51225 0.728260i
\(764\) −3.66904 + 16.0751i −0.132741 + 0.581577i
\(765\) 5.94657 + 2.86372i 0.214999 + 0.103538i