Properties

Label 87.2.g.b.7.1
Level $87$
Weight $2$
Character 87.7
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 7.1
Root \(-1.61697 + 0.778692i\) of defining polynomial
Character \(\chi\) \(=\) 87.7
Dual form 87.2.g.b.25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.399359 - 1.74971i) q^{2} +(0.900969 + 0.433884i) q^{3} +(-1.10004 + 0.529753i) q^{4} +(-0.299361 - 1.31158i) q^{5} +(0.399359 - 1.74971i) q^{6} +(1.00367 + 0.483344i) q^{7} +(-0.871733 - 1.09312i) q^{8} +(0.623490 + 0.781831i) q^{9} +O(q^{10})\) \(q+(-0.399359 - 1.74971i) q^{2} +(0.900969 + 0.433884i) q^{3} +(-1.10004 + 0.529753i) q^{4} +(-0.299361 - 1.31158i) q^{5} +(0.399359 - 1.74971i) q^{6} +(1.00367 + 0.483344i) q^{7} +(-0.871733 - 1.09312i) q^{8} +(0.623490 + 0.781831i) q^{9} +(-2.17533 + 1.04759i) q^{10} +(-1.53957 + 1.93056i) q^{11} -1.22096 q^{12} +(-1.75674 + 2.20289i) q^{13} +(0.444884 - 1.94916i) q^{14} +(0.299361 - 1.31158i) q^{15} +(-3.08701 + 3.87099i) q^{16} +5.50816 q^{17} +(1.11898 - 1.40315i) q^{18} +(0.318651 - 0.153454i) q^{19} +(1.02413 + 1.28421i) q^{20} +(0.694564 + 0.870956i) q^{21} +(3.99275 + 1.92281i) q^{22} +(-1.18272 + 5.18183i) q^{23} +(-0.311118 - 1.36310i) q^{24} +(2.87421 - 1.38414i) q^{25} +(4.55597 + 2.19404i) q^{26} +(0.222521 + 0.974928i) q^{27} -1.36014 q^{28} +(-5.29503 - 0.981140i) q^{29} -2.41444 q^{30} +(0.990316 + 4.33886i) q^{31} +(5.48653 + 2.64217i) q^{32} +(-2.22474 + 1.07138i) q^{33} +(-2.19973 - 9.63766i) q^{34} +(0.333486 - 1.46110i) q^{35} +(-1.10004 - 0.529753i) q^{36} +(-6.00176 - 7.52597i) q^{37} +(-0.395756 - 0.496262i) q^{38} +(-2.53857 + 1.22251i) q^{39} +(-1.17275 + 1.47059i) q^{40} -9.05582 q^{41} +(1.24654 - 1.56311i) q^{42} +(2.01367 - 8.82247i) q^{43} +(0.670874 - 2.93929i) q^{44} +(0.838790 - 1.05181i) q^{45} +9.53901 q^{46} +(2.24139 - 2.81061i) q^{47} +(-4.46086 + 2.14824i) q^{48} +(-3.59069 - 4.50258i) q^{49} +(-3.56969 - 4.47624i) q^{50} +(4.96268 + 2.38990i) q^{51} +(0.765509 - 3.35391i) q^{52} +(1.46472 + 6.41735i) q^{53} +(1.61697 - 0.778692i) q^{54} +(2.99298 + 1.44134i) q^{55} +(-0.346583 - 1.51848i) q^{56} +0.353676 q^{57} +(0.397912 + 9.65657i) q^{58} -6.26677 q^{59} +(0.365506 + 1.60139i) q^{60} +(-0.106516 - 0.0512953i) q^{61} +(7.19623 - 3.46552i) q^{62} +(0.247887 + 1.08606i) q^{63} +(0.228450 - 1.00091i) q^{64} +(3.41517 + 1.64466i) q^{65} +(2.76307 + 3.46478i) q^{66} +(8.91797 + 11.1828i) q^{67} +(-6.05922 + 2.91797i) q^{68} +(-3.31391 + 4.15551i) q^{69} -2.68967 q^{70} +(4.68005 - 5.86860i) q^{71} +(0.311118 - 1.36310i) q^{72} +(3.54339 - 15.5246i) q^{73} +(-10.7714 + 13.5069i) q^{74} +3.19013 q^{75} +(-0.269237 + 0.337613i) q^{76} +(-2.47835 + 1.19351i) q^{77} +(3.15283 + 3.95353i) q^{78} +(0.160241 + 0.200936i) q^{79} +(6.00126 + 2.89005i) q^{80} +(-0.222521 + 0.974928i) q^{81} +(3.61652 + 15.8450i) q^{82} +(5.52291 - 2.65969i) q^{83} +(-1.22544 - 0.590142i) q^{84} +(-1.64893 - 7.22442i) q^{85} -16.2409 q^{86} +(-4.34496 - 3.18140i) q^{87} +3.45242 q^{88} +(-1.66948 - 7.31446i) q^{89} +(-2.17533 - 1.04759i) q^{90} +(-2.82795 + 1.36187i) q^{91} +(-1.44405 - 6.32679i) q^{92} +(-0.990316 + 4.33886i) q^{93} +(-5.81286 - 2.79933i) q^{94} +(-0.296660 - 0.372000i) q^{95} +(3.79680 + 4.76103i) q^{96} +(-6.37706 + 3.07103i) q^{97} +(-6.44422 + 8.08079i) q^{98} -2.46928 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{3}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.399359 1.74971i −0.282389 1.23723i −0.894720 0.446627i \(-0.852625\pi\)
0.612331 0.790602i \(-0.290232\pi\)
\(3\) 0.900969 + 0.433884i 0.520175 + 0.250503i
\(4\) −1.10004 + 0.529753i −0.550022 + 0.264877i
\(5\) −0.299361 1.31158i −0.133878 0.586559i −0.996709 0.0810654i \(-0.974168\pi\)
0.862831 0.505493i \(-0.168689\pi\)
\(6\) 0.399359 1.74971i 0.163038 0.714314i
\(7\) 1.00367 + 0.483344i 0.379353 + 0.182687i 0.613836 0.789433i \(-0.289625\pi\)
−0.234483 + 0.972120i \(0.575340\pi\)
\(8\) −0.871733 1.09312i −0.308204 0.386476i
\(9\) 0.623490 + 0.781831i 0.207830 + 0.260610i
\(10\) −2.17533 + 1.04759i −0.687901 + 0.331276i
\(11\) −1.53957 + 1.93056i −0.464198 + 0.582085i −0.957740 0.287637i \(-0.907130\pi\)
0.493542 + 0.869722i \(0.335702\pi\)
\(12\) −1.22096 −0.352460
\(13\) −1.75674 + 2.20289i −0.487233 + 0.610971i −0.963296 0.268440i \(-0.913492\pi\)
0.476063 + 0.879411i \(0.342063\pi\)
\(14\) 0.444884 1.94916i 0.118900 0.520936i
\(15\) 0.299361 1.31158i 0.0772946 0.338650i
\(16\) −3.08701 + 3.87099i −0.771752 + 0.967747i
\(17\) 5.50816 1.33593 0.667963 0.744195i \(-0.267167\pi\)
0.667963 + 0.744195i \(0.267167\pi\)
\(18\) 1.11898 1.40315i 0.263746 0.330727i
\(19\) 0.318651 0.153454i 0.0731035 0.0352048i −0.396975 0.917830i \(-0.629940\pi\)
0.470078 + 0.882625i \(0.344226\pi\)
\(20\) 1.02413 + 1.28421i 0.229002 + 0.287159i
\(21\) 0.694564 + 0.870956i 0.151566 + 0.190058i
\(22\) 3.99275 + 1.92281i 0.851257 + 0.409944i
\(23\) −1.18272 + 5.18183i −0.246614 + 1.08049i 0.688248 + 0.725475i \(0.258380\pi\)
−0.934862 + 0.355011i \(0.884477\pi\)
\(24\) −0.311118 1.36310i −0.0635066 0.278241i
\(25\) 2.87421 1.38414i 0.574841 0.276829i
\(26\) 4.55597 + 2.19404i 0.893500 + 0.430287i
\(27\) 0.222521 + 0.974928i 0.0428242 + 0.187625i
\(28\) −1.36014 −0.257042
\(29\) −5.29503 0.981140i −0.983263 0.182193i
\(30\) −2.41444 −0.440814
\(31\) 0.990316 + 4.33886i 0.177866 + 0.779282i 0.982613 + 0.185664i \(0.0594436\pi\)
−0.804747 + 0.593618i \(0.797699\pi\)
\(32\) 5.48653 + 2.64217i 0.969891 + 0.467075i
\(33\) −2.22474 + 1.07138i −0.387278 + 0.186503i
\(34\) −2.19973 9.63766i −0.377251 1.65285i
\(35\) 0.333486 1.46110i 0.0563694 0.246971i
\(36\) −1.10004 0.529753i −0.183341 0.0882922i
\(37\) −6.00176 7.52597i −0.986684 1.23726i −0.971417 0.237379i \(-0.923712\pi\)
−0.0152665 0.999883i \(-0.504860\pi\)
\(38\) −0.395756 0.496262i −0.0642001 0.0805043i
\(39\) −2.53857 + 1.22251i −0.406496 + 0.195758i
\(40\) −1.17275 + 1.47059i −0.185429 + 0.232520i
\(41\) −9.05582 −1.41428 −0.707141 0.707073i \(-0.750015\pi\)
−0.707141 + 0.707073i \(0.750015\pi\)
\(42\) 1.24654 1.56311i 0.192345 0.241193i
\(43\) 2.01367 8.82247i 0.307082 1.34541i −0.552114 0.833769i \(-0.686179\pi\)
0.859196 0.511646i \(-0.170964\pi\)
\(44\) 0.670874 2.93929i 0.101138 0.443115i
\(45\) 0.838790 1.05181i 0.125039 0.156794i
\(46\) 9.53901 1.40645
\(47\) 2.24139 2.81061i 0.326940 0.409970i −0.591011 0.806664i \(-0.701271\pi\)
0.917951 + 0.396694i \(0.129842\pi\)
\(48\) −4.46086 + 2.14824i −0.643869 + 0.310071i
\(49\) −3.59069 4.50258i −0.512955 0.643226i
\(50\) −3.56969 4.47624i −0.504830 0.633037i
\(51\) 4.96268 + 2.38990i 0.694915 + 0.334653i
\(52\) 0.765509 3.35391i 0.106157 0.465104i
\(53\) 1.46472 + 6.41735i 0.201194 + 0.881490i 0.970211 + 0.242261i \(0.0778892\pi\)
−0.769017 + 0.639229i \(0.779254\pi\)
\(54\) 1.61697 0.778692i 0.220042 0.105967i
\(55\) 2.99298 + 1.44134i 0.403573 + 0.194351i
\(56\) −0.346583 1.51848i −0.0463142 0.202916i
\(57\) 0.353676 0.0468455
\(58\) 0.397912 + 9.65657i 0.0522484 + 1.26797i
\(59\) −6.26677 −0.815864 −0.407932 0.913012i \(-0.633750\pi\)
−0.407932 + 0.913012i \(0.633750\pi\)
\(60\) 0.365506 + 1.60139i 0.0471867 + 0.206738i
\(61\) −0.106516 0.0512953i −0.0136379 0.00656769i 0.427052 0.904227i \(-0.359552\pi\)
−0.440690 + 0.897659i \(0.645266\pi\)
\(62\) 7.19623 3.46552i 0.913922 0.440122i
\(63\) 0.247887 + 1.08606i 0.0312308 + 0.136831i
\(64\) 0.228450 1.00091i 0.0285563 0.125113i
\(65\) 3.41517 + 1.64466i 0.423600 + 0.203995i
\(66\) 2.76307 + 3.46478i 0.340110 + 0.426485i
\(67\) 8.91797 + 11.1828i 1.08950 + 1.36619i 0.925066 + 0.379807i \(0.124010\pi\)
0.164438 + 0.986387i \(0.447419\pi\)
\(68\) −6.05922 + 2.91797i −0.734789 + 0.353856i
\(69\) −3.31391 + 4.15551i −0.398947 + 0.500264i
\(70\) −2.68967 −0.321477
\(71\) 4.68005 5.86860i 0.555420 0.696475i −0.422284 0.906464i \(-0.638771\pi\)
0.977704 + 0.209989i \(0.0673428\pi\)
\(72\) 0.311118 1.36310i 0.0366656 0.160642i
\(73\) 3.54339 15.5246i 0.414723 1.81702i −0.146326 0.989236i \(-0.546745\pi\)
0.561049 0.827783i \(-0.310398\pi\)
\(74\) −10.7714 + 13.5069i −1.25215 + 1.57014i
\(75\) 3.19013 0.368364
\(76\) −0.269237 + 0.337613i −0.0308836 + 0.0387268i
\(77\) −2.47835 + 1.19351i −0.282434 + 0.136013i
\(78\) 3.15283 + 3.95353i 0.356988 + 0.447649i
\(79\) 0.160241 + 0.200936i 0.0180285 + 0.0226070i 0.790764 0.612121i \(-0.209684\pi\)
−0.772736 + 0.634728i \(0.781112\pi\)
\(80\) 6.00126 + 2.89005i 0.670961 + 0.323118i
\(81\) −0.222521 + 0.974928i −0.0247245 + 0.108325i
\(82\) 3.61652 + 15.8450i 0.399378 + 1.74979i
\(83\) 5.52291 2.65969i 0.606218 0.291939i −0.105483 0.994421i \(-0.533639\pi\)
0.711702 + 0.702482i \(0.247925\pi\)
\(84\) −1.22544 0.590142i −0.133707 0.0643898i
\(85\) −1.64893 7.22442i −0.178851 0.783599i
\(86\) −16.2409 −1.75130
\(87\) −4.34496 3.18140i −0.465828 0.341082i
\(88\) 3.45242 0.368029
\(89\) −1.66948 7.31446i −0.176964 0.775331i −0.983021 0.183493i \(-0.941260\pi\)
0.806057 0.591838i \(-0.201598\pi\)
\(90\) −2.17533 1.04759i −0.229300 0.110425i
\(91\) −2.82795 + 1.36187i −0.296450 + 0.142763i
\(92\) −1.44405 6.32679i −0.150553 0.659614i
\(93\) −0.990316 + 4.33886i −0.102691 + 0.449918i
\(94\) −5.81286 2.79933i −0.599551 0.288729i
\(95\) −0.296660 0.372000i −0.0304367 0.0381664i
\(96\) 3.79680 + 4.76103i 0.387509 + 0.485921i
\(97\) −6.37706 + 3.07103i −0.647492 + 0.311816i −0.728651 0.684885i \(-0.759852\pi\)
0.0811586 + 0.996701i \(0.474138\pi\)
\(98\) −6.44422 + 8.08079i −0.650964 + 0.816283i
\(99\) −2.46928 −0.248172
\(100\) −2.42850 + 3.04524i −0.242850 + 0.304524i
\(101\) 0.578078 2.53272i 0.0575209 0.252015i −0.937990 0.346662i \(-0.887315\pi\)
0.995511 + 0.0946468i \(0.0301722\pi\)
\(102\) 2.19973 9.63766i 0.217806 0.954271i
\(103\) −4.34138 + 5.44392i −0.427769 + 0.536405i −0.948274 0.317453i \(-0.897172\pi\)
0.520505 + 0.853859i \(0.325744\pi\)
\(104\) 3.93942 0.386292
\(105\) 0.934407 1.17171i 0.0911888 0.114347i
\(106\) 10.6435 5.12565i 1.03379 0.497847i
\(107\) 9.44518 + 11.8439i 0.913100 + 1.14499i 0.989006 + 0.147877i \(0.0472438\pi\)
−0.0759056 + 0.997115i \(0.524185\pi\)
\(108\) −0.761254 0.954583i −0.0732517 0.0918547i
\(109\) −14.5579 7.01072i −1.39439 0.671505i −0.422378 0.906420i \(-0.638805\pi\)
−0.972016 + 0.234915i \(0.924519\pi\)
\(110\) 1.32665 5.81244i 0.126491 0.554195i
\(111\) −2.14200 9.38473i −0.203310 0.890760i
\(112\) −4.96937 + 2.39312i −0.469561 + 0.226129i
\(113\) 13.5689 + 6.53446i 1.27646 + 0.614710i 0.944477 0.328576i \(-0.106569\pi\)
0.331981 + 0.943286i \(0.392283\pi\)
\(114\) −0.141244 0.618829i −0.0132287 0.0579586i
\(115\) 7.15047 0.666785
\(116\) 6.34453 1.72576i 0.589075 0.160233i
\(117\) −2.81760 −0.260487
\(118\) 2.50269 + 10.9650i 0.230391 + 1.00941i
\(119\) 5.52840 + 2.66234i 0.506788 + 0.244056i
\(120\) −1.69468 + 0.816115i −0.154702 + 0.0745007i
\(121\) 1.09095 + 4.77975i 0.0991769 + 0.434523i
\(122\) −0.0472136 + 0.206856i −0.00427452 + 0.0187279i
\(123\) −8.15901 3.92917i −0.735673 0.354282i
\(124\) −3.38791 4.24831i −0.304244 0.381510i
\(125\) −6.86980 8.61445i −0.614453 0.770500i
\(126\) 1.80130 0.867459i 0.160472 0.0772794i
\(127\) 0.407770 0.511327i 0.0361837 0.0453729i −0.763410 0.645914i \(-0.776477\pi\)
0.799594 + 0.600541i \(0.205048\pi\)
\(128\) 10.3367 0.913640
\(129\) 5.64218 7.07508i 0.496767 0.622926i
\(130\) 1.51379 6.63235i 0.132768 0.581696i
\(131\) 0.0119320 0.0522777i 0.00104251 0.00456752i −0.974404 0.224804i \(-0.927826\pi\)
0.975446 + 0.220237i \(0.0706829\pi\)
\(132\) 1.87975 2.35713i 0.163611 0.205162i
\(133\) 0.393993 0.0341635
\(134\) 16.0051 20.0698i 1.38263 1.73376i
\(135\) 1.21209 0.583710i 0.104320 0.0502378i
\(136\) −4.80164 6.02107i −0.411738 0.516303i
\(137\) 7.34575 + 9.21128i 0.627590 + 0.786973i 0.989390 0.145283i \(-0.0464091\pi\)
−0.361800 + 0.932256i \(0.617838\pi\)
\(138\) 8.59435 + 4.13882i 0.731600 + 0.352320i
\(139\) 1.57827 6.91483i 0.133867 0.586508i −0.862844 0.505470i \(-0.831319\pi\)
0.996711 0.0810385i \(-0.0258237\pi\)
\(140\) 0.407172 + 1.78394i 0.0344123 + 0.150770i
\(141\) 3.23890 1.55977i 0.272765 0.131357i
\(142\) −12.1373 5.84504i −1.01854 0.490505i
\(143\) −1.54817 6.78299i −0.129465 0.567222i
\(144\) −4.95118 −0.412598
\(145\) 0.298276 + 7.23860i 0.0247705 + 0.601133i
\(146\) −28.5786 −2.36518
\(147\) −1.28150 5.61463i −0.105696 0.463087i
\(148\) 10.5891 + 5.09945i 0.870420 + 0.419172i
\(149\) 3.53906 1.70432i 0.289931 0.139624i −0.283265 0.959042i \(-0.591418\pi\)
0.573196 + 0.819418i \(0.305703\pi\)
\(150\) −1.27401 5.58179i −0.104022 0.455751i
\(151\) −4.86221 + 21.3028i −0.395681 + 1.73359i 0.248419 + 0.968653i \(0.420089\pi\)
−0.644101 + 0.764941i \(0.722768\pi\)
\(152\) −0.445522 0.214552i −0.0361366 0.0174025i
\(153\) 3.43428 + 4.30645i 0.277645 + 0.348156i
\(154\) 3.07804 + 3.85974i 0.248036 + 0.311027i
\(155\) 5.39432 2.59777i 0.433282 0.208658i
\(156\) 2.14491 2.68963i 0.171730 0.215343i
\(157\) −10.3803 −0.828438 −0.414219 0.910177i \(-0.635945\pi\)
−0.414219 + 0.910177i \(0.635945\pi\)
\(158\) 0.287584 0.360620i 0.0228790 0.0286893i
\(159\) −1.46472 + 6.41735i −0.116160 + 0.508929i
\(160\) 1.82298 7.98701i 0.144120 0.631429i
\(161\) −3.69167 + 4.62921i −0.290945 + 0.364833i
\(162\) 1.79470 0.141005
\(163\) −5.56602 + 6.97957i −0.435965 + 0.546682i −0.950475 0.310802i \(-0.899402\pi\)
0.514510 + 0.857484i \(0.327974\pi\)
\(164\) 9.96180 4.79735i 0.777886 0.374610i
\(165\) 2.07121 + 2.59721i 0.161243 + 0.202192i
\(166\) −6.85931 8.60130i −0.532385 0.667590i
\(167\) −18.0257 8.68071i −1.39487 0.671733i −0.422755 0.906244i \(-0.638937\pi\)
−0.972114 + 0.234510i \(0.924651\pi\)
\(168\) 0.346583 1.51848i 0.0267395 0.117153i
\(169\) 1.12621 + 4.93425i 0.0866316 + 0.379558i
\(170\) −11.9821 + 5.77027i −0.918985 + 0.442560i
\(171\) 0.318651 + 0.153454i 0.0243678 + 0.0117349i
\(172\) 2.45861 + 10.7719i 0.187467 + 0.821347i
\(173\) −3.99833 −0.303987 −0.151994 0.988381i \(-0.548569\pi\)
−0.151994 + 0.988381i \(0.548569\pi\)
\(174\) −3.83132 + 8.87292i −0.290452 + 0.672654i
\(175\) 3.55379 0.268641
\(176\) −2.72050 11.9193i −0.205066 0.898451i
\(177\) −5.64617 2.71905i −0.424392 0.204376i
\(178\) −12.1314 + 5.84219i −0.909289 + 0.437890i
\(179\) 2.30444 + 10.0964i 0.172242 + 0.754642i 0.985072 + 0.172141i \(0.0550686\pi\)
−0.812830 + 0.582501i \(0.802074\pi\)
\(180\) −0.365506 + 1.60139i −0.0272432 + 0.119360i
\(181\) 8.73683 + 4.20743i 0.649403 + 0.312736i 0.729429 0.684057i \(-0.239786\pi\)
−0.0800256 + 0.996793i \(0.525500\pi\)
\(182\) 3.51224 + 4.40420i 0.260344 + 0.326461i
\(183\) −0.0737112 0.0924309i −0.00544889 0.00683269i
\(184\) 6.69537 3.22432i 0.493589 0.237700i
\(185\) −8.07426 + 10.1248i −0.593631 + 0.744390i
\(186\) 7.98721 0.585651
\(187\) −8.48020 + 10.6338i −0.620133 + 0.777623i
\(188\) −0.976695 + 4.27918i −0.0712328 + 0.312091i
\(189\) −0.247887 + 1.08606i −0.0180311 + 0.0789996i
\(190\) −0.532416 + 0.667629i −0.0386255 + 0.0484349i
\(191\) 1.15201 0.0833568 0.0416784 0.999131i \(-0.486730\pi\)
0.0416784 + 0.999131i \(0.486730\pi\)
\(192\) 0.640104 0.802665i 0.0461955 0.0579273i
\(193\) 24.9283 12.0048i 1.79438 0.864128i 0.857494 0.514494i \(-0.172020\pi\)
0.936886 0.349634i \(-0.113694\pi\)
\(194\) 7.92013 + 9.93153i 0.568632 + 0.713042i
\(195\) 2.36337 + 2.96358i 0.169245 + 0.212226i
\(196\) 6.33517 + 3.05086i 0.452512 + 0.217918i
\(197\) 3.31415 14.5202i 0.236123 1.03452i −0.708331 0.705880i \(-0.750552\pi\)
0.944454 0.328643i \(-0.106591\pi\)
\(198\) 0.986128 + 4.32051i 0.0700811 + 0.307045i
\(199\) 8.26420 3.97983i 0.585834 0.282123i −0.117396 0.993085i \(-0.537455\pi\)
0.703230 + 0.710962i \(0.251740\pi\)
\(200\) −4.01857 1.93524i −0.284156 0.136842i
\(201\) 3.18279 + 13.9447i 0.224497 + 0.983584i
\(202\) −4.66238 −0.328044
\(203\) −4.84026 3.54407i −0.339720 0.248745i
\(204\) −6.72523 −0.470860
\(205\) 2.71096 + 11.8775i 0.189341 + 0.829559i
\(206\) 11.2590 + 5.42206i 0.784453 + 0.377773i
\(207\) −4.78873 + 2.30613i −0.332840 + 0.160287i
\(208\) −3.10426 13.6007i −0.215242 0.943036i
\(209\) −0.194333 + 0.851428i −0.0134423 + 0.0588945i
\(210\) −2.42331 1.16701i −0.167224 0.0805310i
\(211\) −0.158153 0.198317i −0.0108877 0.0136527i 0.776358 0.630292i \(-0.217065\pi\)
−0.787246 + 0.616640i \(0.788494\pi\)
\(212\) −5.01086 6.28343i −0.344148 0.431547i
\(213\) 6.76287 3.25683i 0.463384 0.223154i
\(214\) 16.9513 21.2562i 1.15877 1.45305i
\(215\) −12.1742 −0.830276
\(216\) 0.871733 1.09312i 0.0593139 0.0743773i
\(217\) −1.10321 + 4.83346i −0.0748905 + 0.328117i
\(218\) −6.45286 + 28.2718i −0.437043 + 1.91481i
\(219\) 9.92836 12.4498i 0.670897 0.841278i
\(220\) −4.05596 −0.273453
\(221\) −9.67643 + 12.1339i −0.650907 + 0.816211i
\(222\) −15.5651 + 7.49575i −1.04466 + 0.503082i
\(223\) 13.7933 + 17.2963i 0.923669 + 1.15824i 0.987075 + 0.160256i \(0.0512320\pi\)
−0.0634067 + 0.997988i \(0.520197\pi\)
\(224\) 4.22961 + 5.30376i 0.282603 + 0.354373i
\(225\) 2.87421 + 1.38414i 0.191614 + 0.0922763i
\(226\) 6.01450 26.3512i 0.400079 1.75286i
\(227\) −4.31417 18.9016i −0.286342 1.25454i −0.889505 0.456926i \(-0.848950\pi\)
0.603163 0.797618i \(-0.293907\pi\)
\(228\) −0.389059 + 0.187361i −0.0257661 + 0.0124083i
\(229\) −18.6550 8.98377i −1.23276 0.593664i −0.299920 0.953964i \(-0.596960\pi\)
−0.932836 + 0.360300i \(0.882674\pi\)
\(230\) −2.85560 12.5112i −0.188293 0.824965i
\(231\) −2.75076 −0.180987
\(232\) 3.54335 + 6.64339i 0.232632 + 0.436160i
\(233\) 21.9063 1.43513 0.717566 0.696491i \(-0.245256\pi\)
0.717566 + 0.696491i \(0.245256\pi\)
\(234\) 1.12523 + 4.92997i 0.0735587 + 0.322282i
\(235\) −4.35734 2.09838i −0.284242 0.136884i
\(236\) 6.89373 3.31984i 0.448743 0.216103i
\(237\) 0.0571893 + 0.250563i 0.00371484 + 0.0162758i
\(238\) 2.45049 10.7363i 0.158842 0.695931i
\(239\) −0.420848 0.202670i −0.0272224 0.0131096i 0.420223 0.907421i \(-0.361952\pi\)
−0.447445 + 0.894311i \(0.647666\pi\)
\(240\) 4.15300 + 5.20770i 0.268075 + 0.336155i
\(241\) 5.46633 + 6.85456i 0.352117 + 0.441541i 0.926072 0.377346i \(-0.123163\pi\)
−0.573955 + 0.818887i \(0.694592\pi\)
\(242\) 7.92747 3.81767i 0.509597 0.245409i
\(243\) −0.623490 + 0.781831i −0.0399969 + 0.0501545i
\(244\) 0.144346 0.00924080
\(245\) −4.83061 + 6.05739i −0.308616 + 0.386992i
\(246\) −3.61652 + 15.8450i −0.230581 + 1.01024i
\(247\) −0.221746 + 0.971531i −0.0141093 + 0.0618171i
\(248\) 3.87959 4.86485i 0.246354 0.308919i
\(249\) 6.12997 0.388471
\(250\) −12.3292 + 15.4604i −0.779770 + 0.977800i
\(251\) 4.39668 2.11733i 0.277516 0.133645i −0.289949 0.957042i \(-0.593638\pi\)
0.567465 + 0.823397i \(0.307924\pi\)
\(252\) −0.848033 1.06340i −0.0534211 0.0669879i
\(253\) −8.18295 10.2611i −0.514458 0.645110i
\(254\) −1.05752 0.509274i −0.0663546 0.0319547i
\(255\) 1.64893 7.22442i 0.103260 0.452411i
\(256\) −4.58494 20.0879i −0.286558 1.25549i
\(257\) 2.86362 1.37905i 0.178628 0.0860226i −0.342433 0.939542i \(-0.611251\pi\)
0.521060 + 0.853520i \(0.325537\pi\)
\(258\) −14.6326 7.04667i −0.910983 0.438706i
\(259\) −2.38618 10.4545i −0.148270 0.649614i
\(260\) −4.62810 −0.287023
\(261\) −2.53431 4.75155i −0.156870 0.294114i
\(262\) −0.0962357 −0.00594546
\(263\) −5.40607 23.6855i −0.333352 1.46051i −0.812594 0.582830i \(-0.801946\pi\)
0.479242 0.877683i \(-0.340912\pi\)
\(264\) 3.11052 + 1.49795i 0.191440 + 0.0921924i
\(265\) 7.97841 3.84220i 0.490110 0.236025i
\(266\) −0.157345 0.689372i −0.00964741 0.0422681i
\(267\) 1.66948 7.31446i 0.102170 0.447638i
\(268\) −15.7343 7.57723i −0.961124 0.462853i
\(269\) 5.39535 + 6.76556i 0.328960 + 0.412503i 0.918616 0.395152i \(-0.129308\pi\)
−0.589656 + 0.807655i \(0.700737\pi\)
\(270\) −1.50538 1.88768i −0.0916144 0.114881i
\(271\) 12.8508 6.18861i 0.780630 0.375931i −0.000740231 1.00000i \(-0.500236\pi\)
0.781370 + 0.624068i \(0.214521\pi\)
\(272\) −17.0037 + 21.3220i −1.03100 + 1.29284i
\(273\) −3.13879 −0.189968
\(274\) 13.1834 16.5315i 0.796441 0.998705i
\(275\) −1.75287 + 7.67981i −0.105702 + 0.463110i
\(276\) 1.44405 6.32679i 0.0869215 0.380828i
\(277\) 4.73601 5.93876i 0.284559 0.356826i −0.618923 0.785452i \(-0.712431\pi\)
0.903482 + 0.428626i \(0.141002\pi\)
\(278\) −12.7292 −0.763447
\(279\) −2.77480 + 3.47949i −0.166123 + 0.208312i
\(280\) −1.88786 + 0.909147i −0.112821 + 0.0543319i
\(281\) 0.816328 + 1.02364i 0.0486980 + 0.0610654i 0.805584 0.592481i \(-0.201852\pi\)
−0.756886 + 0.653547i \(0.773280\pi\)
\(282\) −4.02263 5.04421i −0.239544 0.300379i
\(283\) −21.1963 10.2076i −1.25999 0.606780i −0.319819 0.947479i \(-0.603622\pi\)
−0.940172 + 0.340699i \(0.889336\pi\)
\(284\) −2.03935 + 8.93500i −0.121013 + 0.530194i
\(285\) −0.105877 0.463876i −0.00627159 0.0274776i
\(286\) −11.2500 + 5.41770i −0.665224 + 0.320355i
\(287\) −9.08909 4.37708i −0.536512 0.258371i
\(288\) 1.35506 + 5.93691i 0.0798478 + 0.349836i
\(289\) 13.3399 0.784697
\(290\) 12.5463 3.41269i 0.736744 0.200400i
\(291\) −7.07800 −0.414920
\(292\) 4.32633 + 18.9549i 0.253179 + 1.10925i
\(293\) 14.2589 + 6.86673i 0.833014 + 0.401158i 0.801245 0.598337i \(-0.204172\pi\)
0.0317693 + 0.999495i \(0.489886\pi\)
\(294\) −9.31216 + 4.48450i −0.543096 + 0.261541i
\(295\) 1.87603 + 8.21940i 0.109226 + 0.478552i
\(296\) −2.99484 + 13.1213i −0.174072 + 0.762658i
\(297\) −2.22474 1.07138i −0.129093 0.0621677i
\(298\) −4.39542 5.51168i −0.254620 0.319283i
\(299\) −9.33725 11.7085i −0.539987 0.677122i
\(300\) −3.50928 + 1.68998i −0.202608 + 0.0975711i
\(301\) 6.28536 7.88159i 0.362282 0.454288i
\(302\) 39.2153 2.25659
\(303\) 1.61974 2.03109i 0.0930515 0.116683i
\(304\) −0.389659 + 1.70721i −0.0223485 + 0.0979151i
\(305\) −0.0353915 + 0.155060i −0.00202651 + 0.00887872i
\(306\) 6.16352 7.72880i 0.352345 0.441826i
\(307\) −7.55550 −0.431215 −0.215608 0.976480i \(-0.569173\pi\)
−0.215608 + 0.976480i \(0.569173\pi\)
\(308\) 2.09403 2.62583i 0.119318 0.149620i
\(309\) −6.27348 + 3.02115i −0.356886 + 0.171867i
\(310\) −6.69959 8.40103i −0.380511 0.477146i
\(311\) 8.83323 + 11.0765i 0.500886 + 0.628092i 0.966429 0.256934i \(-0.0827123\pi\)
−0.465543 + 0.885025i \(0.654141\pi\)
\(312\) 3.54930 + 1.70925i 0.200940 + 0.0967674i
\(313\) −3.77415 + 16.5356i −0.213327 + 0.934648i 0.748960 + 0.662615i \(0.230553\pi\)
−0.962288 + 0.272034i \(0.912304\pi\)
\(314\) 4.14546 + 18.1625i 0.233942 + 1.02497i
\(315\) 1.35026 0.650250i 0.0760784 0.0366374i
\(316\) −0.282718 0.136150i −0.0159041 0.00765903i
\(317\) 1.05268 + 4.61207i 0.0591241 + 0.259040i 0.995848 0.0910287i \(-0.0290155\pi\)
−0.936724 + 0.350068i \(0.886158\pi\)
\(318\) 11.8134 0.662463
\(319\) 10.0462 8.71184i 0.562480 0.487769i
\(320\) −1.38116 −0.0772093
\(321\) 3.37095 + 14.7691i 0.188148 + 0.824330i
\(322\) 9.57406 + 4.61062i 0.533541 + 0.256940i
\(323\) 1.75518 0.845251i 0.0976609 0.0470310i
\(324\) −0.271688 1.19034i −0.0150938 0.0661303i
\(325\) −2.00013 + 8.76314i −0.110947 + 0.486091i
\(326\) 14.4350 + 6.95155i 0.799483 + 0.385011i
\(327\) −10.0744 12.6329i −0.557115 0.698600i
\(328\) 7.89425 + 9.89908i 0.435887 + 0.546585i
\(329\) 3.60812 1.73758i 0.198922 0.0957958i
\(330\) 3.71720 4.66122i 0.204625 0.256592i
\(331\) −1.77434 −0.0975263 −0.0487631 0.998810i \(-0.515528\pi\)
−0.0487631 + 0.998810i \(0.515528\pi\)
\(332\) −4.66647 + 5.85156i −0.256106 + 0.321146i
\(333\) 2.14200 9.38473i 0.117381 0.514280i
\(334\) −7.98997 + 35.0063i −0.437192 + 1.91546i
\(335\) 11.9975 15.0444i 0.655492 0.821961i
\(336\) −5.51558 −0.300900
\(337\) 0.778021 0.975608i 0.0423815 0.0531447i −0.760189 0.649702i \(-0.774894\pi\)
0.802571 + 0.596557i \(0.203465\pi\)
\(338\) 8.18373 3.94108i 0.445136 0.214366i
\(339\) 9.39000 + 11.7747i 0.509995 + 0.639513i
\(340\) 5.64105 + 7.07366i 0.305929 + 0.383623i
\(341\) −9.90108 4.76811i −0.536173 0.258208i
\(342\) 0.141244 0.618829i 0.00763758 0.0334624i
\(343\) −3.16280 13.8571i −0.170775 0.748214i
\(344\) −11.3994 + 5.48966i −0.614614 + 0.295982i
\(345\) 6.44235 + 3.10247i 0.346845 + 0.167032i
\(346\) 1.59677 + 6.99590i 0.0858428 + 0.376102i
\(347\) −26.1773 −1.40527 −0.702636 0.711550i \(-0.747994\pi\)
−0.702636 + 0.711550i \(0.747994\pi\)
\(348\) 6.46501 + 1.19793i 0.346561 + 0.0642158i
\(349\) 23.8884 1.27872 0.639359 0.768908i \(-0.279200\pi\)
0.639359 + 0.768908i \(0.279200\pi\)
\(350\) −1.41924 6.21808i −0.0758613 0.332370i
\(351\) −2.53857 1.22251i −0.135499 0.0652527i
\(352\) −13.5478 + 6.52426i −0.722098 + 0.347744i
\(353\) 0.473289 + 2.07361i 0.0251906 + 0.110367i 0.985960 0.166981i \(-0.0534017\pi\)
−0.960770 + 0.277348i \(0.910545\pi\)
\(354\) −2.50269 + 10.9650i −0.133017 + 0.582784i
\(355\) −9.09819 4.38146i −0.482882 0.232544i
\(356\) 5.71136 + 7.16182i 0.302701 + 0.379575i
\(357\) 3.82577 + 4.79737i 0.202481 + 0.253904i
\(358\) 16.7455 8.06420i 0.885026 0.426206i
\(359\) −17.0899 + 21.4300i −0.901970 + 1.13103i 0.0888767 + 0.996043i \(0.471672\pi\)
−0.990847 + 0.134992i \(0.956899\pi\)
\(360\) −1.88095 −0.0991349
\(361\) −11.7683 + 14.7570i −0.619385 + 0.776684i
\(362\) 3.87264 16.9672i 0.203542 0.891774i
\(363\) −1.09095 + 4.77975i −0.0572598 + 0.250872i
\(364\) 2.38942 2.99623i 0.125239 0.157045i
\(365\) −21.4226 −1.12131
\(366\) −0.132290 + 0.165886i −0.00691489 + 0.00867100i
\(367\) −24.5657 + 11.8302i −1.28232 + 0.617533i −0.945985 0.324210i \(-0.894902\pi\)
−0.336335 + 0.941742i \(0.609187\pi\)
\(368\) −16.4077 20.5747i −0.855312 1.07253i
\(369\) −5.64621 7.08013i −0.293930 0.368577i
\(370\) 20.9399 + 10.0841i 1.08862 + 0.524250i
\(371\) −1.63169 + 7.14889i −0.0847130 + 0.371152i
\(372\) −1.20913 5.29756i −0.0626906 0.274666i
\(373\) −5.81683 + 2.80124i −0.301184 + 0.145043i −0.578372 0.815773i \(-0.696312\pi\)
0.277188 + 0.960816i \(0.410597\pi\)
\(374\) 21.9927 + 10.5911i 1.13722 + 0.547655i
\(375\) −2.45180 10.7420i −0.126611 0.554717i
\(376\) −5.02622 −0.259208
\(377\) 11.4634 9.94074i 0.590393 0.511974i
\(378\) 1.99929 0.102832
\(379\) 4.26365 + 18.6803i 0.219009 + 0.959540i 0.958212 + 0.286058i \(0.0923451\pi\)
−0.739203 + 0.673482i \(0.764798\pi\)
\(380\) 0.523407 + 0.252059i 0.0268502 + 0.0129304i
\(381\) 0.589244 0.283765i 0.0301879 0.0145377i
\(382\) −0.460067 2.01569i −0.0235391 0.103131i
\(383\) 5.84823 25.6228i 0.298831 1.30926i −0.573041 0.819527i \(-0.694236\pi\)
0.871871 0.489735i \(-0.162907\pi\)
\(384\) 9.31300 + 4.48491i 0.475252 + 0.228869i
\(385\) 2.30731 + 2.89328i 0.117591 + 0.147455i
\(386\) −30.9603 38.8230i −1.57584 1.97604i
\(387\) 8.15319 3.92637i 0.414450 0.199589i
\(388\) 5.38816 6.75654i 0.273542 0.343011i
\(389\) −15.8638 −0.804324 −0.402162 0.915568i \(-0.631741\pi\)
−0.402162 + 0.915568i \(0.631741\pi\)
\(390\) 4.24155 5.31874i 0.214779 0.269325i
\(391\) −6.51461 + 28.5424i −0.329458 + 1.44345i
\(392\) −1.79173 + 7.85009i −0.0904961 + 0.396490i
\(393\) 0.0334328 0.0419234i 0.00168646 0.00211476i
\(394\) −26.7296 −1.34662
\(395\) 0.215574 0.270322i 0.0108467 0.0136014i
\(396\) 2.71631 1.30811i 0.136500 0.0657349i
\(397\) −2.39219 2.99971i −0.120060 0.150551i 0.718169 0.695869i \(-0.244980\pi\)
−0.838229 + 0.545318i \(0.816409\pi\)
\(398\) −10.2639 12.8705i −0.514484 0.645142i
\(399\) 0.354975 + 0.170947i 0.0177710 + 0.00855806i
\(400\) −3.51469 + 15.3989i −0.175735 + 0.769944i
\(401\) −5.52331 24.1992i −0.275821 1.20845i −0.903023 0.429593i \(-0.858657\pi\)
0.627202 0.778857i \(-0.284200\pi\)
\(402\) 23.1281 11.1379i 1.15352 0.555507i
\(403\) −11.2977 5.44070i −0.562780 0.271021i
\(404\) 0.705808 + 3.09235i 0.0351152 + 0.153850i
\(405\) 1.34531 0.0668492
\(406\) −4.26807 + 9.88438i −0.211821 + 0.490554i
\(407\) 23.7695 1.17821
\(408\) −1.71369 7.50815i −0.0848402 0.371709i
\(409\) −21.8961 10.5446i −1.08269 0.521398i −0.194517 0.980899i \(-0.562314\pi\)
−0.888177 + 0.459501i \(0.848028\pi\)
\(410\) 19.6994 9.48675i 0.972886 0.468517i
\(411\) 2.62167 + 11.4863i 0.129317 + 0.566577i
\(412\) 1.89178 8.28841i 0.0932011 0.408341i
\(413\) −6.28980 3.02901i −0.309501 0.149048i
\(414\) 5.94747 + 7.45790i 0.292302 + 0.366536i
\(415\) −5.14176 6.44756i −0.252399 0.316498i
\(416\) −15.4588 + 7.44458i −0.757932 + 0.365001i
\(417\) 4.42220 5.54526i 0.216556 0.271553i
\(418\) 1.56736 0.0766619
\(419\) 1.15814 1.45226i 0.0565789 0.0709477i −0.752737 0.658322i \(-0.771267\pi\)
0.809316 + 0.587374i \(0.199838\pi\)
\(420\) −0.407172 + 1.78394i −0.0198680 + 0.0870473i
\(421\) 3.90351 17.1024i 0.190245 0.833520i −0.786237 0.617925i \(-0.787974\pi\)
0.976483 0.215595i \(-0.0691692\pi\)
\(422\) −0.283837 + 0.355920i −0.0138170 + 0.0173259i
\(423\) 3.59491 0.174790
\(424\) 5.73808 7.19532i 0.278666 0.349436i
\(425\) 15.8316 7.62409i 0.767945 0.369823i
\(426\) −8.39930 10.5324i −0.406948 0.510296i
\(427\) −0.0821139 0.102968i −0.00397377 0.00498295i
\(428\) −16.6645 8.02518i −0.805507 0.387912i
\(429\) 1.54817 6.78299i 0.0747465 0.327486i
\(430\) 4.86189 + 21.3013i 0.234461 + 1.02724i
\(431\) 3.75976 1.81061i 0.181101 0.0872138i −0.341136 0.940014i \(-0.610812\pi\)
0.522237 + 0.852800i \(0.325097\pi\)
\(432\) −4.46086 2.14824i −0.214623 0.103357i
\(433\) −4.40642 19.3058i −0.211759 0.927777i −0.963371 0.268172i \(-0.913581\pi\)
0.751612 0.659605i \(-0.229277\pi\)
\(434\) 8.89771 0.427104
\(435\) −2.87197 + 6.65117i −0.137701 + 0.318899i
\(436\) 19.7283 0.944814
\(437\) 0.418299 + 1.83269i 0.0200100 + 0.0876694i
\(438\) −25.7484 12.3998i −1.23031 0.592485i
\(439\) 24.4235 11.7617i 1.16567 0.561356i 0.251964 0.967737i \(-0.418924\pi\)
0.913704 + 0.406381i \(0.133209\pi\)
\(440\) −1.03352 4.52814i −0.0492711 0.215871i
\(441\) 1.28150 5.61463i 0.0610239 0.267363i
\(442\) 25.0950 + 12.0851i 1.19365 + 0.574831i
\(443\) 8.46977 + 10.6208i 0.402411 + 0.504608i 0.941208 0.337828i \(-0.109692\pi\)
−0.538797 + 0.842436i \(0.681121\pi\)
\(444\) 7.32789 + 9.18889i 0.347766 + 0.436085i
\(445\) −9.09376 + 4.37932i −0.431085 + 0.207600i
\(446\) 24.7549 31.0417i 1.17218 1.46987i
\(447\) 3.92807 0.185791
\(448\) 0.713072 0.894164i 0.0336895 0.0422453i
\(449\) −3.06068 + 13.4097i −0.144443 + 0.632844i 0.849929 + 0.526897i \(0.176645\pi\)
−0.994372 + 0.105947i \(0.966213\pi\)
\(450\) 1.27401 5.58179i 0.0600572 0.263128i
\(451\) 13.9421 17.4828i 0.656506 0.823233i
\(452\) −18.3881 −0.864903
\(453\) −13.6236 + 17.0835i −0.640094 + 0.802652i
\(454\) −31.3494 + 15.0971i −1.47130 + 0.708540i
\(455\) 2.63278 + 3.30141i 0.123427 + 0.154772i
\(456\) −0.308311 0.386610i −0.0144380 0.0181046i
\(457\) −2.21591 1.06713i −0.103656 0.0499181i 0.381337 0.924436i \(-0.375464\pi\)
−0.484993 + 0.874518i \(0.661178\pi\)
\(458\) −8.26891 + 36.2285i −0.386381 + 1.69285i
\(459\) 1.22568 + 5.37006i 0.0572099 + 0.250653i
\(460\) −7.86583 + 3.78799i −0.366746 + 0.176616i
\(461\) 32.4663 + 15.6349i 1.51211 + 0.728192i 0.992039 0.125933i \(-0.0401925\pi\)
0.520068 + 0.854125i \(0.325907\pi\)
\(462\) 1.09854 + 4.81302i 0.0511088 + 0.223922i
\(463\) 25.8918 1.20329 0.601646 0.798763i \(-0.294512\pi\)
0.601646 + 0.798763i \(0.294512\pi\)
\(464\) 20.1438 17.4682i 0.935152 0.810941i
\(465\) 5.98724 0.277652
\(466\) −8.74849 38.3296i −0.405266 1.77559i
\(467\) −13.0899 6.30376i −0.605728 0.291703i 0.105771 0.994391i \(-0.466269\pi\)
−0.711499 + 0.702687i \(0.751983\pi\)
\(468\) 3.09948 1.49263i 0.143274 0.0689969i
\(469\) 3.54561 + 15.5343i 0.163721 + 0.717308i
\(470\) −1.93141 + 8.46207i −0.0890894 + 0.390326i
\(471\) −9.35232 4.50384i −0.430932 0.207526i
\(472\) 5.46295 + 6.85032i 0.251453 + 0.315312i
\(473\) 13.9321 + 17.4703i 0.640600 + 0.803286i
\(474\) 0.415572 0.200129i 0.0190878 0.00919222i
\(475\) 0.703466 0.882118i 0.0322772 0.0404744i
\(476\) −7.49187 −0.343389
\(477\) −4.10405 + 5.14631i −0.187911 + 0.235633i
\(478\) −0.186543 + 0.817297i −0.00853227 + 0.0373823i
\(479\) −0.486560 + 2.13176i −0.0222315 + 0.0974025i −0.984826 0.173542i \(-0.944479\pi\)
0.962595 + 0.270944i \(0.0873359\pi\)
\(480\) 5.10789 6.40509i 0.233142 0.292351i
\(481\) 27.1224 1.23668
\(482\) 9.81043 12.3019i 0.446853 0.560336i
\(483\) −5.33462 + 2.56902i −0.242734 + 0.116894i
\(484\) −3.73218 4.68000i −0.169644 0.212727i
\(485\) 5.93696 + 7.44471i 0.269583 + 0.338047i
\(486\) 1.61697 + 0.778692i 0.0733473 + 0.0353222i
\(487\) 1.06851 4.68147i 0.0484190 0.212138i −0.944931 0.327269i \(-0.893872\pi\)
0.993350 + 0.115131i \(0.0367289\pi\)
\(488\) 0.0367815 + 0.161150i 0.00166502 + 0.00729492i
\(489\) −8.04314 + 3.87337i −0.363723 + 0.175160i
\(490\) 12.5278 + 6.03307i 0.565948 + 0.272546i
\(491\) 3.81468 + 16.7132i 0.172154 + 0.754256i 0.985109 + 0.171930i \(0.0550003\pi\)
−0.812955 + 0.582326i \(0.802143\pi\)
\(492\) 11.0568 0.498478
\(493\) −29.1659 5.40428i −1.31357 0.243396i
\(494\) 1.78845 0.0804662
\(495\) 0.739205 + 3.23867i 0.0332248 + 0.145567i
\(496\) −19.8528 9.56059i −0.891416 0.429283i
\(497\) 7.53380 3.62809i 0.337937 0.162742i
\(498\) −2.44806 10.7256i −0.109700 0.480628i
\(499\) 0.775879 3.39935i 0.0347331 0.152176i −0.954588 0.297930i \(-0.903704\pi\)
0.989321 + 0.145754i \(0.0465609\pi\)
\(500\) 12.1206 + 5.83698i 0.542050 + 0.261038i
\(501\) −12.4742 15.6421i −0.557304 0.698837i
\(502\) −5.46055 6.84732i −0.243716 0.305611i
\(503\) −29.7212 + 14.3130i −1.32520 + 0.638185i −0.956601 0.291401i \(-0.905878\pi\)
−0.368604 + 0.929586i \(0.620164\pi\)
\(504\) 0.971105 1.21773i 0.0432565 0.0542419i
\(505\) −3.49493 −0.155523
\(506\) −14.6860 + 18.4156i −0.652871 + 0.818674i
\(507\) −1.12621 + 4.93425i −0.0500168 + 0.219138i
\(508\) −0.177687 + 0.778500i −0.00788361 + 0.0345403i
\(509\) −19.3443 + 24.2570i −0.857421 + 1.07517i 0.138971 + 0.990296i \(0.455621\pi\)
−0.996392 + 0.0848752i \(0.972951\pi\)
\(510\) −13.2991 −0.588895
\(511\) 11.0601 13.8690i 0.489272 0.613528i
\(512\) −14.6909 + 7.07476i −0.649252 + 0.312663i
\(513\) 0.220513 + 0.276515i 0.00973590 + 0.0122084i
\(514\) −3.55654 4.45976i −0.156872 0.196712i
\(515\) 8.43980 + 4.06439i 0.371902 + 0.179099i
\(516\) −2.45861 + 10.7719i −0.108234 + 0.474205i
\(517\) 1.97528 + 8.65427i 0.0868727 + 0.380614i
\(518\) −17.3394 + 8.35023i −0.761851 + 0.366888i
\(519\) −3.60237 1.73481i −0.158126 0.0761497i
\(520\) −1.17931 5.16689i −0.0517161 0.226583i
\(521\) 22.9227 1.00426 0.502130 0.864792i \(-0.332550\pi\)
0.502130 + 0.864792i \(0.332550\pi\)
\(522\) −7.30172 + 6.33188i −0.319588 + 0.277139i
\(523\) −40.2928 −1.76188 −0.880940 0.473229i \(-0.843088\pi\)
−0.880940 + 0.473229i \(0.843088\pi\)
\(524\) 0.0145685 + 0.0638288i 0.000636428 + 0.00278837i
\(525\) 3.20185 + 1.54193i 0.139740 + 0.0672953i
\(526\) −39.2837 + 18.9181i −1.71285 + 0.824866i
\(527\) 5.45482 + 23.8991i 0.237616 + 1.04106i
\(528\) 2.72050 11.9193i 0.118395 0.518721i
\(529\) −4.73027 2.27798i −0.205664 0.0990425i
\(530\) −9.90897 12.4255i −0.430418 0.539727i
\(531\) −3.90727 4.89956i −0.169561 0.212623i
\(532\) −0.433410 + 0.208719i −0.0187907 + 0.00904912i
\(533\) 15.9087 19.9489i 0.689084 0.864085i
\(534\) −13.4649 −0.582682
\(535\) 12.7067 15.9338i 0.549360 0.688876i
\(536\) 4.45002 19.4968i 0.192211 0.842133i
\(537\) −2.30444 + 10.0964i −0.0994441 + 0.435693i
\(538\) 9.68305 12.1422i 0.417466 0.523486i
\(539\) 14.2206 0.612525
\(540\) −1.02413 + 1.28421i −0.0440714 + 0.0552638i
\(541\) −19.5947 + 9.43631i −0.842442 + 0.405699i −0.804767 0.593591i \(-0.797710\pi\)
−0.0376755 + 0.999290i \(0.511995\pi\)
\(542\) −15.9603 20.0136i −0.685555 0.859658i
\(543\) 6.04607 + 7.58154i 0.259462 + 0.325355i
\(544\) 30.2207 + 14.5535i 1.29570 + 0.623977i
\(545\) −4.83709 + 21.1927i −0.207198 + 0.907794i
\(546\) 1.25350 + 5.49195i 0.0536450 + 0.235034i
\(547\) 34.1837 16.4620i 1.46159 0.703864i 0.477026 0.878889i \(-0.341715\pi\)
0.984564 + 0.175025i \(0.0560006\pi\)
\(548\) −12.9604 6.24138i −0.553639 0.266619i
\(549\) −0.0263072 0.115259i −0.00112276 0.00491915i
\(550\) 14.1374 0.602822
\(551\) −1.83783 + 0.499904i −0.0782941 + 0.0212966i
\(552\) 7.43130 0.316297
\(553\) 0.0637085 + 0.279125i 0.00270916 + 0.0118696i
\(554\) −12.2825 5.91492i −0.521831 0.251301i
\(555\) −11.6676 + 5.61884i −0.495264 + 0.238507i
\(556\) 1.92699 + 8.44271i 0.0817227 + 0.358051i
\(557\) 1.64996 7.22894i 0.0699110 0.306300i −0.927868 0.372908i \(-0.878361\pi\)
0.997779 + 0.0666082i \(0.0212177\pi\)
\(558\) 7.19623 + 3.46552i 0.304641 + 0.146707i
\(559\) 15.8974 + 19.9347i 0.672388 + 0.843148i
\(560\) 4.62642 + 5.80134i 0.195502 + 0.245152i
\(561\) −12.2542 + 5.90133i −0.517374 + 0.249154i
\(562\) 1.46507 1.83713i 0.0618001 0.0774948i
\(563\) 33.6129 1.41661 0.708307 0.705904i \(-0.249459\pi\)
0.708307 + 0.705904i \(0.249459\pi\)
\(564\) −2.73664 + 3.43164i −0.115233 + 0.144498i
\(565\) 4.50849 19.7530i 0.189673 0.831014i
\(566\) −9.39538 + 41.1638i −0.394917 + 1.73024i
\(567\) −0.694564 + 0.870956i −0.0291690 + 0.0365767i
\(568\) −10.4948 −0.440353
\(569\) −10.8101 + 13.5555i −0.453184 + 0.568275i −0.954964 0.296720i \(-0.904107\pi\)
0.501780 + 0.864995i \(0.332679\pi\)
\(570\) −0.769363 + 0.370506i −0.0322251 + 0.0155188i
\(571\) −10.6261 13.3247i −0.444688 0.557621i 0.508084 0.861307i \(-0.330354\pi\)
−0.952772 + 0.303686i \(0.901782\pi\)
\(572\) 5.29637 + 6.64144i 0.221452 + 0.277693i
\(573\) 1.03793 + 0.499840i 0.0433601 + 0.0208811i
\(574\) −4.02879 + 17.6513i −0.168158 + 0.736749i
\(575\) 3.77303 + 16.5307i 0.157346 + 0.689378i
\(576\) 0.924977 0.445445i 0.0385407 0.0185602i
\(577\) 20.0898 + 9.67472i 0.836348 + 0.402764i 0.802492 0.596663i \(-0.203507\pi\)
0.0338560 + 0.999427i \(0.489221\pi\)
\(578\) −5.32739 23.3408i −0.221590 0.970850i
\(579\) 27.6684 1.14986
\(580\) −4.16279 7.80477i −0.172850 0.324075i
\(581\) 6.82875 0.283304
\(582\) 2.82666 + 12.3844i 0.117169 + 0.513351i
\(583\) −14.6441 7.05223i −0.606497 0.292073i
\(584\) −20.0591 + 9.65997i −0.830053 + 0.399732i
\(585\) 0.843478 + 3.69552i 0.0348735 + 0.152791i
\(586\) 6.32033 27.6912i 0.261090 1.14391i
\(587\) 10.8564 + 5.22817i 0.448092 + 0.215790i 0.644300 0.764773i \(-0.277149\pi\)
−0.196209 + 0.980562i \(0.562863\pi\)
\(588\) 4.38408 + 5.49746i 0.180796 + 0.226711i
\(589\) 0.981381 + 1.23061i 0.0404371 + 0.0507065i
\(590\) 13.6323 6.56498i 0.561234 0.270276i
\(591\) 9.28603 11.6443i 0.381976 0.478983i
\(592\) 47.6604 1.95883
\(593\) 1.38694 1.73917i 0.0569549 0.0714192i −0.752538 0.658549i \(-0.771171\pi\)
0.809493 + 0.587130i \(0.199742\pi\)
\(594\) −0.986128 + 4.32051i −0.0404613 + 0.177273i
\(595\) 1.83690 8.04797i 0.0753054 0.329934i
\(596\) −2.99026 + 3.74966i −0.122486 + 0.153592i
\(597\) 9.17257 0.375408
\(598\) −16.7576 + 21.0133i −0.685269 + 0.859300i
\(599\) −1.24124 + 0.597750i −0.0507157 + 0.0244234i −0.459070 0.888400i \(-0.651817\pi\)
0.408354 + 0.912824i \(0.366103\pi\)
\(600\) −2.78094 3.48719i −0.113531 0.142364i
\(601\) −11.1072 13.9280i −0.453073 0.568135i 0.501863 0.864947i \(-0.332648\pi\)
−0.954936 + 0.296812i \(0.904077\pi\)
\(602\) −16.3006 7.84995i −0.664362 0.319940i
\(603\) −3.18279 + 13.9447i −0.129613 + 0.567872i
\(604\) −5.93655 26.0097i −0.241555 1.05832i
\(605\) 5.94246 2.86174i 0.241595 0.116346i
\(606\) −4.20066 2.02293i −0.170640 0.0821760i
\(607\) 8.84235 + 38.7409i 0.358900 + 1.57244i 0.755939 + 0.654642i \(0.227180\pi\)
−0.397039 + 0.917802i \(0.629962\pi\)
\(608\) 2.15374 0.0873457
\(609\) −2.82321 5.29320i −0.114402 0.214491i
\(610\) 0.285444 0.0115573
\(611\) 2.25392 + 9.87505i 0.0911837 + 0.399502i
\(612\) −6.05922 2.91797i −0.244930 0.117952i
\(613\) 19.8105 9.54021i 0.800137 0.385326i 0.0113060 0.999936i \(-0.496401\pi\)
0.788831 + 0.614611i \(0.210687\pi\)
\(614\) 3.01736 + 13.2199i 0.121771 + 0.533512i
\(615\) −2.71096 + 11.8775i −0.109316 + 0.478946i
\(616\) 3.46511 + 1.66871i 0.139613 + 0.0672341i
\(617\) −21.0225 26.3614i −0.846335 1.06127i −0.997351 0.0727397i \(-0.976826\pi\)
0.151015 0.988531i \(-0.451746\pi\)
\(618\) 7.79149 + 9.77021i 0.313420 + 0.393016i
\(619\) −36.5273 + 17.5906i −1.46815 + 0.707026i −0.985640 0.168862i \(-0.945991\pi\)
−0.482515 + 0.875888i \(0.660277\pi\)
\(620\) −4.55781 + 5.71531i −0.183046 + 0.229533i
\(621\) −5.31509 −0.213287
\(622\) 15.8530 19.8790i 0.635648 0.797077i
\(623\) 1.85979 8.14827i 0.0745108 0.326453i
\(624\) 3.10426 13.6007i 0.124270 0.544462i
\(625\) 0.703023 0.881563i 0.0281209 0.0352625i
\(626\) 30.4397 1.21661
\(627\) −0.544509 + 0.682792i −0.0217456 + 0.0272681i
\(628\) 11.4188 5.49900i 0.455659 0.219434i
\(629\) −33.0587 41.4543i −1.31814 1.65289i
\(630\) −1.67698 2.10287i −0.0668126 0.0837804i
\(631\) 7.47192 + 3.59829i 0.297452 + 0.143246i 0.576658 0.816986i \(-0.304357\pi\)
−0.279205 + 0.960231i \(0.590071\pi\)
\(632\) 0.0799592 0.350324i 0.00318061 0.0139351i
\(633\) −0.0564440 0.247297i −0.00224345 0.00982919i
\(634\) 7.64937 3.68374i 0.303795 0.146300i
\(635\) −0.792719 0.381753i −0.0314581 0.0151494i
\(636\) −1.78836 7.83530i −0.0709130 0.310690i
\(637\) 16.2266 0.642921
\(638\) −19.2552 14.0988i −0.762321 0.558176i
\(639\) 7.50622 0.296942
\(640\) −3.09439 13.5574i −0.122316 0.535903i
\(641\) −11.0732 5.33257i −0.437365 0.210624i 0.202227 0.979339i \(-0.435182\pi\)
−0.639592 + 0.768715i \(0.720896\pi\)
\(642\) 24.4953 11.7963i 0.966753 0.465564i
\(643\) −2.51796 11.0319i −0.0992985 0.435055i −1.00000 0.000616161i \(-0.999804\pi\)
0.900701 0.434439i \(-0.143053\pi\)
\(644\) 1.60866 7.04801i 0.0633902 0.277731i
\(645\) −10.9686 5.28220i −0.431889 0.207987i
\(646\) −2.17989 2.73349i −0.0857665 0.107548i
\(647\) −18.1509 22.7605i −0.713584 0.894806i 0.284372 0.958714i \(-0.408215\pi\)
−0.997956 + 0.0639081i \(0.979644\pi\)
\(648\) 1.25969 0.606635i 0.0494853 0.0238309i
\(649\) 9.64813 12.0984i 0.378722 0.474903i
\(650\) 16.1317 0.632736
\(651\) −3.09112 + 3.87614i −0.121150 + 0.151918i
\(652\) 2.42542 10.6265i 0.0949868 0.416164i
\(653\) 5.30073 23.2240i 0.207434 0.908826i −0.758833 0.651285i \(-0.774230\pi\)
0.966267 0.257542i \(-0.0829125\pi\)
\(654\) −18.0805 + 22.6723i −0.707004 + 0.886555i
\(655\) −0.0721386 −0.00281869
\(656\) 27.9554 35.0550i 1.09147 1.36867i
\(657\) 14.3469 6.90910i 0.559726 0.269550i
\(658\) −4.48118 5.61923i −0.174695 0.219060i
\(659\) 7.09350 + 8.89497i 0.276323 + 0.346499i 0.900556 0.434740i \(-0.143160\pi\)
−0.624233 + 0.781239i \(0.714588\pi\)
\(660\) −3.65430 1.75982i −0.142243 0.0685008i
\(661\) −8.26838 + 36.2261i −0.321603 + 1.40903i 0.513098 + 0.858330i \(0.328498\pi\)
−0.834701 + 0.550704i \(0.814359\pi\)
\(662\) 0.708597 + 3.10456i 0.0275404 + 0.120662i
\(663\) −13.9828 + 6.73378i −0.543049 + 0.261518i
\(664\) −7.72186 3.71865i −0.299666 0.144312i
\(665\) −0.117946 0.516755i −0.00457375 0.0200389i
\(666\) −17.2759 −0.669429
\(667\) 11.3466 26.2776i 0.439344 1.01747i
\(668\) 24.4277 0.945135
\(669\) 4.92278 + 21.5681i 0.190326 + 0.833871i
\(670\) −31.1145 14.9840i −1.20206 0.578881i
\(671\) 0.263017 0.126662i 0.0101537 0.00488974i
\(672\) 1.50953 + 6.61369i 0.0582314 + 0.255128i
\(673\) 1.81059 7.93270i 0.0697930 0.305783i −0.927968 0.372659i \(-0.878446\pi\)
0.997761 + 0.0668760i \(0.0213032\pi\)
\(674\) −2.01774 0.971690i −0.0777203 0.0374281i
\(675\) 1.98901 + 2.49414i 0.0765571 + 0.0959996i
\(676\) −3.85282 4.83128i −0.148185 0.185819i
\(677\) −21.1533 + 10.1869i −0.812986 + 0.391513i −0.793707 0.608301i \(-0.791852\pi\)
−0.0192794 + 0.999814i \(0.506137\pi\)
\(678\) 16.8523 21.1321i 0.647207 0.811572i
\(679\) −7.88485 −0.302593
\(680\) −6.45972 + 8.10024i −0.247719 + 0.310630i
\(681\) 4.31417 18.9016i 0.165319 0.724312i
\(682\) −4.38870 + 19.2282i −0.168052 + 0.736284i
\(683\) −29.3595 + 36.8157i −1.12341 + 1.40871i −0.222380 + 0.974960i \(0.571383\pi\)
−0.901032 + 0.433754i \(0.857189\pi\)
\(684\) −0.431823 −0.0165112
\(685\) 9.88235 12.3921i 0.377585 0.473477i
\(686\) −22.9828 + 11.0679i −0.877486 + 0.422575i
\(687\) −12.9097 16.1882i −0.492534 0.617618i
\(688\) 27.9355 + 35.0300i 1.06503 + 1.33550i
\(689\) −16.7098 8.04702i −0.636593 0.306567i
\(690\) 2.85560 12.5112i 0.108711 0.476294i
\(691\) −5.42868 23.7846i −0.206517 0.904809i −0.966864 0.255292i \(-0.917828\pi\)
0.760347 0.649517i \(-0.225029\pi\)
\(692\) 4.39834 2.11813i 0.167200 0.0805191i
\(693\) −2.47835 1.19351i −0.0941447 0.0453377i
\(694\) 10.4541 + 45.8026i 0.396834 + 1.73864i
\(695\) −9.54186 −0.361943
\(696\) 0.309990 + 7.52289i 0.0117502 + 0.285154i
\(697\) −49.8809 −1.88937
\(698\) −9.54006 41.7977i −0.361097 1.58207i
\(699\) 19.7369 + 9.50480i 0.746519 + 0.359505i
\(700\) −3.90932 + 1.88263i −0.147758 + 0.0711567i
\(701\) 1.50620 + 6.59911i 0.0568885 + 0.249245i 0.995374 0.0960730i \(-0.0306282\pi\)
−0.938486 + 0.345318i \(0.887771\pi\)
\(702\) −1.12523 + 4.92997i −0.0424692 + 0.186070i
\(703\) −3.06736 1.47716i −0.115688 0.0557122i
\(704\) 1.58059 + 1.98200i 0.0595709 + 0.0746995i
\(705\) −3.01537 3.78116i −0.113566 0.142407i
\(706\) 3.43920 1.65623i 0.129436 0.0623331i
\(707\) 1.80438 2.26262i 0.0678606 0.0850945i
\(708\) 7.65146 0.287559
\(709\) −1.39012 + 1.74315i −0.0522070 + 0.0654655i −0.807249 0.590210i \(-0.799045\pi\)
0.755042 + 0.655676i \(0.227616\pi\)
\(710\) −4.03282 + 17.6689i −0.151349 + 0.663103i
\(711\) −0.0571893 + 0.250563i −0.00214476 + 0.00939683i
\(712\) −6.54023 + 8.20119i −0.245105 + 0.307352i
\(713\) −23.6545 −0.885868
\(714\) 6.86612 8.60985i 0.256958 0.322215i
\(715\) −8.43301 + 4.06112i −0.315377 + 0.151877i
\(716\) −7.88361 9.88573i −0.294624 0.369447i
\(717\) −0.291236 0.365198i −0.0108764 0.0136386i
\(718\) 44.3213 + 21.3440i 1.65406 + 0.796551i
\(719\) 6.84297 29.9810i 0.255200 1.11810i −0.671115 0.741353i \(-0.734184\pi\)
0.926315 0.376750i \(-0.122959\pi\)
\(720\) 1.48219 + 6.49389i 0.0552379 + 0.242013i
\(721\) −6.98862 + 3.36554i −0.260270 + 0.125339i
\(722\) 30.5202 + 14.6977i 1.13584 + 0.546994i
\(723\) 1.95091 + 8.54749i 0.0725551 + 0.317885i
\(724\) −11.8398 −0.440023
\(725\) −16.5771 + 4.50909i −0.615656 + 0.167463i
\(726\) 8.79883 0.326555
\(727\) −4.44938 19.4940i −0.165018 0.722992i −0.987940 0.154837i \(-0.950515\pi\)
0.822922 0.568155i \(-0.192342\pi\)
\(728\) 3.95390 + 1.90410i 0.146541 + 0.0705706i
\(729\) −0.900969 + 0.433884i −0.0333692 + 0.0160698i
\(730\) 8.55531 + 37.4832i 0.316646 + 1.38732i
\(731\) 11.0916 48.5956i 0.410239 1.79737i
\(732\) 0.130051 + 0.0626293i 0.00480683 + 0.00231485i
\(733\) 4.69062 + 5.88185i 0.173252 + 0.217251i 0.860875 0.508817i \(-0.169917\pi\)
−0.687623 + 0.726068i \(0.741346\pi\)
\(734\) 30.5099 + 38.2583i 1.12614 + 1.41214i
\(735\) −6.98043 + 3.36160i −0.257477 + 0.123994i
\(736\) −20.1803 + 25.3053i −0.743857 + 0.932767i
\(737\) −35.3189 −1.30099
\(738\) −10.1333 + 12.7067i −0.373011 + 0.467741i
\(739\) −3.86208 + 16.9209i −0.142069 + 0.622444i 0.852884 + 0.522101i \(0.174851\pi\)
−0.994953 + 0.100344i \(0.968006\pi\)
\(740\) 3.51839 15.4151i 0.129339 0.566670i
\(741\) −0.621318 + 0.779108i −0.0228247 + 0.0286212i
\(742\) 13.1601 0.483122
\(743\) −33.3942 + 41.8750i −1.22512 + 1.53625i −0.466793 + 0.884366i \(0.654591\pi\)
−0.758322 + 0.651880i \(0.773981\pi\)
\(744\) 5.60617 2.69979i 0.205532 0.0989791i
\(745\) −3.29482 4.13158i −0.120713 0.151369i
\(746\) 7.22434 + 9.05904i 0.264502 + 0.331675i
\(747\) 5.52291 + 2.65969i 0.202073 + 0.0973131i
\(748\) 3.69528 16.1901i 0.135113 0.591969i
\(749\) 3.75522 + 16.4527i 0.137213 + 0.601168i
\(750\) −17.8163 + 8.57986i −0.650558 + 0.313292i
\(751\) 36.0836 + 17.3770i 1.31671 + 0.634094i 0.954558 0.298024i \(-0.0963277\pi\)
0.362153 + 0.932119i \(0.382042\pi\)
\(752\) 3.96066 + 17.3528i 0.144430 + 0.632791i
\(753\) 4.87995 0.177835
\(754\) −21.9714 16.0876i −0.800150 0.585875i
\(755\) 29.3959 1.06983
\(756\) −0.302659 1.32604i −0.0110076 0.0482275i
\(757\) 2.93082 + 1.41141i 0.106522 + 0.0512985i 0.486386 0.873744i \(-0.338315\pi\)
−0.379864 + 0.925042i \(0.624029\pi\)
\(758\) 30.9822 14.9203i 1.12533 0.541928i
\(759\) −2.92046 12.7954i −0.106006 0.464443i
\(760\) −0.148031 + 0.648568i −0.00536967 + 0.0235260i
\(761\) 37.8911 + 18.2474i 1.37355 + 0.661467i 0.967614 0.252434i \(-0.0812310\pi\)
0.405937 + 0.913901i \(0.366945\pi\)
\(762\) −0.731825 0.917680i −0.0265112 0.0332440i
\(763\) −11.2228 14.0730i −0.406293 0.509475i
\(764\) −1.26727 + 0.610284i −0.0458481 + 0.0220793i
\(765\) 4.62019 5.79354i 0.167043 0.209466i