Properties

Label 87.2.g.b.52.3
Level $87$
Weight $2$
Character 87.52
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 52.3
Root \(-0.408260 - 1.78870i\) of defining polynomial
Character \(\chi\) \(=\) 87.52
Dual form 87.2.g.b.82.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14392 - 1.43443i) q^{2} +(0.222521 - 0.974928i) q^{3} +(-0.303995 - 1.33189i) q^{4} +(-1.40816 + 1.76577i) q^{5} +(-1.14392 - 1.43443i) q^{6} +(0.165617 - 0.725615i) q^{7} +(1.04778 + 0.504584i) q^{8} +(-0.900969 - 0.433884i) q^{9} +O(q^{10})\) \(q+(1.14392 - 1.43443i) q^{2} +(0.222521 - 0.974928i) q^{3} +(-0.303995 - 1.33189i) q^{4} +(-1.40816 + 1.76577i) q^{5} +(-1.14392 - 1.43443i) q^{6} +(0.165617 - 0.725615i) q^{7} +(1.04778 + 0.504584i) q^{8} +(-0.900969 - 0.433884i) q^{9} +(0.922058 + 4.03980i) q^{10} +(-5.68404 + 2.73729i) q^{11} -1.36614 q^{12} +(1.48289 - 0.714123i) q^{13} +(-0.851391 - 1.06761i) q^{14} +(1.40816 + 1.76577i) q^{15} +(4.38406 - 2.11125i) q^{16} +4.16595 q^{17} +(-1.65301 + 0.796048i) q^{18} +(-0.231613 - 1.01476i) q^{19} +(2.77988 + 1.33872i) q^{20} +(-0.670569 - 0.322929i) q^{21} +(-2.57563 + 11.2846i) q^{22} +(-2.85155 - 3.57573i) q^{23} +(0.725086 - 0.909229i) q^{24} +(-0.0224408 - 0.0983195i) q^{25} +(0.671949 - 2.94400i) q^{26} +(-0.623490 + 0.781831i) q^{27} -1.01678 q^{28} +(-4.68636 - 2.65293i) q^{29} +4.14369 q^{30} +(-2.20186 + 2.76105i) q^{31} +(1.46901 - 6.43615i) q^{32} +(1.40384 + 6.15063i) q^{33} +(4.76551 - 5.97577i) q^{34} +(1.04806 + 1.31422i) q^{35} +(-0.303995 + 1.33189i) q^{36} +(0.969034 + 0.466662i) q^{37} +(-1.72055 - 0.828574i) q^{38} +(-0.366244 - 1.60462i) q^{39} +(-2.36642 + 1.13961i) q^{40} -1.20065 q^{41} +(-1.23030 + 0.592479i) q^{42} +(-7.99734 - 10.0283i) q^{43} +(5.37367 + 6.73837i) q^{44} +(2.03484 - 0.979929i) q^{45} -8.39108 q^{46} +(7.10498 - 3.42158i) q^{47} +(-1.08277 - 4.74394i) q^{48} +(5.80769 + 2.79684i) q^{49} +(-0.166703 - 0.0802799i) q^{50} +(0.927012 - 4.06150i) q^{51} +(-1.40192 - 1.75795i) q^{52} +(-8.22494 + 10.3138i) q^{53} +(0.408260 + 1.78870i) q^{54} +(3.17058 - 13.8912i) q^{55} +(0.539663 - 0.676716i) q^{56} -1.04086 q^{57} +(-9.16625 + 3.68752i) q^{58} +11.0585 q^{59} +(1.92374 - 2.41229i) q^{60} +(1.43496 - 6.28696i) q^{61} +(1.44178 + 6.31683i) q^{62} +(-0.464048 + 0.581898i) q^{63} +(-1.48405 - 1.86094i) q^{64} +(-0.827164 + 3.62404i) q^{65} +(10.4285 + 5.02211i) q^{66} +(6.19652 + 2.98409i) q^{67} +(-1.26643 - 5.54858i) q^{68} +(-4.12061 + 1.98438i) q^{69} +3.08405 q^{70} +(2.95303 - 1.42211i) q^{71} +(-0.725086 - 0.909229i) q^{72} +(4.42081 + 5.54352i) q^{73} +(1.77789 - 0.856187i) q^{74} -0.100848 q^{75} +(-1.28114 + 0.616965i) q^{76} +(1.04484 + 4.57776i) q^{77} +(-2.72067 - 1.31020i) q^{78} +(-5.75663 - 2.77225i) q^{79} +(-2.44545 + 10.7142i) q^{80} +(0.623490 + 0.781831i) q^{81} +(-1.37344 + 1.72224i) q^{82} +(1.14686 + 5.02472i) q^{83} +(-0.226256 + 0.991291i) q^{84} +(-5.86631 + 7.35612i) q^{85} -23.5333 q^{86} +(-3.62923 + 3.97853i) q^{87} -7.33681 q^{88} +(5.80998 - 7.28549i) q^{89} +(0.922058 - 4.03980i) q^{90} +(-0.272586 - 1.19428i) q^{91} +(-3.89562 + 4.88495i) q^{92} +(2.20186 + 2.76105i) q^{93} +(3.21951 - 14.1056i) q^{94} +(2.11798 + 1.01997i) q^{95} +(-5.94790 - 2.86436i) q^{96} +(3.37522 + 14.7878i) q^{97} +(10.6554 - 5.13137i) q^{98} +6.30880 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14392 1.43443i 0.808873 1.01429i −0.190595 0.981669i \(-0.561042\pi\)
0.999468 0.0326259i \(-0.0103870\pi\)
\(3\) 0.222521 0.974928i 0.128473 0.562875i
\(4\) −0.303995 1.33189i −0.151997 0.665944i
\(5\) −1.40816 + 1.76577i −0.629746 + 0.789677i −0.989679 0.143301i \(-0.954228\pi\)
0.359933 + 0.932978i \(0.382800\pi\)
\(6\) −1.14392 1.43443i −0.467003 0.585603i
\(7\) 0.165617 0.725615i 0.0625973 0.274257i −0.933937 0.357437i \(-0.883651\pi\)
0.996534 + 0.0831805i \(0.0265078\pi\)
\(8\) 1.04778 + 0.504584i 0.370446 + 0.178397i
\(9\) −0.900969 0.433884i −0.300323 0.144628i
\(10\) 0.922058 + 4.03980i 0.291580 + 1.27750i
\(11\) −5.68404 + 2.73729i −1.71380 + 0.825323i −0.722865 + 0.690989i \(0.757175\pi\)
−0.990936 + 0.134334i \(0.957111\pi\)
\(12\) −1.36614 −0.394370
\(13\) 1.48289 0.714123i 0.411280 0.198062i −0.216791 0.976218i \(-0.569559\pi\)
0.628071 + 0.778156i \(0.283845\pi\)
\(14\) −0.851391 1.06761i −0.227544 0.285331i
\(15\) 1.40816 + 1.76577i 0.363584 + 0.455920i
\(16\) 4.38406 2.11125i 1.09602 0.527813i
\(17\) 4.16595 1.01039 0.505196 0.863005i \(-0.331420\pi\)
0.505196 + 0.863005i \(0.331420\pi\)
\(18\) −1.65301 + 0.796048i −0.389618 + 0.187630i
\(19\) −0.231613 1.01476i −0.0531356 0.232802i 0.941386 0.337330i \(-0.109524\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(20\) 2.77988 + 1.33872i 0.621600 + 0.299347i
\(21\) −0.670569 0.322929i −0.146330 0.0704689i
\(22\) −2.57563 + 11.2846i −0.549127 + 2.40588i
\(23\) −2.85155 3.57573i −0.594590 0.745592i 0.389934 0.920843i \(-0.372498\pi\)
−0.984524 + 0.175251i \(0.943926\pi\)
\(24\) 0.725086 0.909229i 0.148008 0.185596i
\(25\) −0.0224408 0.0983195i −0.00448816 0.0196639i
\(26\) 0.671949 2.94400i 0.131780 0.577366i
\(27\) −0.623490 + 0.781831i −0.119991 + 0.150464i
\(28\) −1.01678 −0.192154
\(29\) −4.68636 2.65293i −0.870235 0.492636i
\(30\) 4.14369 0.756531
\(31\) −2.20186 + 2.76105i −0.395466 + 0.495899i −0.939206 0.343355i \(-0.888437\pi\)
0.543740 + 0.839254i \(0.317008\pi\)
\(32\) 1.46901 6.43615i 0.259687 1.13776i
\(33\) 1.40384 + 6.15063i 0.244377 + 1.07069i
\(34\) 4.76551 5.97577i 0.817279 1.02484i
\(35\) 1.04806 + 1.31422i 0.177154 + 0.222144i
\(36\) −0.303995 + 1.33189i −0.0506658 + 0.221981i
\(37\) 0.969034 + 0.466662i 0.159308 + 0.0767188i 0.511839 0.859081i \(-0.328964\pi\)
−0.352531 + 0.935800i \(0.614679\pi\)
\(38\) −1.72055 0.828574i −0.279110 0.134412i
\(39\) −0.366244 1.60462i −0.0586460 0.256945i
\(40\) −2.36642 + 1.13961i −0.374163 + 0.180187i
\(41\) −1.20065 −0.187510 −0.0937548 0.995595i \(-0.529887\pi\)
−0.0937548 + 0.995595i \(0.529887\pi\)
\(42\) −1.23030 + 0.592479i −0.189839 + 0.0914215i
\(43\) −7.99734 10.0283i −1.21958 1.52931i −0.772778 0.634676i \(-0.781133\pi\)
−0.446804 0.894632i \(-0.647438\pi\)
\(44\) 5.37367 + 6.73837i 0.810112 + 1.01585i
\(45\) 2.03484 0.979929i 0.303337 0.146079i
\(46\) −8.39108 −1.23720
\(47\) 7.10498 3.42158i 1.03637 0.499088i 0.163243 0.986586i \(-0.447804\pi\)
0.873124 + 0.487497i \(0.162090\pi\)
\(48\) −1.08277 4.74394i −0.156285 0.684729i
\(49\) 5.80769 + 2.79684i 0.829671 + 0.399548i
\(50\) −0.166703 0.0802799i −0.0235753 0.0113533i
\(51\) 0.927012 4.06150i 0.129808 0.568724i
\(52\) −1.40192 1.75795i −0.194412 0.243784i
\(53\) −8.22494 + 10.3138i −1.12978 + 1.41670i −0.233986 + 0.972240i \(0.575177\pi\)
−0.895797 + 0.444463i \(0.853395\pi\)
\(54\) 0.408260 + 1.78870i 0.0555572 + 0.243412i
\(55\) 3.17058 13.8912i 0.427521 1.87309i
\(56\) 0.539663 0.676716i 0.0721155 0.0904300i
\(57\) −1.04086 −0.137865
\(58\) −9.16625 + 3.68752i −1.20359 + 0.484195i
\(59\) 11.0585 1.43970 0.719849 0.694131i \(-0.244211\pi\)
0.719849 + 0.694131i \(0.244211\pi\)
\(60\) 1.92374 2.41229i 0.248353 0.311425i
\(61\) 1.43496 6.28696i 0.183728 0.804963i −0.796108 0.605155i \(-0.793111\pi\)
0.979835 0.199808i \(-0.0640318\pi\)
\(62\) 1.44178 + 6.31683i 0.183106 + 0.802238i
\(63\) −0.464048 + 0.581898i −0.0584646 + 0.0733122i
\(64\) −1.48405 1.86094i −0.185506 0.232617i
\(65\) −0.827164 + 3.62404i −0.102597 + 0.449507i
\(66\) 10.4285 + 5.02211i 1.28366 + 0.618179i
\(67\) 6.19652 + 2.98409i 0.757026 + 0.364564i 0.772249 0.635320i \(-0.219132\pi\)
−0.0152236 + 0.999884i \(0.504846\pi\)
\(68\) −1.26643 5.54858i −0.153577 0.672864i
\(69\) −4.12061 + 1.98438i −0.496063 + 0.238892i
\(70\) 3.08405 0.368614
\(71\) 2.95303 1.42211i 0.350461 0.168773i −0.250368 0.968151i \(-0.580552\pi\)
0.600829 + 0.799378i \(0.294837\pi\)
\(72\) −0.725086 0.909229i −0.0854522 0.107154i
\(73\) 4.42081 + 5.54352i 0.517417 + 0.648820i 0.970058 0.242872i \(-0.0780896\pi\)
−0.452641 + 0.891693i \(0.649518\pi\)
\(74\) 1.77789 0.856187i 0.206676 0.0995298i
\(75\) −0.100848 −0.0116449
\(76\) −1.28114 + 0.616965i −0.146957 + 0.0707707i
\(77\) 1.04484 + 4.57776i 0.119071 + 0.521684i
\(78\) −2.72067 1.31020i −0.308055 0.148351i
\(79\) −5.75663 2.77225i −0.647672 0.311902i 0.0810523 0.996710i \(-0.474172\pi\)
−0.728724 + 0.684808i \(0.759886\pi\)
\(80\) −2.44545 + 10.7142i −0.273410 + 1.19789i
\(81\) 0.623490 + 0.781831i 0.0692766 + 0.0868702i
\(82\) −1.37344 + 1.72224i −0.151672 + 0.190190i
\(83\) 1.14686 + 5.02472i 0.125884 + 0.551535i 0.998055 + 0.0623339i \(0.0198544\pi\)
−0.872171 + 0.489201i \(0.837288\pi\)
\(84\) −0.226256 + 0.991291i −0.0246865 + 0.108159i
\(85\) −5.86631 + 7.35612i −0.636290 + 0.797883i
\(86\) −23.5333 −2.53766
\(87\) −3.62923 + 3.97853i −0.389094 + 0.426543i
\(88\) −7.33681 −0.782106
\(89\) 5.80998 7.28549i 0.615857 0.772260i −0.371898 0.928274i \(-0.621293\pi\)
0.987755 + 0.156013i \(0.0498643\pi\)
\(90\) 0.922058 4.03980i 0.0971934 0.425832i
\(91\) −0.272586 1.19428i −0.0285748 0.125194i
\(92\) −3.89562 + 4.88495i −0.406146 + 0.509291i
\(93\) 2.20186 + 2.76105i 0.228322 + 0.286307i
\(94\) 3.21951 14.1056i 0.332067 1.45488i
\(95\) 2.11798 + 1.01997i 0.217301 + 0.104646i
\(96\) −5.94790 2.86436i −0.607055 0.292342i
\(97\) 3.37522 + 14.7878i 0.342701 + 1.50147i 0.793347 + 0.608769i \(0.208337\pi\)
−0.450646 + 0.892703i \(0.648806\pi\)
\(98\) 10.6554 5.13137i 1.07636 0.518347i
\(99\) 6.30880 0.634059
\(100\) −0.124129 + 0.0597772i −0.0124129 + 0.00597772i
\(101\) 2.76928 + 3.47257i 0.275554 + 0.345534i 0.900281 0.435310i \(-0.143361\pi\)
−0.624727 + 0.780843i \(0.714790\pi\)
\(102\) −4.76551 5.97577i −0.471856 0.591689i
\(103\) −13.8692 + 6.67906i −1.36657 + 0.658108i −0.966092 0.258197i \(-0.916872\pi\)
−0.400482 + 0.916305i \(0.631157\pi\)
\(104\) 1.91408 0.187691
\(105\) 1.51448 0.729337i 0.147798 0.0711760i
\(106\) 5.38568 + 23.5962i 0.523103 + 2.29187i
\(107\) 7.13273 + 3.43494i 0.689547 + 0.332068i 0.745632 0.666358i \(-0.232148\pi\)
−0.0560855 + 0.998426i \(0.517862\pi\)
\(108\) 1.23085 + 0.592746i 0.118438 + 0.0570370i
\(109\) −0.932147 + 4.08400i −0.0892835 + 0.391177i −0.999749 0.0224086i \(-0.992867\pi\)
0.910465 + 0.413585i \(0.135724\pi\)
\(110\) −16.2991 20.4384i −1.55406 1.94873i
\(111\) 0.670593 0.840897i 0.0636498 0.0798144i
\(112\) −0.805882 3.53080i −0.0761487 0.333629i
\(113\) 2.40874 10.5534i 0.226595 0.992779i −0.725798 0.687907i \(-0.758529\pi\)
0.952394 0.304871i \(-0.0986134\pi\)
\(114\) −1.19066 + 1.49304i −0.111515 + 0.139836i
\(115\) 10.3294 0.963217
\(116\) −2.10877 + 7.04818i −0.195794 + 0.654407i
\(117\) −1.64589 −0.152162
\(118\) 12.6501 15.8627i 1.16453 1.46028i
\(119\) 0.689952 3.02288i 0.0632478 0.277107i
\(120\) 0.584456 + 2.56067i 0.0533533 + 0.233756i
\(121\) 17.9571 22.5175i 1.63247 2.04705i
\(122\) −7.37673 9.25012i −0.667858 0.837467i
\(123\) −0.267169 + 1.17054i −0.0240898 + 0.105544i
\(124\) 4.34676 + 2.09329i 0.390350 + 0.187983i
\(125\) −9.96901 4.80082i −0.891655 0.429398i
\(126\) 0.303858 + 1.33129i 0.0270698 + 0.118601i
\(127\) −7.27053 + 3.50130i −0.645155 + 0.310690i −0.727698 0.685897i \(-0.759410\pi\)
0.0825435 + 0.996587i \(0.473696\pi\)
\(128\) 8.83633 0.781029
\(129\) −11.5565 + 5.56531i −1.01749 + 0.489998i
\(130\) 4.25222 + 5.33212i 0.372945 + 0.467658i
\(131\) −11.6622 14.6240i −1.01893 1.27770i −0.960166 0.279432i \(-0.909854\pi\)
−0.0587686 0.998272i \(-0.518717\pi\)
\(132\) 7.76518 3.73952i 0.675872 0.325483i
\(133\) −0.774686 −0.0671738
\(134\) 11.3688 5.47492i 0.982113 0.472961i
\(135\) −0.502565 2.20188i −0.0432539 0.189508i
\(136\) 4.36500 + 2.10207i 0.374296 + 0.180251i
\(137\) 3.36252 + 1.61931i 0.287280 + 0.138347i 0.571974 0.820272i \(-0.306178\pi\)
−0.284694 + 0.958618i \(0.591892\pi\)
\(138\) −1.86719 + 8.18070i −0.158946 + 0.696388i
\(139\) 8.44508 + 10.5898i 0.716302 + 0.898214i 0.998122 0.0612530i \(-0.0195096\pi\)
−0.281820 + 0.959467i \(0.590938\pi\)
\(140\) 1.43179 1.79541i 0.121008 0.151740i
\(141\) −1.75478 7.68822i −0.147780 0.647465i
\(142\) 1.33812 5.86270i 0.112293 0.491986i
\(143\) −6.47405 + 8.11820i −0.541387 + 0.678878i
\(144\) −4.86594 −0.405495
\(145\) 11.2836 4.53931i 0.937051 0.376969i
\(146\) 13.0088 1.07662
\(147\) 4.01905 5.03973i 0.331486 0.415670i
\(148\) 0.326960 1.43251i 0.0268760 0.117751i
\(149\) 0.458291 + 2.00790i 0.0375447 + 0.164494i 0.990225 0.139481i \(-0.0445433\pi\)
−0.952680 + 0.303975i \(0.901686\pi\)
\(150\) −0.115362 + 0.144659i −0.00941927 + 0.0118114i
\(151\) −7.77480 9.74929i −0.632704 0.793386i 0.357365 0.933965i \(-0.383675\pi\)
−0.990070 + 0.140578i \(0.955104\pi\)
\(152\) 0.269354 1.18012i 0.0218475 0.0957200i
\(153\) −3.75339 1.80754i −0.303444 0.146131i
\(154\) 7.76169 + 3.73783i 0.625455 + 0.301203i
\(155\) −1.77481 7.77597i −0.142556 0.624581i
\(156\) −2.02584 + 0.975591i −0.162197 + 0.0781098i
\(157\) −13.1146 −1.04666 −0.523329 0.852131i \(-0.675310\pi\)
−0.523329 + 0.852131i \(0.675310\pi\)
\(158\) −10.5617 + 5.08625i −0.840245 + 0.404641i
\(159\) 8.22494 + 10.3138i 0.652281 + 0.817934i
\(160\) 9.29618 + 11.6570i 0.734927 + 0.921570i
\(161\) −3.06687 + 1.47693i −0.241703 + 0.116398i
\(162\) 1.83470 0.144148
\(163\) −9.80204 + 4.72041i −0.767755 + 0.369731i −0.776407 0.630231i \(-0.782960\pi\)
0.00865246 + 0.999963i \(0.497246\pi\)
\(164\) 0.364990 + 1.59913i 0.0285010 + 0.124871i
\(165\) −12.8374 6.18218i −0.999392 0.481282i
\(166\) 8.51952 + 4.10279i 0.661243 + 0.318438i
\(167\) 4.51248 19.7705i 0.349186 1.52988i −0.429847 0.902902i \(-0.641432\pi\)
0.779033 0.626983i \(-0.215710\pi\)
\(168\) −0.539663 0.676716i −0.0416359 0.0522098i
\(169\) −6.41637 + 8.04588i −0.493567 + 0.618914i
\(170\) 3.84125 + 16.8296i 0.294610 + 1.29077i
\(171\) −0.231613 + 1.01476i −0.0177119 + 0.0776008i
\(172\) −10.9255 + 13.7001i −0.833060 + 1.04462i
\(173\) −0.158953 −0.0120850 −0.00604249 0.999982i \(-0.501923\pi\)
−0.00604249 + 0.999982i \(0.501923\pi\)
\(174\) 1.55538 + 9.75699i 0.117913 + 0.739675i
\(175\) −0.0750587 −0.00567390
\(176\) −19.1401 + 24.0009i −1.44274 + 1.80913i
\(177\) 2.46075 10.7813i 0.184962 0.810369i
\(178\) −3.80437 16.6680i −0.285149 1.24932i
\(179\) −8.97720 + 11.2571i −0.670988 + 0.841392i −0.994490 0.104836i \(-0.966568\pi\)
0.323502 + 0.946228i \(0.395140\pi\)
\(180\) −1.92374 2.41229i −0.143387 0.179801i
\(181\) −2.87864 + 12.6121i −0.213968 + 0.937453i 0.747873 + 0.663842i \(0.231075\pi\)
−0.961840 + 0.273611i \(0.911782\pi\)
\(182\) −2.02492 0.975152i −0.150097 0.0722831i
\(183\) −5.81003 2.79796i −0.429490 0.206831i
\(184\) −1.18354 5.18543i −0.0872517 0.382275i
\(185\) −2.18857 + 1.05396i −0.160907 + 0.0774887i
\(186\) 6.47928 0.475084
\(187\) −23.6794 + 11.4034i −1.73161 + 0.833900i
\(188\) −6.71703 8.42289i −0.489890 0.614302i
\(189\) 0.464048 + 0.581898i 0.0337545 + 0.0423268i
\(190\) 3.88588 1.87134i 0.281911 0.135761i
\(191\) −5.61297 −0.406140 −0.203070 0.979164i \(-0.565092\pi\)
−0.203070 + 0.979164i \(0.565092\pi\)
\(192\) −2.14451 + 1.03274i −0.154767 + 0.0745317i
\(193\) −2.01768 8.84002i −0.145236 0.636319i −0.994170 0.107821i \(-0.965613\pi\)
0.848935 0.528498i \(-0.177245\pi\)
\(194\) 25.0730 + 12.0745i 1.80014 + 0.866900i
\(195\) 3.34912 + 1.61285i 0.239835 + 0.115499i
\(196\) 1.95957 8.58542i 0.139969 0.613244i
\(197\) 6.01235 + 7.53925i 0.428362 + 0.537149i 0.948435 0.316973i \(-0.102667\pi\)
−0.520072 + 0.854122i \(0.674095\pi\)
\(198\) 7.21676 9.04953i 0.512873 0.643122i
\(199\) −2.64957 11.6085i −0.187823 0.822905i −0.977762 0.209720i \(-0.932745\pi\)
0.789939 0.613186i \(-0.210112\pi\)
\(200\) 0.0260975 0.114340i 0.00184537 0.00808509i
\(201\) 4.28813 5.37714i 0.302461 0.379274i
\(202\) 8.14899 0.573361
\(203\) −2.70114 + 2.96112i −0.189583 + 0.207830i
\(204\) −5.69127 −0.398469
\(205\) 1.69070 2.12007i 0.118083 0.148072i
\(206\) −6.28462 + 27.5347i −0.437870 + 1.91843i
\(207\) 1.01771 + 4.45887i 0.0707355 + 0.309913i
\(208\) 4.99339 6.26152i 0.346230 0.434158i
\(209\) 4.09419 + 5.13395i 0.283201 + 0.355123i
\(210\) 0.686265 3.00672i 0.0473568 0.207484i
\(211\) 5.22041 + 2.51402i 0.359388 + 0.173072i 0.604861 0.796331i \(-0.293229\pi\)
−0.245473 + 0.969404i \(0.578943\pi\)
\(212\) 16.2371 + 7.81937i 1.11517 + 0.537037i
\(213\) −0.729339 3.19544i −0.0499735 0.218948i
\(214\) 13.0864 6.30210i 0.894571 0.430803i
\(215\) 28.9692 1.97569
\(216\) −1.04778 + 0.504584i −0.0712923 + 0.0343326i
\(217\) 1.63879 + 2.05498i 0.111248 + 0.139501i
\(218\) 4.79191 + 6.00887i 0.324549 + 0.406972i
\(219\) 6.38826 3.07642i 0.431678 0.207885i
\(220\) −19.4654 −1.31236
\(221\) 6.17765 2.97500i 0.415554 0.200120i
\(222\) −0.439103 1.92384i −0.0294707 0.129119i
\(223\) 9.35393 + 4.50461i 0.626385 + 0.301651i 0.720018 0.693956i \(-0.244134\pi\)
−0.0936325 + 0.995607i \(0.529848\pi\)
\(224\) −4.42687 2.13187i −0.295783 0.142442i
\(225\) −0.0224408 + 0.0983195i −0.00149605 + 0.00655464i
\(226\) −12.3827 15.5274i −0.823683 1.03287i
\(227\) 0.871753 1.09314i 0.0578603 0.0725545i −0.752059 0.659095i \(-0.770939\pi\)
0.809920 + 0.586541i \(0.199511\pi\)
\(228\) 0.316415 + 1.38631i 0.0209551 + 0.0918104i
\(229\) 1.53344 6.71844i 0.101333 0.443967i −0.898653 0.438660i \(-0.855453\pi\)
0.999986 0.00530751i \(-0.00168944\pi\)
\(230\) 11.8159 14.8167i 0.779121 0.976986i
\(231\) 4.69549 0.308940
\(232\) −3.57165 5.14434i −0.234490 0.337743i
\(233\) −0.133957 −0.00877579 −0.00438789 0.999990i \(-0.501397\pi\)
−0.00438789 + 0.999990i \(0.501397\pi\)
\(234\) −1.88276 + 2.36091i −0.123080 + 0.154337i
\(235\) −3.96319 + 17.3639i −0.258530 + 1.13269i
\(236\) −3.36173 14.7287i −0.218830 0.958757i
\(237\) −3.98371 + 4.99542i −0.258770 + 0.324487i
\(238\) −3.54685 4.44761i −0.229908 0.288296i
\(239\) −2.30911 + 10.1169i −0.149364 + 0.654405i 0.843699 + 0.536817i \(0.180373\pi\)
−0.993062 + 0.117588i \(0.962484\pi\)
\(240\) 9.90143 + 4.76828i 0.639135 + 0.307791i
\(241\) −7.62763 3.67328i −0.491339 0.236616i 0.171773 0.985137i \(-0.445050\pi\)
−0.663112 + 0.748520i \(0.730765\pi\)
\(242\) −11.7583 51.5165i −0.755852 3.31160i
\(243\) 0.900969 0.433884i 0.0577972 0.0278337i
\(244\) −8.80974 −0.563986
\(245\) −13.1167 + 6.31668i −0.837996 + 0.403558i
\(246\) 1.37344 + 1.72224i 0.0875676 + 0.109806i
\(247\) −1.06812 1.33938i −0.0679630 0.0852229i
\(248\) −3.70024 + 1.78194i −0.234966 + 0.113154i
\(249\) 5.15394 0.326618
\(250\) −18.2902 + 8.80809i −1.15677 + 0.557072i
\(251\) −1.68037 7.36218i −0.106064 0.464697i −0.999868 0.0162393i \(-0.994831\pi\)
0.893804 0.448458i \(-0.148026\pi\)
\(252\) 0.916090 + 0.441166i 0.0577083 + 0.0277908i
\(253\) 25.9961 + 12.5191i 1.63436 + 0.787068i
\(254\) −3.29453 + 14.4343i −0.206717 + 0.905686i
\(255\) 5.86631 + 7.35612i 0.367362 + 0.460658i
\(256\) 13.0761 16.3970i 0.817259 1.02481i
\(257\) −4.74187 20.7755i −0.295789 1.29594i −0.876332 0.481708i \(-0.840017\pi\)
0.580542 0.814230i \(-0.302841\pi\)
\(258\) −5.23664 + 22.9432i −0.326019 + 1.42838i
\(259\) 0.499105 0.625858i 0.0310129 0.0388890i
\(260\) 5.07827 0.314941
\(261\) 3.07120 + 4.42354i 0.190103 + 0.273810i
\(262\) −34.3177 −2.12016
\(263\) −16.0972 + 20.1853i −0.992597 + 1.24468i −0.0230593 + 0.999734i \(0.507341\pi\)
−0.969537 + 0.244943i \(0.921231\pi\)
\(264\) −1.63259 + 7.15286i −0.100479 + 0.440228i
\(265\) −6.62973 29.0467i −0.407261 1.78433i
\(266\) −0.886178 + 1.11123i −0.0543350 + 0.0681340i
\(267\) −5.80998 7.28549i −0.355565 0.445865i
\(268\) 2.09076 9.16021i 0.127713 0.559549i
\(269\) −17.2204 8.29293i −1.04995 0.505629i −0.172356 0.985035i \(-0.555138\pi\)
−0.877593 + 0.479406i \(0.840852\pi\)
\(270\) −3.73334 1.79788i −0.227204 0.109415i
\(271\) 0.775056 + 3.39574i 0.0470813 + 0.206277i 0.992998 0.118134i \(-0.0376912\pi\)
−0.945916 + 0.324411i \(0.894834\pi\)
\(272\) 18.2638 8.79538i 1.10741 0.533298i
\(273\) −1.22499 −0.0741399
\(274\) 6.16924 2.97095i 0.372697 0.179481i
\(275\) 0.396683 + 0.497425i 0.0239209 + 0.0299958i
\(276\) 3.89562 + 4.88495i 0.234489 + 0.294039i
\(277\) 9.16006 4.41125i 0.550375 0.265047i −0.137962 0.990437i \(-0.544055\pi\)
0.688337 + 0.725391i \(0.258341\pi\)
\(278\) 24.8508 1.49045
\(279\) 3.18178 1.53227i 0.190488 0.0917343i
\(280\) 0.434996 + 1.90584i 0.0259960 + 0.113896i
\(281\) 0.969638 + 0.466953i 0.0578437 + 0.0278561i 0.462582 0.886576i \(-0.346923\pi\)
−0.404738 + 0.914433i \(0.632637\pi\)
\(282\) −13.0355 6.27758i −0.776255 0.373825i
\(283\) −2.03116 + 8.89909i −0.120740 + 0.528996i 0.877993 + 0.478673i \(0.158882\pi\)
−0.998733 + 0.0503227i \(0.983975\pi\)
\(284\) −2.79179 3.50080i −0.165662 0.207734i
\(285\) 1.46569 1.83792i 0.0868200 0.108869i
\(286\) 4.23919 + 18.5731i 0.250669 + 1.09825i
\(287\) −0.198847 + 0.871208i −0.0117376 + 0.0514258i
\(288\) −4.11607 + 5.16139i −0.242542 + 0.304138i
\(289\) 0.355162 0.0208919
\(290\) 6.39619 21.3781i 0.375597 1.25537i
\(291\) 15.1681 0.889169
\(292\) 6.03944 7.57322i 0.353432 0.443189i
\(293\) 3.06458 13.4268i 0.179035 0.784402i −0.803042 0.595922i \(-0.796787\pi\)
0.982077 0.188480i \(-0.0603562\pi\)
\(294\) −2.63167 11.5301i −0.153482 0.672448i
\(295\) −15.5721 + 19.5268i −0.906644 + 1.13690i
\(296\) 0.779864 + 0.977918i 0.0453287 + 0.0568403i
\(297\) 1.40384 6.15063i 0.0814591 0.356896i
\(298\) 3.40445 + 1.63949i 0.197214 + 0.0949734i
\(299\) −6.78205 3.26607i −0.392216 0.188881i
\(300\) 0.0306572 + 0.134318i 0.00177000 + 0.00775486i
\(301\) −8.60121 + 4.14212i −0.495765 + 0.238748i
\(302\) −22.8784 −1.31651
\(303\) 4.00173 1.92713i 0.229893 0.110711i
\(304\) −3.15783 3.95979i −0.181114 0.227109i
\(305\) 9.08069 + 11.3868i 0.519959 + 0.652008i
\(306\) −6.88637 + 3.31630i −0.393667 + 0.189580i
\(307\) 3.43747 0.196187 0.0980934 0.995177i \(-0.468726\pi\)
0.0980934 + 0.995177i \(0.468726\pi\)
\(308\) 5.77943 2.78323i 0.329314 0.158589i
\(309\) 3.42541 + 15.0077i 0.194865 + 0.853759i
\(310\) −13.1843 6.34923i −0.748819 0.360612i
\(311\) 26.9582 + 12.9824i 1.52866 + 0.736163i 0.994049 0.108937i \(-0.0347446\pi\)
0.534609 + 0.845100i \(0.320459\pi\)
\(312\) 0.425922 1.86609i 0.0241131 0.105646i
\(313\) 19.0975 + 23.9476i 1.07946 + 1.35360i 0.931142 + 0.364657i \(0.118814\pi\)
0.148315 + 0.988940i \(0.452615\pi\)
\(314\) −15.0020 + 18.8119i −0.846613 + 1.06162i
\(315\) −0.374047 1.63880i −0.0210751 0.0923362i
\(316\) −1.94234 + 8.50993i −0.109265 + 0.478721i
\(317\) 2.76481 3.46696i 0.155287 0.194724i −0.698102 0.715998i \(-0.745972\pi\)
0.853389 + 0.521274i \(0.174543\pi\)
\(318\) 24.2030 1.35724
\(319\) 33.8993 + 2.25141i 1.89799 + 0.126055i
\(320\) 5.37575 0.300514
\(321\) 4.93600 6.18955i 0.275501 0.345467i
\(322\) −1.38970 + 6.08869i −0.0774452 + 0.339310i
\(323\) −0.964888 4.22745i −0.0536878 0.235222i
\(324\) 0.851774 1.06809i 0.0473208 0.0593384i
\(325\) −0.103489 0.129772i −0.00574056 0.00719844i
\(326\) −4.44164 + 19.4601i −0.246000 + 1.07780i
\(327\) 3.77419 + 1.81755i 0.208713 + 0.100511i
\(328\) −1.25801 0.605827i −0.0694622 0.0334512i
\(329\) −1.30604 5.72215i −0.0720045 0.315472i
\(330\) −23.5529 + 11.3425i −1.29654 + 0.624382i
\(331\) −12.6242 −0.693891 −0.346946 0.937885i \(-0.612781\pi\)
−0.346946 + 0.937885i \(0.612781\pi\)
\(332\) 6.34372 3.05498i 0.348157 0.167664i
\(333\) −0.670593 0.840897i −0.0367482 0.0460808i
\(334\) −23.1974 29.0887i −1.26931 1.59166i
\(335\) −13.9949 + 6.73958i −0.764622 + 0.368223i
\(336\) −3.62160 −0.197574
\(337\) 15.3978 7.41521i 0.838774 0.403932i 0.0353753 0.999374i \(-0.488737\pi\)
0.803398 + 0.595442i \(0.203023\pi\)
\(338\) 4.20143 + 18.4077i 0.228528 + 1.00125i
\(339\) −9.75279 4.69670i −0.529699 0.255090i
\(340\) 11.5808 + 5.57704i 0.628059 + 0.302458i
\(341\) 4.95768 21.7210i 0.268473 1.17626i
\(342\) 1.19066 + 1.49304i 0.0643834 + 0.0807343i
\(343\) 6.23961 7.82423i 0.336908 0.422469i
\(344\) −3.31930 14.5428i −0.178965 0.784096i
\(345\) 2.29850 10.0704i 0.123747 0.542171i
\(346\) −0.181830 + 0.228007i −0.00977522 + 0.0122577i
\(347\) 5.48266 0.294325 0.147162 0.989112i \(-0.452986\pi\)
0.147162 + 0.989112i \(0.452986\pi\)
\(348\) 6.40222 + 3.62427i 0.343195 + 0.194281i
\(349\) −20.4824 −1.09640 −0.548198 0.836349i \(-0.684686\pi\)
−0.548198 + 0.836349i \(0.684686\pi\)
\(350\) −0.0858611 + 0.107666i −0.00458947 + 0.00575501i
\(351\) −0.366244 + 1.60462i −0.0195487 + 0.0856482i
\(352\) 9.26769 + 40.6044i 0.493970 + 2.16422i
\(353\) −11.7746 + 14.7649i −0.626699 + 0.785856i −0.989270 0.146100i \(-0.953328\pi\)
0.362571 + 0.931956i \(0.381899\pi\)
\(354\) −12.6501 15.8627i −0.672343 0.843092i
\(355\) −1.64722 + 7.21693i −0.0874252 + 0.383035i
\(356\) −11.4697 5.52349i −0.607890 0.292745i
\(357\) −2.79356 1.34531i −0.147851 0.0712012i
\(358\) 5.87826 + 25.7543i 0.310676 + 1.36116i
\(359\) 3.87037 1.86387i 0.204270 0.0983714i −0.328952 0.944347i \(-0.606695\pi\)
0.533222 + 0.845975i \(0.320981\pi\)
\(360\) 2.62652 0.138430
\(361\) 16.1423 7.77373i 0.849595 0.409144i
\(362\) 14.7983 + 18.5565i 0.777781 + 0.975307i
\(363\) −17.9571 22.5175i −0.942505 1.18186i
\(364\) −1.50778 + 0.726108i −0.0790291 + 0.0380584i
\(365\) −16.0138 −0.838199
\(366\) −10.6597 + 5.13343i −0.557190 + 0.268329i
\(367\) −3.04134 13.3250i −0.158757 0.695558i −0.990166 0.139898i \(-0.955323\pi\)
0.831409 0.555660i \(-0.187534\pi\)
\(368\) −20.0507 9.65589i −1.04521 0.503348i
\(369\) 1.08175 + 0.520941i 0.0563135 + 0.0271191i
\(370\) −0.991716 + 4.34499i −0.0515569 + 0.225885i
\(371\) 6.12162 + 7.67627i 0.317819 + 0.398532i
\(372\) 3.00805 3.77197i 0.155960 0.195568i
\(373\) −2.78499 12.2018i −0.144201 0.631787i −0.994432 0.105377i \(-0.966395\pi\)
0.850231 0.526409i \(-0.176462\pi\)
\(374\) −10.7300 + 47.0110i −0.554833 + 2.43088i
\(375\) −6.89877 + 8.65078i −0.356251 + 0.446724i
\(376\) 9.17092 0.472954
\(377\) −8.84388 0.587364i −0.455483 0.0302508i
\(378\) 1.36552 0.0702350
\(379\) 6.92755 8.68688i 0.355845 0.446215i −0.571400 0.820672i \(-0.693599\pi\)
0.927244 + 0.374457i \(0.122171\pi\)
\(380\) 0.714626 3.13098i 0.0366595 0.160616i
\(381\) 1.79567 + 7.86735i 0.0919951 + 0.403057i
\(382\) −6.42079 + 8.05141i −0.328516 + 0.411946i
\(383\) 9.69544 + 12.1577i 0.495414 + 0.621229i 0.965188 0.261557i \(-0.0842360\pi\)
−0.469774 + 0.882787i \(0.655665\pi\)
\(384\) 1.96627 8.61478i 0.100341 0.439621i
\(385\) −9.55458 4.60124i −0.486946 0.234501i
\(386\) −14.9885 7.21806i −0.762892 0.367389i
\(387\) 2.85422 + 12.5051i 0.145088 + 0.635672i
\(388\) 18.6696 8.99081i 0.947806 0.456439i
\(389\) −0.482991 −0.0244886 −0.0122443 0.999925i \(-0.503898\pi\)
−0.0122443 + 0.999925i \(0.503898\pi\)
\(390\) 6.14464 2.95910i 0.311146 0.149840i
\(391\) −11.8794 14.8963i −0.600769 0.753340i
\(392\) 4.67394 + 5.86094i 0.236070 + 0.296022i
\(393\) −16.8524 + 8.11570i −0.850092 + 0.409383i
\(394\) 17.6922 0.891318
\(395\) 13.0014 6.26114i 0.654171 0.315032i
\(396\) −1.91784 8.40261i −0.0963752 0.422247i
\(397\) 7.00415 + 3.37302i 0.351528 + 0.169287i 0.601311 0.799015i \(-0.294645\pi\)
−0.249783 + 0.968302i \(0.580359\pi\)
\(398\) −19.6825 9.47858i −0.986593 0.475118i
\(399\) −0.172384 + 0.755263i −0.00862998 + 0.0378104i
\(400\) −0.305959 0.383661i −0.0152980 0.0191830i
\(401\) −0.967205 + 1.21284i −0.0482999 + 0.0605662i −0.805395 0.592739i \(-0.798047\pi\)
0.757095 + 0.653305i \(0.226618\pi\)
\(402\) −2.80786 12.3020i −0.140043 0.613569i
\(403\) −1.29339 + 5.66673i −0.0644286 + 0.282280i
\(404\) 3.78323 4.74401i 0.188222 0.236024i
\(405\) −2.25851 −0.112226
\(406\) 1.15763 + 7.26188i 0.0574524 + 0.360401i
\(407\) −6.78542 −0.336341
\(408\) 3.02067 3.78780i 0.149546 0.187524i
\(409\) −2.26265 + 9.91331i −0.111881 + 0.490182i 0.887678 + 0.460465i \(0.152317\pi\)
−0.999558 + 0.0297161i \(0.990540\pi\)
\(410\) −1.10707 4.85037i −0.0546741 0.239543i
\(411\) 2.32694 2.91789i 0.114779 0.143929i
\(412\) 13.1119 + 16.4418i 0.645978 + 0.810031i
\(413\) 1.83148 8.02423i 0.0901211 0.394846i
\(414\) 7.56010 + 3.64075i 0.371559 + 0.178933i
\(415\) −10.4875 5.05050i −0.514809 0.247919i
\(416\) −2.41782 10.5932i −0.118543 0.519373i
\(417\) 12.2035 5.87689i 0.597607 0.287793i
\(418\) 12.0477 0.589273
\(419\) 13.5322 6.51676i 0.661091 0.318364i −0.0730834 0.997326i \(-0.523284\pi\)
0.734174 + 0.678961i \(0.237570\pi\)
\(420\) −1.43179 1.79541i −0.0698641 0.0876069i
\(421\) −5.34856 6.70689i −0.260673 0.326874i 0.634221 0.773151i \(-0.281321\pi\)
−0.894894 + 0.446278i \(0.852749\pi\)
\(422\) 9.57791 4.61248i 0.466246 0.224532i
\(423\) −7.88593 −0.383427
\(424\) −13.8221 + 6.65636i −0.671260 + 0.323262i
\(425\) −0.0934873 0.409595i −0.00453480 0.0198683i
\(426\) −5.41794 2.60914i −0.262500 0.126413i
\(427\) −4.32426 2.08245i −0.209266 0.100777i
\(428\) 2.40664 10.5442i 0.116329 0.509673i
\(429\) 6.47405 + 8.11820i 0.312570 + 0.391950i
\(430\) 33.1385 41.5543i 1.59808 2.00393i
\(431\) 2.09048 + 9.15897i 0.100695 + 0.441172i 0.999993 + 0.00383572i \(0.00122095\pi\)
−0.899298 + 0.437336i \(0.855922\pi\)
\(432\) −1.08277 + 4.74394i −0.0520950 + 0.228243i
\(433\) 13.8607 17.3808i 0.666102 0.835266i −0.327890 0.944716i \(-0.606338\pi\)
0.993992 + 0.109450i \(0.0349090\pi\)
\(434\) 4.82237 0.231481
\(435\) −1.91466 12.0108i −0.0918011 0.575872i
\(436\) 5.72280 0.274072
\(437\) −2.96806 + 3.72183i −0.141982 + 0.178039i
\(438\) 2.89474 12.6827i 0.138316 0.606002i
\(439\) 0.625294 + 2.73959i 0.0298437 + 0.130754i 0.987655 0.156643i \(-0.0500673\pi\)
−0.957812 + 0.287397i \(0.907210\pi\)
\(440\) 10.3314 12.9551i 0.492528 0.617611i
\(441\) −4.01905 5.03973i −0.191383 0.239987i
\(442\) 2.79931 12.2646i 0.133150 0.583366i
\(443\) 4.43329 + 2.13496i 0.210632 + 0.101435i 0.536225 0.844075i \(-0.319850\pi\)
−0.325593 + 0.945510i \(0.605564\pi\)
\(444\) −1.32384 0.637526i −0.0628265 0.0302556i
\(445\) 4.68314 + 20.5182i 0.222002 + 0.972656i
\(446\) 17.1617 8.26464i 0.812630 0.391342i
\(447\) 2.05954 0.0974130
\(448\) −1.59611 + 0.768644i −0.0754089 + 0.0363150i
\(449\) −23.6873 29.7029i −1.11787 1.40177i −0.905378 0.424606i \(-0.860413\pi\)
−0.212494 0.977162i \(-0.568159\pi\)
\(450\) 0.115362 + 0.144659i 0.00543822 + 0.00681931i
\(451\) 6.82452 3.28652i 0.321354 0.154756i
\(452\) −14.7882 −0.695576
\(453\) −11.2349 + 5.41045i −0.527862 + 0.254205i
\(454\) −0.570822 2.50094i −0.0267900 0.117375i
\(455\) 2.49267 + 1.20040i 0.116858 + 0.0562758i
\(456\) −1.09059 0.525201i −0.0510716 0.0245948i
\(457\) 1.03622 4.53998i 0.0484723 0.212371i −0.944892 0.327383i \(-0.893833\pi\)
0.993364 + 0.115012i \(0.0366905\pi\)
\(458\) −7.88300 9.88497i −0.368348 0.461894i
\(459\) −2.59743 + 3.25707i −0.121238 + 0.152027i
\(460\) −3.14007 13.7575i −0.146406 0.641448i
\(461\) 4.44300 19.4661i 0.206931 0.906625i −0.759664 0.650316i \(-0.774636\pi\)
0.966595 0.256309i \(-0.0825064\pi\)
\(462\) 5.37126 6.73534i 0.249893 0.313357i
\(463\) −19.4998 −0.906230 −0.453115 0.891452i \(-0.649687\pi\)
−0.453115 + 0.891452i \(0.649687\pi\)
\(464\) −26.1463 1.73650i −1.21381 0.0806150i
\(465\) −7.97594 −0.369875
\(466\) −0.153236 + 0.192151i −0.00709850 + 0.00890123i
\(467\) −7.69529 + 33.7153i −0.356095 + 1.56016i 0.406728 + 0.913549i \(0.366670\pi\)
−0.762824 + 0.646607i \(0.776188\pi\)
\(468\) 0.500340 + 2.19213i 0.0231282 + 0.101331i
\(469\) 3.19155 4.00207i 0.147372 0.184799i
\(470\) 20.3737 + 25.5478i 0.939768 + 1.17843i
\(471\) −2.91827 + 12.7858i −0.134467 + 0.589137i
\(472\) 11.5869 + 5.57995i 0.533330 + 0.256838i
\(473\) 72.9076 + 35.1104i 3.35230 + 1.61438i
\(474\) 2.60853 + 11.4287i 0.119814 + 0.524938i
\(475\) −0.0945734 + 0.0455441i −0.00433932 + 0.00208971i
\(476\) −4.23587 −0.194151
\(477\) 11.8854 5.72370i 0.544195 0.262070i
\(478\) 11.8705 + 14.8851i 0.542943 + 0.680829i
\(479\) 3.84596 + 4.82268i 0.175726 + 0.220354i 0.861893 0.507091i \(-0.169279\pi\)
−0.686166 + 0.727445i \(0.740708\pi\)
\(480\) 13.4334 6.46917i 0.613146 0.295276i
\(481\) 1.77023 0.0807154
\(482\) −13.9945 + 6.73937i −0.637430 + 0.306970i
\(483\) 0.757454 + 3.31862i 0.0344654 + 0.151003i
\(484\) −35.4497 17.0717i −1.61135 0.775985i
\(485\) −30.8647 14.8636i −1.40149 0.674923i
\(486\) 0.408260 1.78870i 0.0185191 0.0811373i
\(487\) 4.08151 + 5.11806i 0.184951 + 0.231921i 0.865660 0.500633i \(-0.166899\pi\)
−0.680709 + 0.732554i \(0.738328\pi\)
\(488\) 4.67582 5.86329i 0.211664 0.265419i
\(489\) 2.42090 + 10.6067i 0.109477 + 0.479650i
\(490\) −5.94363 + 26.0408i −0.268506 + 1.17640i
\(491\) 11.3529 14.2361i 0.512349 0.642465i −0.456616 0.889664i \(-0.650939\pi\)
0.968965 + 0.247199i \(0.0795100\pi\)
\(492\) 1.64025 0.0739483
\(493\) −19.5232 11.0520i −0.879279 0.497756i
\(494\) −3.14309 −0.141414
\(495\) −8.88377 + 11.1399i −0.399296 + 0.500701i
\(496\) −3.82383 + 16.7533i −0.171695 + 0.752245i
\(497\) −0.542829 2.37829i −0.0243492 0.106681i
\(498\) 5.89569 7.39296i 0.264192 0.331287i
\(499\) 10.4457 + 13.0985i 0.467614 + 0.586369i 0.958585 0.284806i \(-0.0919293\pi\)
−0.490971 + 0.871176i \(0.663358\pi\)
\(500\) −3.36363 + 14.7370i −0.150426 + 0.659059i
\(501\) −18.2707 8.79869i −0.816273 0.393096i
\(502\) −12.4827 6.01137i −0.557132 0.268301i
\(503\) −0.739155 3.23845i −0.0329573 0.144395i 0.955772 0.294108i \(-0.0950224\pi\)
−0.988730 + 0.149712i \(0.952165\pi\)
\(504\) −0.779836 + 0.375549i −0.0347367 + 0.0167283i
\(505\) −10.0313 −0.446389
\(506\) 47.6952 22.9688i 2.12031 1.02109i
\(507\) 6.41637 + 8.04588i 0.284961 + 0.357330i
\(508\) 6.87354 + 8.61914i 0.304964 + 0.382413i
\(509\) −16.9609 + 8.16792i −0.751777 + 0.362036i −0.770207 0.637794i \(-0.779847\pi\)
0.0184308 + 0.999830i \(0.494133\pi\)
\(510\) 17.2624 0.764393
\(511\) 4.75462 2.28971i 0.210332 0.101291i
\(512\) −4.62970 20.2840i −0.204606 0.896436i
\(513\) 0.937782 + 0.451612i 0.0414041 + 0.0199391i
\(514\) −35.2253 16.9636i −1.55372 0.748232i
\(515\) 7.73632 33.8950i 0.340903 1.49359i
\(516\) 10.9255 + 13.7001i 0.480967 + 0.603114i
\(517\) −31.0191 + 38.8967i −1.36422 + 1.71068i
\(518\) −0.326813 1.43186i −0.0143594 0.0629125i
\(519\) −0.0353704 + 0.154968i −0.00155259 + 0.00680234i
\(520\) −2.69532 + 3.37982i −0.118198 + 0.148215i
\(521\) −3.09335 −0.135522 −0.0677611 0.997702i \(-0.521586\pi\)
−0.0677611 + 0.997702i \(0.521586\pi\)
\(522\) 9.85847 + 0.654748i 0.431493 + 0.0286575i
\(523\) 34.6039 1.51312 0.756561 0.653924i \(-0.226878\pi\)
0.756561 + 0.653924i \(0.226878\pi\)
\(524\) −15.9322 + 19.9784i −0.696003 + 0.872760i
\(525\) −0.0167021 + 0.0731768i −0.000728940 + 0.00319370i
\(526\) 10.5404 + 46.1806i 0.459585 + 2.01357i
\(527\) −9.17285 + 11.5024i −0.399576 + 0.501052i
\(528\) 19.1401 + 24.0009i 0.832964 + 1.04450i
\(529\) 0.463462 2.03056i 0.0201505 0.0882852i
\(530\) −49.2494 23.7172i −2.13926 1.03021i
\(531\) −9.96339 4.79811i −0.432374 0.208220i
\(532\) 0.235500 + 1.03179i 0.0102102 + 0.0447339i
\(533\) −1.78043 + 0.857410i −0.0771190 + 0.0371385i
\(534\) −17.0967 −0.739845
\(535\) −16.1093 + 7.75783i −0.696466 + 0.335400i
\(536\) 4.98686 + 6.25333i 0.215400 + 0.270103i
\(537\) 8.97720 + 11.2571i 0.387395 + 0.485778i
\(538\) −31.5944 + 15.2151i −1.36213 + 0.655968i
\(539\) −40.6669 −1.75165
\(540\) −2.77988 + 1.33872i −0.119627 + 0.0576093i
\(541\) −6.17721 27.0641i −0.265579 1.16358i −0.915098 0.403232i \(-0.867887\pi\)
0.649518 0.760346i \(-0.274971\pi\)
\(542\) 5.75755 + 2.77269i 0.247308 + 0.119097i
\(543\) 11.6554 + 5.61293i 0.500180 + 0.240874i
\(544\) 6.11982 26.8127i 0.262385 1.14959i
\(545\) −5.89881 7.39687i −0.252677 0.316847i
\(546\) −1.40129 + 1.75716i −0.0599697 + 0.0751997i
\(547\) 7.27014 + 31.8526i 0.310849 + 1.36192i 0.853120 + 0.521714i \(0.174707\pi\)
−0.542272 + 0.840203i \(0.682436\pi\)
\(548\) 1.13454 4.97076i 0.0484653 0.212340i
\(549\) −4.02066 + 5.04175i −0.171598 + 0.215177i
\(550\) 1.16729 0.0497736
\(551\) −1.60667 + 5.37000i −0.0684464 + 0.228769i
\(552\) −5.31878 −0.226382
\(553\) −2.96498 + 3.71796i −0.126084 + 0.158104i
\(554\) 4.15074 18.1856i 0.176348 0.772631i
\(555\) 0.540532 + 2.36823i 0.0229443 + 0.100526i
\(556\) 11.5371 14.4671i 0.489284 0.613543i
\(557\) 27.0722 + 33.9474i 1.14708 + 1.43840i 0.880157 + 0.474683i \(0.157437\pi\)
0.266928 + 0.963717i \(0.413991\pi\)
\(558\) 1.44178 6.31683i 0.0610352 0.267413i
\(559\) −19.0206 9.15986i −0.804488 0.387421i
\(560\) 7.36939 + 3.54891i 0.311414 + 0.149969i
\(561\) 5.84833 + 25.6232i 0.246917 + 1.08181i
\(562\) 1.77900 0.856721i 0.0750425 0.0361386i
\(563\) −0.551999 −0.0232640 −0.0116320 0.999932i \(-0.503703\pi\)
−0.0116320 + 0.999932i \(0.503703\pi\)
\(564\) −9.70639 + 4.67435i −0.408713 + 0.196826i
\(565\) 15.2430 + 19.1141i 0.641277 + 0.804136i
\(566\) 10.4416 + 13.0934i 0.438895 + 0.550356i
\(567\) 0.670569 0.322929i 0.0281612 0.0135617i
\(568\) 3.81170 0.159935
\(569\) 25.1874 12.1296i 1.05591 0.508499i 0.176369 0.984324i \(-0.443565\pi\)
0.879540 + 0.475825i \(0.157850\pi\)
\(570\) −0.959732 4.20486i −0.0401988 0.176122i
\(571\) −29.9930 14.4439i −1.25517 0.604457i −0.316276 0.948667i \(-0.602432\pi\)
−0.938893 + 0.344210i \(0.888147\pi\)
\(572\) 12.7806 + 6.15481i 0.534384 + 0.257346i
\(573\) −1.24900 + 5.47224i −0.0521779 + 0.228606i
\(574\) 1.02222 + 1.28182i 0.0426667 + 0.0535023i
\(575\) −0.287573 + 0.360606i −0.0119926 + 0.0150383i
\(576\) 0.529650 + 2.32055i 0.0220688 + 0.0966895i
\(577\) −4.30983 + 18.8826i −0.179421 + 0.786093i 0.802477 + 0.596682i \(0.203515\pi\)
−0.981898 + 0.189410i \(0.939342\pi\)
\(578\) 0.406277 0.509455i 0.0168989 0.0211905i
\(579\) −9.06736 −0.376827
\(580\) −9.47599 13.6485i −0.393469 0.566725i
\(581\) 3.83595 0.159142
\(582\) 17.3511 21.7575i 0.719225 0.901879i
\(583\) 18.5192 81.1378i 0.766986 3.36038i
\(584\) 1.83486 + 8.03906i 0.0759271 + 0.332659i
\(585\) 2.31766 2.90626i 0.0958235 0.120159i
\(586\) −15.7542 19.7551i −0.650799 0.816076i
\(587\) −1.29711 + 5.68302i −0.0535376 + 0.234564i −0.994617 0.103623i \(-0.966956\pi\)
0.941079 + 0.338187i \(0.109814\pi\)
\(588\) −7.93412 3.82087i −0.327198 0.157570i
\(589\) 3.31179 + 1.59487i 0.136460 + 0.0657156i
\(590\) 10.1966 + 44.6742i 0.419787 + 1.83921i
\(591\) 8.68809 4.18397i 0.357380 0.172105i
\(592\) 5.23355 0.215098
\(593\) 2.04748 0.986017i 0.0840801 0.0404909i −0.391371 0.920233i \(-0.627999\pi\)
0.475451 + 0.879742i \(0.342285\pi\)
\(594\) −7.21676 9.04953i −0.296107 0.371307i
\(595\) 4.36615 + 5.47498i 0.178995 + 0.224452i
\(596\) 2.53498 1.22078i 0.103837 0.0500053i
\(597\) −11.9070 −0.487323
\(598\) −12.4431 + 5.99226i −0.508835 + 0.245042i
\(599\) −6.75720 29.6052i −0.276092 1.20964i −0.902689 0.430294i \(-0.858410\pi\)
0.626597 0.779343i \(-0.284447\pi\)
\(600\) −0.105666 0.0508863i −0.00431381 0.00207742i
\(601\) −17.9698 8.65379i −0.733003 0.352996i 0.0298616 0.999554i \(-0.490493\pi\)
−0.762864 + 0.646559i \(0.776208\pi\)
\(602\) −3.89750 + 17.0761i −0.158850 + 0.695969i
\(603\) −4.28813 5.37714i −0.174626 0.218974i
\(604\) −10.6215 + 13.3189i −0.432181 + 0.541938i
\(605\) 14.4744 + 63.4164i 0.588467 + 2.57824i
\(606\) 1.81332 7.94468i 0.0736612 0.322731i
\(607\) 21.1629 26.5375i 0.858977 1.07712i −0.137267 0.990534i \(-0.543832\pi\)
0.996244 0.0865894i \(-0.0275968\pi\)
\(608\) −6.87141 −0.278672
\(609\) 2.28582 + 3.29233i 0.0926261 + 0.133412i
\(610\) 26.7212 1.08191
\(611\) 8.09248 10.1477i 0.327387 0.410530i
\(612\) −1.26643 + 5.54858i −0.0511923 + 0.224288i
\(613\) −5.90946 25.8910i −0.238681 1.04573i −0.942200 0.335052i \(-0.891246\pi\)
0.703519 0.710677i \(-0.251611\pi\)
\(614\) 3.93219 4.93081i 0.158690 0.198991i
\(615\) −1.69070 2.12007i −0.0681755 0.0854894i
\(616\) −1.21510 + 5.32369i −0.0489577 + 0.214498i
\(617\) 0.763697 + 0.367777i 0.0307453 + 0.0148062i 0.449193 0.893435i \(-0.351711\pi\)
−0.418448 + 0.908241i \(0.637426\pi\)
\(618\) 25.4459 + 12.2541i 1.02358 + 0.492932i
\(619\) −9.82554 43.0485i −0.394922 1.73027i −0.646938 0.762543i \(-0.723951\pi\)
0.252016 0.967723i \(-0.418906\pi\)
\(620\) −9.81718 + 4.72770i −0.394267 + 0.189869i
\(621\) 4.57353 0.183530
\(622\) 49.4603 23.8188i 1.98318 0.955047i
\(623\) −4.32423 5.42241i −0.173246 0.217244i
\(624\) −4.99339 6.26152i −0.199896 0.250661i
\(625\) 22.9694 11.0615i 0.918775 0.442458i
\(626\) 56.1972 2.24609
\(627\) 5.91628 2.84913i 0.236273 0.113783i
\(628\) 3.98676 + 17.4671i 0.159089 + 0.697015i
\(629\) 4.03695 + 1.94409i 0.160964 + 0.0775161i
\(630\) −2.77863 1.33812i −0.110703 0.0533119i
\(631\) 1.04715 4.58785i 0.0416862 0.182639i −0.949798 0.312862i \(-0.898712\pi\)
0.991485 + 0.130223i \(0.0415693\pi\)
\(632\) −4.63285 5.80941i −0.184285 0.231086i
\(633\) 3.61264 4.53011i 0.143589 0.180056i
\(634\) −1.81039 7.93185i −0.0718999 0.315014i
\(635\) 4.05554 17.7685i 0.160939 0.705120i
\(636\) 11.2364 14.0900i 0.445553 0.558706i
\(637\) 10.6095 0.420362
\(638\) 42.0075 46.0507i 1.66309 1.82316i
\(639\) −3.27762 −0.129661
\(640\) −12.4429 + 15.6029i −0.491850 + 0.616760i
\(641\) −5.84782 + 25.6210i −0.230975 + 1.01197i 0.717858 + 0.696190i \(0.245123\pi\)
−0.948833 + 0.315778i \(0.897734\pi\)
\(642\) −3.23208 14.1607i −0.127560 0.558878i
\(643\) −13.3662 + 16.7607i −0.527111 + 0.660976i −0.972102 0.234559i \(-0.924636\pi\)
0.444991 + 0.895535i \(0.353207\pi\)
\(644\) 2.89941 + 3.63575i 0.114253 + 0.143268i
\(645\) 6.44626 28.2429i 0.253821 1.11206i
\(646\) −7.16774 3.45180i −0.282011 0.135809i
\(647\) −28.2997 13.6284i −1.11258 0.535788i −0.214985 0.976617i \(-0.568970\pi\)
−0.897591 + 0.440829i \(0.854685\pi\)
\(648\) 0.258780 + 1.13379i 0.0101658 + 0.0445395i
\(649\) −62.8570 + 30.2704i −2.46735 + 1.18822i
\(650\) −0.304532 −0.0119447
\(651\) 2.36812 1.14043i 0.0928140 0.0446969i
\(652\) 9.26682 + 11.6202i 0.362917 + 0.455083i
\(653\) −21.5031 26.9641i −0.841483 1.05519i −0.997722 0.0674669i \(-0.978508\pi\)
0.156239 0.987719i \(-0.450063\pi\)
\(654\) 6.92452 3.33467i 0.270770 0.130396i
\(655\) 42.2448 1.65064
\(656\) −5.26371 + 2.53487i −0.205514 + 0.0989701i
\(657\) −1.57777 6.91266i −0.0615546 0.269689i
\(658\) −9.70202 4.67225i −0.378224 0.182143i
\(659\) −21.3410 10.2773i −0.831326 0.400346i −0.0307137 0.999528i \(-0.509778\pi\)
−0.800612 + 0.599183i \(0.795492\pi\)
\(660\) −4.33146 + 18.9774i −0.168602 + 0.738692i
\(661\) −19.9534 25.0208i −0.776099 0.973197i 0.223900 0.974612i \(-0.428121\pi\)
−0.999999 + 0.00141483i \(0.999550\pi\)
\(662\) −14.4411 + 18.1086i −0.561270 + 0.703810i
\(663\) −1.52575 6.68477i −0.0592554 0.259615i
\(664\) −1.33374 + 5.84348i −0.0517590 + 0.226771i
\(665\) 1.09088 1.36792i 0.0423024 0.0530456i
\(666\) −1.97331 −0.0764642
\(667\) 3.87725 + 24.3221i 0.150128 + 0.941757i
\(668\) −27.7038 −1.07189
\(669\) 6.47312 8.11704i 0.250265 0.313823i
\(670\) −6.34156 + 27.7842i −0.244996 + 1.07340i
\(671\) 9.05287 + 39.6632i 0.349482 + 1.53118i
\(672\) −3.06349 + 3.84150i −0.118177 + 0.148189i
\(673\) 7.45946 + 9.35386i 0.287541 + 0.360565i 0.904532 0.426405i \(-0.140220\pi\)
−0.616991 + 0.786970i \(0.711649\pi\)
\(674\) 6.97729 30.5695i 0.268755 1.17749i
\(675\) 0.0908609 + 0.0437563i 0.00349724 + 0.00168418i
\(676\) 12.6667 + 6.09998i 0.487182 + 0.234615i
\(677\) 8.91349 + 39.0526i 0.342573 + 1.50091i 0.793621 + 0.608412i \(0.208193\pi\)
−0.451048 + 0.892500i \(0.648950\pi\)
\(678\) −17.8935 + 8.61705i −0.687195 + 0.330936i
\(679\) 11.2892 0.433241
\(680\) −9.85837 + 4.74754i −0.378051 + 0.182060i
\(681\) −0.871753 1.09314i −0.0334056 0.0418893i
\(682\) −25.4861 31.9585i −0.975912 1.22376i
\(683\) 18.7031 9.00695i 0.715655 0.344641i −0.0403691 0.999185i \(-0.512853\pi\)
0.756024 + 0.654543i \(0.227139\pi\)
\(684\) 1.42196 0.0543699
\(685\) −7.59428 + 3.65721i −0.290162 + 0.139735i
\(686\) −4.08569 17.9006i −0.155992 0.683447i
\(687\) −6.20877 2.98999i −0.236879 0.114075i
\(688\) −56.2332 27.0805i −2.14387 1.03243i
\(689\) −4.83141 + 21.1678i −0.184062 + 0.806429i
\(690\) −11.8159 14.8167i −0.449825 0.564063i
\(691\) 2.08045 2.60881i 0.0791442 0.0992437i −0.740683 0.671855i \(-0.765498\pi\)
0.819827 + 0.572611i \(0.194069\pi\)
\(692\) 0.0483209 + 0.211708i 0.00183688 + 0.00804792i
\(693\) 1.04484 4.57776i 0.0396903 0.173895i
\(694\) 6.27173 7.86449i 0.238071 0.298532i
\(695\) −30.5911 −1.16039
\(696\) −5.81013 + 2.33738i −0.220232 + 0.0885980i
\(697\) −5.00184 −0.189458
\(698\) −23.4302 + 29.3805i −0.886845 + 1.11207i
\(699\) −0.0298081 + 0.130598i −0.00112745 + 0.00493967i
\(700\) 0.0228174 + 0.0999697i 0.000862418 + 0.00377850i
\(701\) 14.9843 18.7898i 0.565951 0.709680i −0.413695 0.910416i \(-0.635762\pi\)
0.979645 + 0.200736i \(0.0643334\pi\)
\(702\) 1.88276 + 2.36091i 0.0710602 + 0.0891067i
\(703\) 0.249111 1.09142i 0.00939538 0.0411639i
\(704\) 13.5293 + 6.51536i 0.509904 + 0.245557i
\(705\) 16.0466 + 7.72765i 0.604351 + 0.291040i
\(706\) 7.70999 + 33.7797i 0.290169 + 1.27132i
\(707\) 2.97839 1.43432i 0.112014 0.0539430i
\(708\) −15.1075 −0.567774
\(709\) 42.6554 20.5417i 1.60196 0.771461i 0.602315 0.798258i \(-0.294245\pi\)
0.999641 + 0.0267971i \(0.00853079\pi\)
\(710\) 8.46789 + 10.6184i 0.317794 + 0.398502i
\(711\) 3.98371 + 4.99542i 0.149401 + 0.187343i
\(712\) 9.76372 4.70196i 0.365911 0.176213i
\(713\) 16.1515 0.604878
\(714\) −5.12535 + 2.46824i −0.191811 + 0.0923715i
\(715\) −5.21841 22.8634i −0.195158 0.855041i
\(716\) 17.7221 + 8.53454i 0.662308 + 0.318951i
\(717\) 9.34938 + 4.50242i 0.349159 + 0.168146i
\(718\) 1.75380 7.68389i 0.0654512 0.286760i
\(719\) 18.0229 + 22.6001i 0.672142 + 0.842840i 0.994604 0.103743i \(-0.0330819\pi\)
−0.322462 + 0.946582i \(0.604510\pi\)
\(720\) 6.85200 8.59214i 0.255359 0.320210i
\(721\) 2.54945 + 11.1699i 0.0949465 + 0.415988i
\(722\) 7.31464 32.0475i 0.272223 1.19269i
\(723\) −5.27849 + 6.61901i −0.196309 + 0.246164i
\(724\) 17.6730 0.656813
\(725\) −0.155669 + 0.520295i −0.00578140 + 0.0193233i
\(726\) −52.8413 −1.96113
\(727\) 2.28644 2.86711i 0.0847994 0.106335i −0.737622 0.675214i \(-0.764051\pi\)
0.822421 + 0.568879i \(0.192623\pi\)
\(728\) 0.317003 1.38888i 0.0117489 0.0514754i
\(729\) −0.222521 0.974928i −0.00824152 0.0361084i
\(730\) −18.3185 + 22.9706i −0.677997 + 0.850181i
\(731\) −33.3165 41.7776i −1.23226 1.54520i
\(732\) −1.96035 + 8.58887i −0.0724567 + 0.317454i
\(733\) 37.0632 + 17.8487i 1.36896 + 0.659257i 0.966616 0.256231i \(-0.0824808\pi\)
0.402345 + 0.915488i \(0.368195\pi\)
\(734\) −22.5928 10.8801i −0.833915 0.401592i
\(735\) 3.23956 + 14.1934i 0.119493 + 0.523533i
\(736\) −27.2029 + 13.1002i −1.00271 + 0.482881i
\(737\) −43.3896 −1.59827
\(738\) 1.98468 0.955773i 0.0730572 0.0351825i
\(739\) 26.7814 + 33.5828i 0.985168 + 1.23536i 0.971886 + 0.235450i \(0.0756563\pi\)
0.0132816 + 0.999912i \(0.495772\pi\)
\(740\) 2.06907 + 2.59453i 0.0760605 + 0.0953768i
\(741\) −1.54348 + 0.743301i −0.0567012 + 0.0273058i
\(742\) 18.0137 0.661304
\(743\) −25.4955 + 12.2780i −0.935340 + 0.450436i −0.838523 0.544866i \(-0.816580\pi\)
−0.0968168 + 0.995302i \(0.530866\pi\)
\(744\) 0.913885 + 4.00399i 0.0335046 + 0.146793i
\(745\) −4.19084 2.01820i −0.153541 0.0739413i
\(746\) −20.6885 9.96304i −0.757458 0.364773i
\(747\) 1.14686 5.02472i 0.0419614 0.183845i
\(748\) 22.3865 + 28.0717i 0.818530 + 1.02640i
\(749\) 3.67374 4.60673i 0.134236 0.168326i
\(750\) 4.51730 + 19.7916i 0.164949 + 0.722687i
\(751\) −11.6033 + 50.8373i −0.423410 + 1.85508i 0.0885513 + 0.996072i \(0.471776\pi\)
−0.511961 + 0.859009i \(0.671081\pi\)
\(752\) 23.9249 30.0008i 0.872450 1.09402i
\(753\) −7.55152 −0.275193
\(754\) −10.9592 + 12.0140i −0.399111 + 0.437525i
\(755\) 28.1631 1.02496
\(756\) 0.633954 0.794953i 0.0230567 0.0289122i
\(757\) 9.09782 39.8602i 0.330666 1.44874i −0.487179 0.873302i \(-0.661974\pi\)
0.817844 0.575439i \(-0.195169\pi\)
\(758\) −4.53615 19.8742i −0.164760 0.721863i
\(759\) 17.9899 22.5586i 0.652991 0.818825i
\(760\) 1.70452 + 2.13740i 0.0618295 + 0.0775317i
\(761\) 2.91709 12.7806i 0.105744 0.463296i −0.894136 0.447796i \(-0.852209\pi\)
0.999880 0.0154996i \(-0.00493387\pi\)
\(762\) 13.3393 + 6.42385i 0.483231 + 0.232712i
\(763\) 2.80903 + 1.35276i 0.101694 + 0.0489732i
\(764\) 1.70631 + 7.47584i 0.0617322 + 0.270467i
\(765\) 8.47706 4.08234i 0.306489 0.147597i