Properties

Label 87.2.g.b.52.2
Level $87$
Weight $2$
Character 87.52
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 52.2
Root \(0.0185039 + 0.0810709i\) of defining polynomial
Character \(\chi\) \(=\) 87.52
Dual form 87.2.g.b.82.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0518468 + 0.0650138i) q^{2} +(0.222521 - 0.974928i) q^{3} +(0.443503 + 1.94311i) q^{4} +(1.20357 - 1.50923i) q^{5} +(0.0518468 + 0.0650138i) q^{6} +(-0.0765305 + 0.335302i) q^{7} +(-0.299165 - 0.144070i) q^{8} +(-0.900969 - 0.433884i) q^{9} +O(q^{10})\) \(q+(-0.0518468 + 0.0650138i) q^{2} +(0.222521 - 0.974928i) q^{3} +(0.443503 + 1.94311i) q^{4} +(1.20357 - 1.50923i) q^{5} +(0.0518468 + 0.0650138i) q^{6} +(-0.0765305 + 0.335302i) q^{7} +(-0.299165 - 0.144070i) q^{8} +(-0.900969 - 0.433884i) q^{9} +(0.0357195 + 0.156498i) q^{10} +(2.18408 - 1.05180i) q^{11} +1.99309 q^{12} +(-3.27160 + 1.57552i) q^{13} +(-0.0178314 - 0.0223599i) q^{14} +(-1.20357 - 1.50923i) q^{15} +(-3.56654 + 1.71755i) q^{16} -6.15354 q^{17} +(0.0749208 - 0.0360799i) q^{18} +(0.300553 + 1.31681i) q^{19} +(3.46640 + 1.66933i) q^{20} +(0.309866 + 0.149223i) q^{21} +(-0.0448561 + 0.196528i) q^{22} +(-2.16114 - 2.70998i) q^{23} +(-0.207029 + 0.259606i) q^{24} +(0.283411 + 1.24171i) q^{25} +(0.0671914 - 0.294385i) q^{26} +(-0.623490 + 0.781831i) q^{27} -0.685471 q^{28} +(-4.26305 + 3.29035i) q^{29} +0.160522 q^{30} +(6.85222 - 8.59242i) q^{31} +(0.221024 - 0.968370i) q^{32} +(-0.539423 - 2.36337i) q^{33} +(0.319041 - 0.400065i) q^{34} +(0.413938 + 0.519062i) q^{35} +(0.443503 - 1.94311i) q^{36} +(2.78149 + 1.33950i) q^{37} +(-0.101193 - 0.0487322i) q^{38} +(0.808018 + 3.54016i) q^{39} +(-0.577502 + 0.278110i) q^{40} +5.28313 q^{41} +(-0.0257671 + 0.0124088i) q^{42} +(-0.00526324 - 0.00659989i) q^{43} +(3.01241 + 3.77744i) q^{44} +(-1.73921 + 0.837560i) q^{45} +0.288234 q^{46} +(5.22270 - 2.51512i) q^{47} +(0.880862 + 3.85931i) q^{48} +(6.20021 + 2.98586i) q^{49} +(-0.0954221 - 0.0459528i) q^{50} +(-1.36929 + 5.99926i) q^{51} +(-4.51238 - 5.65834i) q^{52} +(-2.58271 + 3.23861i) q^{53} +(-0.0185039 - 0.0810709i) q^{54} +(1.04129 - 4.56219i) q^{55} +(0.0712023 - 0.0892849i) q^{56} +1.35067 q^{57} +(0.00710697 - 0.447751i) q^{58} +5.76819 q^{59} +(2.39882 - 3.00802i) q^{60} +(1.38805 - 6.08144i) q^{61} +(0.203360 + 0.890979i) q^{62} +(0.214434 - 0.268891i) q^{63} +(-4.88474 - 6.12527i) q^{64} +(-1.55978 + 6.83384i) q^{65} +(0.181619 + 0.0874630i) q^{66} +(-9.92346 - 4.77889i) q^{67} +(-2.72912 - 11.9570i) q^{68} +(-3.12293 + 1.50393i) q^{69} -0.0552076 q^{70} +(-11.5818 + 5.57748i) q^{71} +(0.207029 + 0.259606i) q^{72} +(0.286311 + 0.359022i) q^{73} +(-0.231297 + 0.111387i) q^{74} +1.27364 q^{75} +(-2.42541 + 1.16802i) q^{76} +(0.185521 + 0.812820i) q^{77} +(-0.272052 - 0.131013i) q^{78} +(11.2434 + 5.41452i) q^{79} +(-1.70040 + 7.44993i) q^{80} +(0.623490 + 0.781831i) q^{81} +(-0.273913 + 0.343476i) q^{82} +(-0.640518 - 2.80629i) q^{83} +(-0.152532 + 0.668285i) q^{84} +(-7.40623 + 9.28712i) q^{85} +0.000701966 q^{86} +(2.25924 + 4.88834i) q^{87} -0.804933 q^{88} +(-7.62150 + 9.55706i) q^{89} +(0.0357195 - 0.156498i) q^{90} +(-0.277897 - 1.21755i) q^{91} +(4.30733 - 5.40122i) q^{92} +(-6.85222 - 8.59242i) q^{93} +(-0.107263 + 0.469948i) q^{94} +(2.34911 + 1.13127i) q^{95} +(-0.894908 - 0.430965i) q^{96} +(0.606191 + 2.65590i) q^{97} +(-0.515584 + 0.248292i) q^{98} -2.42414 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0518468 + 0.0650138i −0.0366612 + 0.0459717i −0.799824 0.600234i \(-0.795074\pi\)
0.763163 + 0.646206i \(0.223645\pi\)
\(3\) 0.222521 0.974928i 0.128473 0.562875i
\(4\) 0.443503 + 1.94311i 0.221752 + 0.971557i
\(5\) 1.20357 1.50923i 0.538253 0.674948i −0.436119 0.899889i \(-0.643647\pi\)
0.974372 + 0.224941i \(0.0722188\pi\)
\(6\) 0.0518468 + 0.0650138i 0.0211664 + 0.0265418i
\(7\) −0.0765305 + 0.335302i −0.0289258 + 0.126732i −0.987329 0.158684i \(-0.949275\pi\)
0.958404 + 0.285417i \(0.0921319\pi\)
\(8\) −0.299165 0.144070i −0.105771 0.0509365i
\(9\) −0.900969 0.433884i −0.300323 0.144628i
\(10\) 0.0357195 + 0.156498i 0.0112955 + 0.0494889i
\(11\) 2.18408 1.05180i 0.658525 0.317129i −0.0746095 0.997213i \(-0.523771\pi\)
0.733134 + 0.680084i \(0.238057\pi\)
\(12\) 1.99309 0.575354
\(13\) −3.27160 + 1.57552i −0.907378 + 0.436970i −0.828548 0.559918i \(-0.810833\pi\)
−0.0788298 + 0.996888i \(0.525118\pi\)
\(14\) −0.0178314 0.0223599i −0.00476564 0.00597593i
\(15\) −1.20357 1.50923i −0.310761 0.389682i
\(16\) −3.56654 + 1.71755i −0.891634 + 0.429389i
\(17\) −6.15354 −1.49245 −0.746227 0.665692i \(-0.768137\pi\)
−0.746227 + 0.665692i \(0.768137\pi\)
\(18\) 0.0749208 0.0360799i 0.0176590 0.00850413i
\(19\) 0.300553 + 1.31681i 0.0689516 + 0.302097i 0.997631 0.0687856i \(-0.0219125\pi\)
−0.928680 + 0.370882i \(0.879055\pi\)
\(20\) 3.46640 + 1.66933i 0.775110 + 0.373273i
\(21\) 0.309866 + 0.149223i 0.0676182 + 0.0325632i
\(22\) −0.0448561 + 0.196528i −0.00956336 + 0.0418998i
\(23\) −2.16114 2.70998i −0.450628 0.565070i 0.503681 0.863889i \(-0.331979\pi\)
−0.954310 + 0.298820i \(0.903407\pi\)
\(24\) −0.207029 + 0.259606i −0.0422595 + 0.0529918i
\(25\) 0.283411 + 1.24171i 0.0566823 + 0.248341i
\(26\) 0.0671914 0.294385i 0.0131773 0.0577336i
\(27\) −0.623490 + 0.781831i −0.119991 + 0.150464i
\(28\) −0.685471 −0.129542
\(29\) −4.26305 + 3.29035i −0.791628 + 0.611003i
\(30\) 0.160522 0.0293072
\(31\) 6.85222 8.59242i 1.23070 1.54324i 0.489411 0.872053i \(-0.337212\pi\)
0.741285 0.671190i \(-0.234217\pi\)
\(32\) 0.221024 0.968370i 0.0390719 0.171185i
\(33\) −0.539423 2.36337i −0.0939015 0.411409i
\(34\) 0.319041 0.400065i 0.0547152 0.0686106i
\(35\) 0.413938 + 0.519062i 0.0699683 + 0.0877375i
\(36\) 0.443503 1.94311i 0.0739172 0.323852i
\(37\) 2.78149 + 1.33950i 0.457275 + 0.220212i 0.648318 0.761370i \(-0.275473\pi\)
−0.191043 + 0.981582i \(0.561187\pi\)
\(38\) −0.101193 0.0487322i −0.0164158 0.00790541i
\(39\) 0.808018 + 3.54016i 0.129386 + 0.566879i
\(40\) −0.577502 + 0.278110i −0.0913111 + 0.0439731i
\(41\) 5.28313 0.825086 0.412543 0.910938i \(-0.364641\pi\)
0.412543 + 0.910938i \(0.364641\pi\)
\(42\) −0.0257671 + 0.0124088i −0.00397595 + 0.00191472i
\(43\) −0.00526324 0.00659989i −0.000802636 0.00100647i 0.781430 0.623993i \(-0.214491\pi\)
−0.782233 + 0.622986i \(0.785919\pi\)
\(44\) 3.01241 + 3.77744i 0.454138 + 0.569470i
\(45\) −1.73921 + 0.837560i −0.259266 + 0.124856i
\(46\) 0.288234 0.0424978
\(47\) 5.22270 2.51512i 0.761809 0.366868i −0.0122968 0.999924i \(-0.503914\pi\)
0.774105 + 0.633057i \(0.218200\pi\)
\(48\) 0.880862 + 3.85931i 0.127141 + 0.557043i
\(49\) 6.20021 + 2.98586i 0.885745 + 0.426552i
\(50\) −0.0954221 0.0459528i −0.0134947 0.00649871i
\(51\) −1.36929 + 5.99926i −0.191739 + 0.840065i
\(52\) −4.51238 5.65834i −0.625754 0.784671i
\(53\) −2.58271 + 3.23861i −0.354762 + 0.444857i −0.926905 0.375297i \(-0.877541\pi\)
0.572143 + 0.820154i \(0.306112\pi\)
\(54\) −0.0185039 0.0810709i −0.00251806 0.0110324i
\(55\) 1.04129 4.56219i 0.140408 0.615166i
\(56\) 0.0712023 0.0892849i 0.00951481 0.0119312i
\(57\) 1.35067 0.178901
\(58\) 0.00710697 0.447751i 0.000933191 0.0587926i
\(59\) 5.76819 0.750955 0.375477 0.926832i \(-0.377479\pi\)
0.375477 + 0.926832i \(0.377479\pi\)
\(60\) 2.39882 3.00802i 0.309686 0.388334i
\(61\) 1.38805 6.08144i 0.177722 0.778649i −0.804957 0.593333i \(-0.797812\pi\)
0.982679 0.185316i \(-0.0593310\pi\)
\(62\) 0.203360 + 0.890979i 0.0258268 + 0.113154i
\(63\) 0.214434 0.268891i 0.0270161 0.0338771i
\(64\) −4.88474 6.12527i −0.610593 0.765659i
\(65\) −1.55978 + 6.83384i −0.193467 + 0.847634i
\(66\) 0.181619 + 0.0874630i 0.0223557 + 0.0107660i
\(67\) −9.92346 4.77889i −1.21234 0.583834i −0.285174 0.958476i \(-0.592051\pi\)
−0.927170 + 0.374642i \(0.877766\pi\)
\(68\) −2.72912 11.9570i −0.330954 1.45000i
\(69\) −3.12293 + 1.50393i −0.375957 + 0.181051i
\(70\) −0.0552076 −0.00659856
\(71\) −11.5818 + 5.57748i −1.37450 + 0.661925i −0.967820 0.251645i \(-0.919029\pi\)
−0.406682 + 0.913570i \(0.633314\pi\)
\(72\) 0.207029 + 0.259606i 0.0243986 + 0.0305948i
\(73\) 0.286311 + 0.359022i 0.0335102 + 0.0420204i 0.798304 0.602254i \(-0.205731\pi\)
−0.764794 + 0.644275i \(0.777159\pi\)
\(74\) −0.231297 + 0.111387i −0.0268878 + 0.0129485i
\(75\) 1.27364 0.147067
\(76\) −2.42541 + 1.16802i −0.278214 + 0.133981i
\(77\) 0.185521 + 0.812820i 0.0211421 + 0.0926295i
\(78\) −0.272052 0.131013i −0.0308039 0.0148344i
\(79\) 11.2434 + 5.41452i 1.26498 + 0.609181i 0.941487 0.337050i \(-0.109429\pi\)
0.323491 + 0.946231i \(0.395143\pi\)
\(80\) −1.70040 + 7.44993i −0.190110 + 0.832927i
\(81\) 0.623490 + 0.781831i 0.0692766 + 0.0868702i
\(82\) −0.273913 + 0.343476i −0.0302487 + 0.0379306i
\(83\) −0.640518 2.80629i −0.0703060 0.308031i 0.927533 0.373742i \(-0.121925\pi\)
−0.997839 + 0.0657114i \(0.979068\pi\)
\(84\) −0.152532 + 0.668285i −0.0166426 + 0.0729159i
\(85\) −7.40623 + 9.28712i −0.803318 + 1.00733i
\(86\) 0.000701966 0 7.56950e−5 0
\(87\) 2.25924 + 4.88834i 0.242216 + 0.524085i
\(88\) −0.804933 −0.0858061
\(89\) −7.62150 + 9.55706i −0.807878 + 1.01305i 0.191624 + 0.981468i \(0.438625\pi\)
−0.999501 + 0.0315781i \(0.989947\pi\)
\(90\) 0.0357195 0.156498i 0.00376517 0.0164963i
\(91\) −0.277897 1.21755i −0.0291316 0.127634i
\(92\) 4.30733 5.40122i 0.449070 0.563116i
\(93\) −6.85222 8.59242i −0.710543 0.890992i
\(94\) −0.107263 + 0.469948i −0.0110633 + 0.0484715i
\(95\) 2.34911 + 1.13127i 0.241013 + 0.116066i
\(96\) −0.894908 0.430965i −0.0913362 0.0439852i
\(97\) 0.606191 + 2.65590i 0.0615494 + 0.269666i 0.996334 0.0855498i \(-0.0272647\pi\)
−0.934784 + 0.355215i \(0.884408\pi\)
\(98\) −0.515584 + 0.248292i −0.0520818 + 0.0250813i
\(99\) −2.42414 −0.243636
\(100\) −2.28708 + 1.10140i −0.228708 + 0.110140i
\(101\) −11.3909 14.2838i −1.13344 1.42129i −0.892673 0.450704i \(-0.851173\pi\)
−0.240765 0.970583i \(-0.577398\pi\)
\(102\) −0.319041 0.400065i −0.0315898 0.0396124i
\(103\) 14.4782 6.97235i 1.42658 0.687006i 0.448224 0.893921i \(-0.352057\pi\)
0.978359 + 0.206916i \(0.0663425\pi\)
\(104\) 1.20573 0.118232
\(105\) 0.598158 0.288058i 0.0583742 0.0281115i
\(106\) −0.0766494 0.335823i −0.00744485 0.0326180i
\(107\) 14.5741 + 7.01851i 1.40893 + 0.678505i 0.974951 0.222419i \(-0.0713953\pi\)
0.433978 + 0.900923i \(0.357110\pi\)
\(108\) −1.79571 0.864767i −0.172792 0.0832123i
\(109\) −2.04709 + 8.96888i −0.196075 + 0.859063i 0.777169 + 0.629292i \(0.216655\pi\)
−0.973245 + 0.229771i \(0.926202\pi\)
\(110\) 0.242618 + 0.304233i 0.0231327 + 0.0290075i
\(111\) 1.92485 2.41369i 0.182699 0.229097i
\(112\) −0.302950 1.32731i −0.0286261 0.125419i
\(113\) 4.50744 19.7484i 0.424024 1.85777i −0.0840533 0.996461i \(-0.526787\pi\)
0.508078 0.861311i \(-0.330356\pi\)
\(114\) −0.0700281 + 0.0878124i −0.00655873 + 0.00822439i
\(115\) −6.69107 −0.623945
\(116\) −8.28421 6.82431i −0.769169 0.633621i
\(117\) 3.63120 0.335704
\(118\) −0.299062 + 0.375012i −0.0275309 + 0.0345227i
\(119\) 0.470934 2.06329i 0.0431704 0.189142i
\(120\) 0.142631 + 0.624908i 0.0130204 + 0.0570460i
\(121\) −3.19446 + 4.00573i −0.290406 + 0.364157i
\(122\) 0.323412 + 0.405546i 0.0292803 + 0.0367164i
\(123\) 1.17561 5.15067i 0.106001 0.464420i
\(124\) 19.7350 + 9.50389i 1.77226 + 0.853475i
\(125\) 10.9112 + 5.25455i 0.975926 + 0.469981i
\(126\) 0.00636395 + 0.0278823i 0.000566946 + 0.00248395i
\(127\) −8.61739 + 4.14992i −0.764670 + 0.368246i −0.775214 0.631699i \(-0.782358\pi\)
0.0105441 + 0.999944i \(0.496644\pi\)
\(128\) 2.63803 0.233171
\(129\) −0.00760560 + 0.00366266i −0.000669636 + 0.000322480i
\(130\) −0.363425 0.455720i −0.0318745 0.0399693i
\(131\) 10.4762 + 13.1367i 0.915307 + 1.14776i 0.988618 + 0.150449i \(0.0480721\pi\)
−0.0733108 + 0.997309i \(0.523356\pi\)
\(132\) 4.35306 2.09632i 0.378885 0.182461i
\(133\) −0.464530 −0.0402799
\(134\) 0.825193 0.397392i 0.0712859 0.0343295i
\(135\) 0.429550 + 1.88198i 0.0369697 + 0.161975i
\(136\) 1.84093 + 0.886543i 0.157858 + 0.0760204i
\(137\) 5.18170 + 2.49538i 0.442703 + 0.213194i 0.641937 0.766757i \(-0.278131\pi\)
−0.199234 + 0.979952i \(0.563845\pi\)
\(138\) 0.0641381 0.281008i 0.00545980 0.0239209i
\(139\) 0.976909 + 1.22501i 0.0828603 + 0.103904i 0.821534 0.570160i \(-0.193119\pi\)
−0.738673 + 0.674064i \(0.764547\pi\)
\(140\) −0.825014 + 1.03453i −0.0697264 + 0.0874341i
\(141\) −1.28990 5.65142i −0.108629 0.475935i
\(142\) 0.237864 1.04215i 0.0199611 0.0874552i
\(143\) −5.48830 + 6.88211i −0.458955 + 0.575511i
\(144\) 3.95856 0.329880
\(145\) −0.164981 + 10.3941i −0.0137009 + 0.863183i
\(146\) −0.0381857 −0.00316027
\(147\) 4.29068 5.38034i 0.353889 0.443763i
\(148\) −1.36919 + 5.99883i −0.112547 + 0.493101i
\(149\) −2.81077 12.3148i −0.230267 1.00887i −0.949418 0.314014i \(-0.898326\pi\)
0.719151 0.694854i \(-0.244531\pi\)
\(150\) −0.0660341 + 0.0828042i −0.00539166 + 0.00676093i
\(151\) −6.40179 8.02760i −0.520971 0.653277i 0.449844 0.893107i \(-0.351480\pi\)
−0.970815 + 0.239831i \(0.922908\pi\)
\(152\) 0.0997981 0.437244i 0.00809469 0.0354652i
\(153\) 5.54415 + 2.66992i 0.448218 + 0.215850i
\(154\) −0.0624632 0.0300807i −0.00503343 0.00242397i
\(155\) −4.72080 20.6832i −0.379184 1.66131i
\(156\) −6.52057 + 3.14014i −0.522064 + 0.251413i
\(157\) −3.78665 −0.302207 −0.151104 0.988518i \(-0.548283\pi\)
−0.151104 + 0.988518i \(0.548283\pi\)
\(158\) −0.934952 + 0.450249i −0.0743808 + 0.0358199i
\(159\) 2.58271 + 3.23861i 0.204822 + 0.256839i
\(160\) −1.19548 1.49908i −0.0945106 0.118513i
\(161\) 1.07405 0.517237i 0.0846473 0.0407640i
\(162\) −0.0831558 −0.00653334
\(163\) 5.47952 2.63880i 0.429189 0.206687i −0.206802 0.978383i \(-0.566306\pi\)
0.635991 + 0.771696i \(0.280591\pi\)
\(164\) 2.34308 + 10.2657i 0.182964 + 0.801618i
\(165\) −4.21610 2.03037i −0.328223 0.158064i
\(166\) 0.215657 + 0.103855i 0.0167382 + 0.00806069i
\(167\) 1.70796 7.48305i 0.132166 0.579056i −0.864862 0.502010i \(-0.832594\pi\)
0.997028 0.0770460i \(-0.0245488\pi\)
\(168\) −0.0712023 0.0892849i −0.00549338 0.00688848i
\(169\) 0.115724 0.145113i 0.00890183 0.0111625i
\(170\) −0.219802 0.963014i −0.0168580 0.0738598i
\(171\) 0.300553 1.31681i 0.0229839 0.100699i
\(172\) 0.0104901 0.0131541i 0.000799861 0.00100299i
\(173\) −14.9932 −1.13991 −0.569956 0.821675i \(-0.693040\pi\)
−0.569956 + 0.821675i \(0.693040\pi\)
\(174\) −0.434944 0.106563i −0.0329730 0.00807851i
\(175\) −0.438036 −0.0331124
\(176\) −5.98308 + 7.50255i −0.450992 + 0.565526i
\(177\) 1.28354 5.62357i 0.0964771 0.422694i
\(178\) −0.226191 0.991006i −0.0169537 0.0742790i
\(179\) −10.0259 + 12.5720i −0.749369 + 0.939679i −0.999594 0.0285091i \(-0.990924\pi\)
0.250225 + 0.968188i \(0.419495\pi\)
\(180\) −2.39882 3.00802i −0.178797 0.224205i
\(181\) 1.26245 5.53117i 0.0938375 0.411129i −0.906091 0.423083i \(-0.860948\pi\)
0.999929 + 0.0119539i \(0.00380512\pi\)
\(182\) 0.0935655 + 0.0450588i 0.00693554 + 0.00333998i
\(183\) −5.62010 2.70650i −0.415450 0.200070i
\(184\) 0.256109 + 1.12209i 0.0188806 + 0.0827213i
\(185\) 5.36933 2.58573i 0.394761 0.190107i
\(186\) 0.913892 0.0670098
\(187\) −13.4398 + 6.47228i −0.982817 + 0.473300i
\(188\) 7.20344 + 9.03283i 0.525365 + 0.658787i
\(189\) −0.214434 0.268891i −0.0155978 0.0195590i
\(190\) −0.195342 + 0.0940716i −0.0141716 + 0.00682467i
\(191\) 0.636893 0.0460839 0.0230420 0.999734i \(-0.492665\pi\)
0.0230420 + 0.999734i \(0.492665\pi\)
\(192\) −7.05866 + 3.39927i −0.509415 + 0.245321i
\(193\) 2.52413 + 11.0589i 0.181691 + 0.796039i 0.980826 + 0.194887i \(0.0624341\pi\)
−0.799135 + 0.601152i \(0.794709\pi\)
\(194\) −0.204099 0.0982890i −0.0146535 0.00705674i
\(195\) 6.31542 + 3.04135i 0.452257 + 0.217795i
\(196\) −3.05206 + 13.3720i −0.218004 + 0.955140i
\(197\) −10.5545 13.2349i −0.751976 0.942949i 0.247688 0.968840i \(-0.420329\pi\)
−0.999665 + 0.0258911i \(0.991758\pi\)
\(198\) 0.125684 0.157603i 0.00893198 0.0112004i
\(199\) −1.93102 8.46037i −0.136887 0.599740i −0.996108 0.0881362i \(-0.971909\pi\)
0.859222 0.511603i \(-0.170948\pi\)
\(200\) 0.0941063 0.412306i 0.00665432 0.0291545i
\(201\) −6.86725 + 8.61126i −0.484378 + 0.607391i
\(202\) 1.51922 0.106892
\(203\) −0.777008 1.68122i −0.0545353 0.117999i
\(204\) −12.2645 −0.858689
\(205\) 6.35862 7.97346i 0.444105 0.556891i
\(206\) −0.297351 + 1.30278i −0.0207174 + 0.0907689i
\(207\) 0.771301 + 3.37929i 0.0536091 + 0.234877i
\(208\) 8.96224 11.2383i 0.621419 0.779235i
\(209\) 2.04145 + 2.55989i 0.141210 + 0.177072i
\(210\) −0.0122848 + 0.0538234i −0.000847734 + 0.00371417i
\(211\) −11.4887 5.53267i −0.790916 0.380885i −0.00560320 0.999984i \(-0.501784\pi\)
−0.785313 + 0.619099i \(0.787498\pi\)
\(212\) −7.43843 3.58216i −0.510873 0.246024i
\(213\) 2.86046 + 12.5325i 0.195995 + 0.858712i
\(214\) −1.21192 + 0.583629i −0.0828451 + 0.0398961i
\(215\) −0.0162954 −0.00111134
\(216\) 0.299165 0.144070i 0.0203556 0.00980274i
\(217\) 2.35665 + 2.95515i 0.159980 + 0.200608i
\(218\) −0.476966 0.598096i −0.0323042 0.0405082i
\(219\) 0.413731 0.199242i 0.0279574 0.0134636i
\(220\) 9.32667 0.628804
\(221\) 20.1319 9.69502i 1.35422 0.652158i
\(222\) 0.0571257 + 0.250284i 0.00383403 + 0.0167980i
\(223\) −17.2436 8.30407i −1.15472 0.556082i −0.244268 0.969708i \(-0.578548\pi\)
−0.910447 + 0.413626i \(0.864262\pi\)
\(224\) 0.307781 + 0.148220i 0.0205645 + 0.00990334i
\(225\) 0.283411 1.24171i 0.0188941 0.0827804i
\(226\) 1.05022 + 1.31694i 0.0698597 + 0.0876013i
\(227\) −15.4320 + 19.3511i −1.02426 + 1.28438i −0.0661958 + 0.997807i \(0.521086\pi\)
−0.958060 + 0.286569i \(0.907485\pi\)
\(228\) 0.599028 + 2.62451i 0.0396716 + 0.173813i
\(229\) 4.32439 18.9464i 0.285764 1.25201i −0.604514 0.796595i \(-0.706632\pi\)
0.890277 0.455419i \(-0.150510\pi\)
\(230\) 0.346910 0.435012i 0.0228746 0.0286838i
\(231\) 0.833724 0.0548550
\(232\) 1.74940 0.370180i 0.114854 0.0243035i
\(233\) 18.2842 1.19784 0.598918 0.800810i \(-0.295598\pi\)
0.598918 + 0.800810i \(0.295598\pi\)
\(234\) −0.188266 + 0.236078i −0.0123073 + 0.0154329i
\(235\) 2.48999 10.9094i 0.162429 0.711649i
\(236\) 2.55821 + 11.2083i 0.166525 + 0.729596i
\(237\) 7.78066 9.75663i 0.505408 0.633761i
\(238\) 0.109726 + 0.137592i 0.00711250 + 0.00891879i
\(239\) −1.82330 + 7.98840i −0.117939 + 0.516727i 0.881101 + 0.472928i \(0.156803\pi\)
−0.999040 + 0.0437983i \(0.986054\pi\)
\(240\) 6.88477 + 3.31553i 0.444410 + 0.214017i
\(241\) 6.43502 + 3.09894i 0.414516 + 0.199620i 0.629506 0.776996i \(-0.283257\pi\)
−0.214989 + 0.976616i \(0.568972\pi\)
\(242\) −0.0948052 0.415369i −0.00609431 0.0267009i
\(243\) 0.900969 0.433884i 0.0577972 0.0278337i
\(244\) 12.4325 0.795912
\(245\) 11.9688 5.76385i 0.764656 0.368239i
\(246\) 0.273913 + 0.343476i 0.0174641 + 0.0218993i
\(247\) −3.05795 3.83454i −0.194572 0.243986i
\(248\) −3.28786 + 1.58335i −0.208779 + 0.100543i
\(249\) −2.87846 −0.182415
\(250\) −0.907328 + 0.436946i −0.0573845 + 0.0276349i
\(251\) −0.516642 2.26356i −0.0326102 0.142874i 0.956002 0.293360i \(-0.0947735\pi\)
−0.988612 + 0.150486i \(0.951916\pi\)
\(252\) 0.617588 + 0.297415i 0.0389044 + 0.0187354i
\(253\) −7.57044 3.64573i −0.475950 0.229205i
\(254\) 0.176982 0.775409i 0.0111048 0.0486535i
\(255\) 7.40623 + 9.28712i 0.463796 + 0.581582i
\(256\) 9.63271 12.0790i 0.602045 0.754940i
\(257\) 5.06951 + 22.2110i 0.316228 + 1.38548i 0.844112 + 0.536167i \(0.180128\pi\)
−0.527884 + 0.849316i \(0.677015\pi\)
\(258\) 0.000156202 0 0.000684367i 9.72472e−6 0 4.26068e-5i
\(259\) −0.662005 + 0.830127i −0.0411350 + 0.0515816i
\(260\) −13.9707 −0.866426
\(261\) 5.26850 1.11484i 0.326112 0.0690067i
\(262\) −1.39722 −0.0863207
\(263\) −0.595714 + 0.747002i −0.0367333 + 0.0460621i −0.799859 0.600188i \(-0.795092\pi\)
0.763126 + 0.646250i \(0.223664\pi\)
\(264\) −0.179114 + 0.784752i −0.0110237 + 0.0482981i
\(265\) 1.77934 + 7.79580i 0.109304 + 0.478892i
\(266\) 0.0240844 0.0302009i 0.00147671 0.00185173i
\(267\) 7.62150 + 9.55706i 0.466428 + 0.584883i
\(268\) 4.88484 21.4019i 0.298389 1.30733i
\(269\) −13.6464 6.57178i −0.832038 0.400688i −0.0311589 0.999514i \(-0.509920\pi\)
−0.800879 + 0.598826i \(0.795634\pi\)
\(270\) −0.144625 0.0696480i −0.00880163 0.00423864i
\(271\) 1.83597 + 8.04392i 0.111527 + 0.488633i 0.999582 + 0.0288962i \(0.00919922\pi\)
−0.888055 + 0.459737i \(0.847944\pi\)
\(272\) 21.9468 10.5690i 1.33072 0.640842i
\(273\) −1.24886 −0.0755844
\(274\) −0.430889 + 0.207505i −0.0260309 + 0.0125358i
\(275\) 1.92502 + 2.41389i 0.116083 + 0.145563i
\(276\) −4.30733 5.40122i −0.259271 0.325115i
\(277\) −15.0761 + 7.26026i −0.905834 + 0.436227i −0.827992 0.560739i \(-0.810517\pi\)
−0.0778412 + 0.996966i \(0.524803\pi\)
\(278\) −0.130292 −0.00781439
\(279\) −9.90175 + 4.76843i −0.592802 + 0.285479i
\(280\) −0.0490544 0.214921i −0.00293156 0.0128440i
\(281\) 19.9509 + 9.60786i 1.19017 + 0.573157i 0.920859 0.389896i \(-0.127489\pi\)
0.269313 + 0.963053i \(0.413203\pi\)
\(282\) 0.434298 + 0.209147i 0.0258620 + 0.0124545i
\(283\) 3.92964 17.2169i 0.233593 1.02344i −0.713040 0.701123i \(-0.752682\pi\)
0.946633 0.322314i \(-0.104461\pi\)
\(284\) −15.9742 20.0310i −0.947896 1.18862i
\(285\) 1.62563 2.03848i 0.0962941 0.120749i
\(286\) −0.162882 0.713631i −0.00963139 0.0421979i
\(287\) −0.404320 + 1.77144i −0.0238663 + 0.104565i
\(288\) −0.619296 + 0.776572i −0.0364924 + 0.0457600i
\(289\) 20.8661 1.22742
\(290\) −0.667206 0.549627i −0.0391797 0.0322752i
\(291\) 2.72420 0.159695
\(292\) −0.570642 + 0.715562i −0.0333943 + 0.0418751i
\(293\) −5.15017 + 22.5644i −0.300876 + 1.31823i 0.567931 + 0.823076i \(0.307744\pi\)
−0.868808 + 0.495150i \(0.835113\pi\)
\(294\) 0.127339 + 0.557907i 0.00742654 + 0.0325378i
\(295\) 6.94243 8.70553i 0.404204 0.506856i
\(296\) −0.639144 0.801461i −0.0371495 0.0465840i
\(297\) −0.539423 + 2.36337i −0.0313005 + 0.137136i
\(298\) 0.946362 + 0.455744i 0.0548213 + 0.0264005i
\(299\) 11.3400 + 5.46105i 0.655809 + 0.315821i
\(300\) 0.564863 + 2.47483i 0.0326124 + 0.142884i
\(301\) 0.00261575 0.00125968i 0.000150770 7.26068e-5i
\(302\) 0.853817 0.0491317
\(303\) −16.4604 + 7.92689i −0.945623 + 0.455388i
\(304\) −3.33362 4.18023i −0.191196 0.239753i
\(305\) −7.50768 9.41434i −0.429889 0.539063i
\(306\) −0.461028 + 0.222020i −0.0263552 + 0.0126920i
\(307\) −22.9984 −1.31259 −0.656293 0.754506i \(-0.727876\pi\)
−0.656293 + 0.754506i \(0.727876\pi\)
\(308\) −1.49712 + 0.720977i −0.0853065 + 0.0410815i
\(309\) −3.57583 15.6667i −0.203422 0.891249i
\(310\) 1.58945 + 0.765439i 0.0902747 + 0.0434740i
\(311\) −3.67659 1.77055i −0.208480 0.100399i 0.326730 0.945118i \(-0.394053\pi\)
−0.535210 + 0.844719i \(0.679768\pi\)
\(312\) 0.268301 1.17550i 0.0151895 0.0665497i
\(313\) 17.9270 + 22.4797i 1.01329 + 1.27063i 0.962318 + 0.271928i \(0.0876612\pi\)
0.0509742 + 0.998700i \(0.483767\pi\)
\(314\) 0.196325 0.246184i 0.0110793 0.0138930i
\(315\) −0.147733 0.647260i −0.00832380 0.0364689i
\(316\) −5.53457 + 24.2485i −0.311344 + 1.36409i
\(317\) 7.18877 9.01443i 0.403762 0.506301i −0.537832 0.843052i \(-0.680757\pi\)
0.941594 + 0.336751i \(0.109328\pi\)
\(318\) −0.344459 −0.0193163
\(319\) −5.85005 + 11.6703i −0.327540 + 0.653409i
\(320\) −15.1236 −0.845434
\(321\) 10.0856 12.6469i 0.562922 0.705882i
\(322\) −0.0220587 + 0.0966455i −0.00122928 + 0.00538584i
\(323\) −1.84947 8.10304i −0.102907 0.450865i
\(324\) −1.24267 + 1.55826i −0.0690371 + 0.0865698i
\(325\) −2.88354 3.61584i −0.159950 0.200571i
\(326\) −0.112537 + 0.493058i −0.00623286 + 0.0273080i
\(327\) 8.28849 + 3.99153i 0.458354 + 0.220732i
\(328\) −1.58053 0.761142i −0.0872700 0.0420270i
\(329\) 0.443628 + 1.94366i 0.0244580 + 0.107158i
\(330\) 0.350593 0.168837i 0.0192995 0.00929416i
\(331\) 12.3038 0.676277 0.338139 0.941096i \(-0.390203\pi\)
0.338139 + 0.941096i \(0.390203\pi\)
\(332\) 5.16888 2.48920i 0.283679 0.136613i
\(333\) −1.92485 2.41369i −0.105481 0.132269i
\(334\) 0.397950 + 0.499013i 0.0217748 + 0.0273048i
\(335\) −19.1560 + 9.22506i −1.04661 + 0.504019i
\(336\) −1.36145 −0.0742730
\(337\) −27.5590 + 13.2717i −1.50123 + 0.722956i −0.990593 0.136838i \(-0.956306\pi\)
−0.510640 + 0.859794i \(0.670592\pi\)
\(338\) 0.00343445 + 0.0150473i 0.000186809 + 0.000818465i
\(339\) −18.2503 8.78886i −0.991218 0.477345i
\(340\) −21.3306 10.2723i −1.15681 0.557093i
\(341\) 5.92832 25.9737i 0.321037 1.40655i
\(342\) 0.0700281 + 0.0878124i 0.00378668 + 0.00474835i
\(343\) −2.97671 + 3.73267i −0.160727 + 0.201545i
\(344\) 0.000623729 0.00273273i 3.36292e−5 0.000147339i
\(345\) −1.48890 + 6.52331i −0.0801598 + 0.351203i
\(346\) 0.777349 0.974765i 0.0417906 0.0524037i
\(347\) −2.30431 −0.123702 −0.0618508 0.998085i \(-0.519700\pi\)
−0.0618508 + 0.998085i \(0.519700\pi\)
\(348\) −8.49662 + 6.55795i −0.455467 + 0.351543i
\(349\) 9.12305 0.488345 0.244173 0.969732i \(-0.421484\pi\)
0.244173 + 0.969732i \(0.421484\pi\)
\(350\) 0.0227108 0.0284784i 0.00121394 0.00152223i
\(351\) 0.808018 3.54016i 0.0431288 0.188960i
\(352\) −0.535795 2.34747i −0.0285579 0.125121i
\(353\) −9.08165 + 11.3880i −0.483368 + 0.606124i −0.962388 0.271680i \(-0.912421\pi\)
0.479020 + 0.877804i \(0.340992\pi\)
\(354\) 0.299062 + 0.375012i 0.0158950 + 0.0199317i
\(355\) −5.52177 + 24.1924i −0.293065 + 1.28400i
\(356\) −21.9506 10.5709i −1.16338 0.560255i
\(357\) −1.90677 0.918253i −0.100917 0.0485991i
\(358\) −0.297547 1.30364i −0.0157259 0.0688995i
\(359\) −3.37960 + 1.62753i −0.178368 + 0.0858976i −0.520937 0.853595i \(-0.674417\pi\)
0.342569 + 0.939493i \(0.388703\pi\)
\(360\) 0.640979 0.0337825
\(361\) 15.4748 7.45225i 0.814461 0.392224i
\(362\) 0.294148 + 0.368851i 0.0154601 + 0.0193864i
\(363\) 3.19446 + 4.00573i 0.167666 + 0.210246i
\(364\) 2.24259 1.07997i 0.117543 0.0566060i
\(365\) 0.886443 0.0463986
\(366\) 0.467344 0.225061i 0.0244285 0.0117641i
\(367\) −3.10389 13.5990i −0.162022 0.709864i −0.989035 0.147681i \(-0.952819\pi\)
0.827013 0.562182i \(-0.190038\pi\)
\(368\) 12.3623 + 5.95338i 0.644430 + 0.310341i
\(369\) −4.75993 2.29226i −0.247792 0.119330i
\(370\) −0.110274 + 0.483143i −0.00573288 + 0.0251174i
\(371\) −0.888257 1.11384i −0.0461160 0.0578276i
\(372\) 13.6571 17.1254i 0.708086 0.887912i
\(373\) 1.70453 + 7.46802i 0.0882571 + 0.386679i 0.999693 0.0247617i \(-0.00788271\pi\)
−0.911436 + 0.411441i \(0.865026\pi\)
\(374\) 0.276024 1.20934i 0.0142729 0.0625335i
\(375\) 7.55077 9.46837i 0.389920 0.488944i
\(376\) −1.92480 −0.0992641
\(377\) 8.76297 17.4812i 0.451316 0.900329i
\(378\) 0.0285993 0.00147099
\(379\) −7.83725 + 9.82760i −0.402573 + 0.504810i −0.941254 0.337700i \(-0.890351\pi\)
0.538681 + 0.842510i \(0.318923\pi\)
\(380\) −1.15635 + 5.06630i −0.0593195 + 0.259896i
\(381\) 2.12832 + 9.32478i 0.109037 + 0.477723i
\(382\) −0.0330208 + 0.0414068i −0.00168949 + 0.00211856i
\(383\) 14.6837 + 18.4128i 0.750305 + 0.940852i 0.999620 0.0275703i \(-0.00877700\pi\)
−0.249315 + 0.968422i \(0.580206\pi\)
\(384\) 0.587018 2.57189i 0.0299561 0.131246i
\(385\) 1.45002 + 0.698293i 0.0738999 + 0.0355883i
\(386\) −0.849851 0.409267i −0.0432563 0.0208311i
\(387\) 0.00187843 + 0.00822993i 9.54859e−5 + 0.000418351i
\(388\) −4.89187 + 2.35580i −0.248347 + 0.119598i
\(389\) −21.2485 −1.07734 −0.538671 0.842516i \(-0.681073\pi\)
−0.538671 + 0.842516i \(0.681073\pi\)
\(390\) −0.525164 + 0.252906i −0.0265927 + 0.0128064i
\(391\) 13.2986 + 16.6760i 0.672542 + 0.843340i
\(392\) −1.42471 1.78653i −0.0719588 0.0902335i
\(393\) 15.1385 7.29032i 0.763636 0.367748i
\(394\) 1.40767 0.0709173
\(395\) 21.7040 10.4521i 1.09204 0.525901i
\(396\) −1.07512 4.71039i −0.0540266 0.236706i
\(397\) −13.2705 6.39072i −0.666026 0.320741i 0.0701450 0.997537i \(-0.477654\pi\)
−0.736171 + 0.676796i \(0.763368\pi\)
\(398\) 0.650158 + 0.313100i 0.0325895 + 0.0156943i
\(399\) −0.103368 + 0.452883i −0.00517486 + 0.0226725i
\(400\) −3.14350 3.94182i −0.157175 0.197091i
\(401\) −7.87447 + 9.87428i −0.393233 + 0.493098i −0.938556 0.345128i \(-0.887836\pi\)
0.545323 + 0.838226i \(0.316407\pi\)
\(402\) −0.203806 0.892932i −0.0101649 0.0445354i
\(403\) −8.88021 + 38.9067i −0.442355 + 1.93808i
\(404\) 22.7031 28.4688i 1.12952 1.41637i
\(405\) 1.93038 0.0959213
\(406\) 0.149588 + 0.0366496i 0.00742393 + 0.00181889i
\(407\) 7.48388 0.370962
\(408\) 1.27396 1.59750i 0.0630704 0.0790878i
\(409\) 7.51172 32.9110i 0.371430 1.62734i −0.351335 0.936250i \(-0.614272\pi\)
0.722766 0.691093i \(-0.242871\pi\)
\(410\) 0.188711 + 0.826797i 0.00931977 + 0.0408326i
\(411\) 3.58585 4.49651i 0.176877 0.221797i
\(412\) 19.9692 + 25.0406i 0.983812 + 1.23366i
\(413\) −0.441443 + 1.93409i −0.0217220 + 0.0951702i
\(414\) −0.259690 0.125060i −0.0127631 0.00614637i
\(415\) −5.00625 2.41088i −0.245747 0.118346i
\(416\) 0.802583 + 3.51634i 0.0393499 + 0.172403i
\(417\) 1.41167 0.679827i 0.0691300 0.0332912i
\(418\) −0.272271 −0.0133172
\(419\) 22.2013 10.6916i 1.08461 0.522319i 0.195819 0.980640i \(-0.437263\pi\)
0.888787 + 0.458321i \(0.151549\pi\)
\(420\) 0.825014 + 1.03453i 0.0402565 + 0.0504801i
\(421\) 7.64133 + 9.58193i 0.372416 + 0.466995i 0.932358 0.361537i \(-0.117748\pi\)
−0.559942 + 0.828532i \(0.689177\pi\)
\(422\) 0.955354 0.460074i 0.0465059 0.0223961i
\(423\) −5.79676 −0.281848
\(424\) 1.23924 0.596788i 0.0601830 0.0289826i
\(425\) −1.74398 7.64090i −0.0845957 0.370638i
\(426\) −0.963090 0.463800i −0.0466619 0.0224712i
\(427\) 1.93289 + 0.930832i 0.0935392 + 0.0450461i
\(428\) −7.17411 + 31.4318i −0.346774 + 1.51931i
\(429\) 5.48830 + 6.88211i 0.264978 + 0.332272i
\(430\) 0.000844866 0.00105943i 4.07431e−5 5.10902e-5i
\(431\) 1.86817 + 8.18500i 0.0899867 + 0.394257i 0.999784 0.0207960i \(-0.00662003\pi\)
−0.909797 + 0.415053i \(0.863763\pi\)
\(432\) 0.880862 3.85931i 0.0423805 0.185681i
\(433\) 5.76203 7.22535i 0.276905 0.347228i −0.623859 0.781537i \(-0.714436\pi\)
0.900764 + 0.434309i \(0.143007\pi\)
\(434\) −0.314310 −0.0150874
\(435\) 10.0968 + 2.47375i 0.484104 + 0.118607i
\(436\) −18.3354 −0.878108
\(437\) 2.91899 3.66030i 0.139634 0.175096i
\(438\) −0.00849712 + 0.0372283i −0.000406008 + 0.00177884i
\(439\) −3.87697 16.9861i −0.185038 0.810704i −0.979184 0.202976i \(-0.934939\pi\)
0.794146 0.607727i \(-0.207919\pi\)
\(440\) −0.968794 + 1.21483i −0.0461854 + 0.0579147i
\(441\) −4.29068 5.38034i −0.204318 0.256207i
\(442\) −0.413465 + 1.81151i −0.0196665 + 0.0861647i
\(443\) −26.1256 12.5814i −1.24127 0.597762i −0.306109 0.951997i \(-0.599027\pi\)
−0.935156 + 0.354235i \(0.884741\pi\)
\(444\) 5.54375 + 2.66973i 0.263095 + 0.126700i
\(445\) 5.25079 + 23.0052i 0.248911 + 1.09055i
\(446\) 1.43390 0.690532i 0.0678973 0.0326976i
\(447\) −12.6315 −0.597449
\(448\) 2.42765 1.16909i 0.114696 0.0552345i
\(449\) −8.67883 10.8829i −0.409579 0.513596i 0.533665 0.845696i \(-0.320814\pi\)
−0.943244 + 0.332100i \(0.892243\pi\)
\(450\) 0.0660341 + 0.0828042i 0.00311288 + 0.00390343i
\(451\) 11.5388 5.55678i 0.543339 0.261658i
\(452\) 40.3724 1.89896
\(453\) −9.25086 + 4.45498i −0.434643 + 0.209313i
\(454\) −0.457989 2.00658i −0.0214945 0.0941736i
\(455\) −2.17203 1.04599i −0.101826 0.0490370i
\(456\) −0.404074 0.194592i −0.0189225 0.00911260i
\(457\) 0.222385 0.974330i 0.0104027 0.0455773i −0.969460 0.245249i \(-0.921130\pi\)
0.979863 + 0.199672i \(0.0639875\pi\)
\(458\) 1.00757 + 1.26346i 0.0470807 + 0.0590374i
\(459\) 3.83667 4.81103i 0.179080 0.224560i
\(460\) −2.96751 13.0015i −0.138361 0.606198i
\(461\) −3.45431 + 15.1343i −0.160883 + 0.704876i 0.828553 + 0.559910i \(0.189164\pi\)
−0.989437 + 0.144966i \(0.953693\pi\)
\(462\) −0.0432259 + 0.0542036i −0.00201105 + 0.00252178i
\(463\) 35.8295 1.66514 0.832568 0.553923i \(-0.186870\pi\)
0.832568 + 0.553923i \(0.186870\pi\)
\(464\) 9.55296 19.0572i 0.443485 0.884708i
\(465\) −21.2151 −0.983826
\(466\) −0.947976 + 1.18872i −0.0439141 + 0.0550666i
\(467\) 0.929323 4.07163i 0.0430039 0.188413i −0.948864 0.315686i \(-0.897765\pi\)
0.991868 + 0.127273i \(0.0406225\pi\)
\(468\) 1.61045 + 7.05583i 0.0744430 + 0.326156i
\(469\) 2.36182 2.96163i 0.109059 0.136755i
\(470\) 0.580162 + 0.727500i 0.0267609 + 0.0335571i
\(471\) −0.842608 + 3.69171i −0.0388253 + 0.170105i
\(472\) −1.72564 0.831026i −0.0794291 0.0382510i
\(473\) −0.0184371 0.00887883i −0.000847738 0.000408249i
\(474\) 0.230914 + 1.01170i 0.0106062 + 0.0464689i
\(475\) −1.54991 + 0.746397i −0.0711148 + 0.0342471i
\(476\) 4.21808 0.193335
\(477\) 3.73212 1.79729i 0.170882 0.0822924i
\(478\) −0.424824 0.532713i −0.0194310 0.0243657i
\(479\) −11.5627 14.4992i −0.528315 0.662486i 0.444037 0.896009i \(-0.353546\pi\)
−0.972351 + 0.233523i \(0.924975\pi\)
\(480\) −1.72751 + 0.831926i −0.0788498 + 0.0379720i
\(481\) −11.2103 −0.511147
\(482\) −0.535109 + 0.257695i −0.0243736 + 0.0117377i
\(483\) −0.265269 1.16222i −0.0120702 0.0528829i
\(484\) −9.20035 4.43065i −0.418198 0.201393i
\(485\) 4.73796 + 2.28168i 0.215140 + 0.103606i
\(486\) −0.0185039 + 0.0810709i −0.000839354 + 0.00367745i
\(487\) 12.1972 + 15.2948i 0.552708 + 0.693074i 0.977191 0.212362i \(-0.0681157\pi\)
−0.424483 + 0.905436i \(0.639544\pi\)
\(488\) −1.29141 + 1.61938i −0.0584595 + 0.0733058i
\(489\) −1.35333 5.92933i −0.0611997 0.268133i
\(490\) −0.245812 + 1.07697i −0.0111046 + 0.0486526i
\(491\) 1.49134 1.87008i 0.0673030 0.0843953i −0.747040 0.664779i \(-0.768526\pi\)
0.814343 + 0.580383i \(0.197097\pi\)
\(492\) 10.5297 0.474717
\(493\) 26.2329 20.2473i 1.18147 0.911894i
\(494\) 0.407843 0.0183497
\(495\) −2.91763 + 3.65859i −0.131138 + 0.164442i
\(496\) −9.68078 + 42.4142i −0.434680 + 1.90446i
\(497\) −0.983782 4.31023i −0.0441287 0.193340i
\(498\) 0.149239 0.187140i 0.00668756 0.00838594i
\(499\) −10.8423 13.5958i −0.485367 0.608631i 0.477492 0.878636i \(-0.341546\pi\)
−0.962859 + 0.270005i \(0.912974\pi\)
\(500\) −5.37104 + 23.5321i −0.240200 + 1.05239i
\(501\) −6.91538 3.33027i −0.308957 0.148786i
\(502\) 0.173949 + 0.0837693i 0.00776371 + 0.00373881i
\(503\) −4.48348 19.6434i −0.199909 0.875857i −0.970990 0.239120i \(-0.923141\pi\)
0.771081 0.636737i \(-0.219716\pi\)
\(504\) −0.102890 + 0.0495494i −0.00458310 + 0.00220710i
\(505\) −35.2673 −1.56937
\(506\) 0.629526 0.303164i 0.0279858 0.0134773i
\(507\) −0.115724 0.145113i −0.00513947 0.00644470i
\(508\) −11.8856 14.9041i −0.527338 0.661261i
\(509\) −26.0740 + 12.5566i −1.15571 + 0.556560i −0.910743 0.412973i \(-0.864491\pi\)
−0.244964 + 0.969532i \(0.578776\pi\)
\(510\) −0.987780 −0.0437396
\(511\) −0.142292 + 0.0685244i −0.00629465 + 0.00303134i
\(512\) 1.45991 + 6.39630i 0.0645197 + 0.282679i
\(513\) −1.21691 0.586035i −0.0537281 0.0258741i
\(514\) −1.70686 0.821980i −0.0752863 0.0362560i
\(515\) 6.90270 30.2427i 0.304169 1.33265i
\(516\) −0.0104901 0.0131541i −0.000461800 0.000579079i
\(517\) 8.76139 10.9864i 0.385325 0.483183i
\(518\) −0.0196469 0.0860789i −0.000863237 0.00378209i
\(519\) −3.33630 + 14.6173i −0.146447 + 0.641628i
\(520\) 1.45119 1.81973i 0.0636387 0.0798004i
\(521\) −3.28970 −0.144125 −0.0720623 0.997400i \(-0.522958\pi\)
−0.0720623 + 0.997400i \(0.522958\pi\)
\(522\) −0.200675 + 0.400326i −0.00878331 + 0.0175218i
\(523\) −0.291341 −0.0127395 −0.00636974 0.999980i \(-0.502028\pi\)
−0.00636974 + 0.999980i \(0.502028\pi\)
\(524\) −20.8799 + 26.1826i −0.912142 + 1.14379i
\(525\) −0.0974722 + 0.427054i −0.00425404 + 0.0186382i
\(526\) −0.0176796 0.0774593i −0.000770867 0.00337739i
\(527\) −42.1655 + 52.8738i −1.83676 + 2.30322i
\(528\) 5.98308 + 7.50255i 0.260380 + 0.326506i
\(529\) 2.44450 10.7101i 0.106283 0.465655i
\(530\) −0.599088 0.288505i −0.0260227 0.0125319i
\(531\) −5.19696 2.50273i −0.225529 0.108609i
\(532\) −0.206021 0.902635i −0.00893212 0.0391342i
\(533\) −17.2843 + 8.32367i −0.748665 + 0.360538i
\(534\) −1.01649 −0.0439879
\(535\) 28.1335 13.5484i 1.21632 0.585747i
\(536\) 2.28026 + 2.85935i 0.0984921 + 0.123505i
\(537\) 10.0259 + 12.5720i 0.432648 + 0.542524i
\(538\) 1.13478 0.546482i 0.0489239 0.0235605i
\(539\) 16.6823 0.718556
\(540\) −3.46640 + 1.66933i −0.149170 + 0.0718364i
\(541\) −6.15415 26.9631i −0.264588 1.15923i −0.916212 0.400693i \(-0.868769\pi\)
0.651625 0.758542i \(-0.274088\pi\)
\(542\) −0.618155 0.297688i −0.0265520 0.0127868i
\(543\) −5.11157 2.46160i −0.219359 0.105638i
\(544\) −1.36008 + 5.95891i −0.0583130 + 0.255486i
\(545\) 11.0723 + 13.8842i 0.474285 + 0.594734i
\(546\) 0.0647494 0.0811931i 0.00277102 0.00347475i
\(547\) −1.12752 4.93998i −0.0482091 0.211218i 0.945086 0.326821i \(-0.105977\pi\)
−0.993296 + 0.115602i \(0.963120\pi\)
\(548\) −2.55070 + 11.1754i −0.108961 + 0.477387i
\(549\) −3.88923 + 4.87694i −0.165988 + 0.208143i
\(550\) −0.256742 −0.0109475
\(551\) −5.61404 4.62469i −0.239166 0.197019i
\(552\) 1.15094 0.0489874
\(553\) −2.67596 + 3.35555i −0.113793 + 0.142692i
\(554\) 0.309629 1.35657i 0.0131549 0.0576353i
\(555\) −1.32612 5.81009i −0.0562905 0.246625i
\(556\) −1.94706 + 2.44154i −0.0825739 + 0.103544i
\(557\) 10.0780 + 12.6374i 0.427019 + 0.535465i 0.948070 0.318060i \(-0.103031\pi\)
−0.521051 + 0.853525i \(0.674460\pi\)
\(558\) 0.203360 0.890979i 0.00860892 0.0377181i
\(559\) 0.0276175 + 0.0132999i 0.00116809 + 0.000562524i
\(560\) −2.36784 1.14029i −0.100060 0.0481862i
\(561\) 3.31936 + 14.5431i 0.140144 + 0.614009i
\(562\) −1.65904 + 0.798949i −0.0699822 + 0.0337016i
\(563\) 7.45712 0.314280 0.157140 0.987576i \(-0.449773\pi\)
0.157140 + 0.987576i \(0.449773\pi\)
\(564\) 10.4093 5.01284i 0.438310 0.211079i
\(565\) −24.3799 30.5714i −1.02567 1.28615i
\(566\) 0.915595 + 1.14812i 0.0384853 + 0.0482591i
\(567\) −0.309866 + 0.149223i −0.0130131 + 0.00626679i
\(568\) 4.26841 0.179098
\(569\) −15.8967 + 7.65544i −0.666424 + 0.320933i −0.736332 0.676621i \(-0.763444\pi\)
0.0699080 + 0.997553i \(0.477729\pi\)
\(570\) 0.0482454 + 0.211377i 0.00202078 + 0.00885361i
\(571\) −26.3470 12.6880i −1.10259 0.530978i −0.208116 0.978104i \(-0.566733\pi\)
−0.894471 + 0.447126i \(0.852448\pi\)
\(572\) −15.8068 7.61216i −0.660916 0.318280i
\(573\) 0.141722 0.620924i 0.00592052 0.0259395i
\(574\) −0.0942056 0.118130i −0.00393206 0.00493065i
\(575\) 2.75251 3.45154i 0.114788 0.143939i
\(576\) 1.74334 + 7.63809i 0.0726394 + 0.318254i
\(577\) 3.80051 16.6511i 0.158217 0.693196i −0.832129 0.554582i \(-0.812878\pi\)
0.990347 0.138614i \(-0.0442647\pi\)
\(578\) −1.08184 + 1.35658i −0.0449986 + 0.0564265i
\(579\) 11.3433 0.471412
\(580\) −20.2701 + 4.28924i −0.841670 + 0.178101i
\(581\) 0.989975 0.0410711
\(582\) −0.141241 + 0.177111i −0.00585463 + 0.00734147i
\(583\) −2.23447 + 9.78986i −0.0925424 + 0.405455i
\(584\) −0.0339297 0.148656i −0.00140402 0.00615142i
\(585\) 4.37041 5.48032i 0.180694 0.226583i
\(586\) −1.19998 1.50472i −0.0495706 0.0621596i
\(587\) 7.58007 33.2104i 0.312863 1.37074i −0.536931 0.843626i \(-0.680416\pi\)
0.849794 0.527115i \(-0.176726\pi\)
\(588\) 12.3575 + 5.95108i 0.509617 + 0.245418i
\(589\) 13.3740 + 6.44059i 0.551067 + 0.265380i
\(590\) 0.206037 + 0.902708i 0.00848242 + 0.0371639i
\(591\) −15.2517 + 7.34482i −0.627370 + 0.302126i
\(592\) −12.2210 −0.502278
\(593\) 38.6075 18.5924i 1.58542 0.763499i 0.586501 0.809948i \(-0.300505\pi\)
0.998921 + 0.0464494i \(0.0147906\pi\)
\(594\) −0.125684 0.157603i −0.00515688 0.00646653i
\(595\) −2.54719 3.19407i −0.104424 0.130944i
\(596\) 22.6825 10.9233i 0.929110 0.447436i
\(597\) −8.67794 −0.355164
\(598\) −0.942986 + 0.454118i −0.0385616 + 0.0185703i
\(599\) −1.26691 5.55071i −0.0517646 0.226796i 0.942428 0.334408i \(-0.108536\pi\)
−0.994193 + 0.107613i \(0.965679\pi\)
\(600\) −0.381028 0.183494i −0.0155554 0.00749110i
\(601\) 8.07342 + 3.88796i 0.329322 + 0.158593i 0.591237 0.806498i \(-0.298640\pi\)
−0.261915 + 0.965091i \(0.584354\pi\)
\(602\) −5.37218e−5 0 0.000235371i −2.18954e−6 0 9.59299e-6i
\(603\) 6.86725 + 8.61126i 0.279656 + 0.350678i
\(604\) 12.7593 15.9997i 0.519169 0.651018i
\(605\) 2.20081 + 9.64236i 0.0894755 + 0.392018i
\(606\) 0.338059 1.48113i 0.0137327 0.0601670i
\(607\) 17.6557 22.1395i 0.716621 0.898614i −0.281520 0.959555i \(-0.590839\pi\)
0.998141 + 0.0609410i \(0.0194101\pi\)
\(608\) 1.34159 0.0544086
\(609\) −1.81197 + 0.383420i −0.0734247 + 0.0155370i
\(610\) 1.00131 0.0405419
\(611\) −13.1239 + 16.4569i −0.530938 + 0.665775i
\(612\) −2.72912 + 11.9570i −0.110318 + 0.483335i
\(613\) 7.12340 + 31.2097i 0.287712 + 1.26055i 0.887657 + 0.460506i \(0.152332\pi\)
−0.599945 + 0.800041i \(0.704811\pi\)
\(614\) 1.19239 1.49521i 0.0481210 0.0603418i
\(615\) −6.35862 7.97346i −0.256404 0.321521i
\(616\) 0.0616019 0.269896i 0.00248201 0.0108744i
\(617\) 5.49638 + 2.64692i 0.221276 + 0.106561i 0.541238 0.840870i \(-0.317956\pi\)
−0.319962 + 0.947430i \(0.603670\pi\)
\(618\) 1.20395 + 0.579791i 0.0484299 + 0.0233226i
\(619\) −0.158208 0.693153i −0.00635890 0.0278602i 0.971649 0.236428i \(-0.0759768\pi\)
−0.978008 + 0.208568i \(0.933120\pi\)
\(620\) 38.0961 18.3461i 1.52998 0.736797i
\(621\) 3.46619 0.139094
\(622\) 0.305730 0.147232i 0.0122587 0.00590346i
\(623\) −2.62122 3.28691i −0.105017 0.131687i
\(624\) −8.96224 11.2383i −0.358777 0.449892i
\(625\) 15.3252 7.38021i 0.613006 0.295208i
\(626\) −2.39095 −0.0955615
\(627\) 2.94998 1.42063i 0.117811 0.0567347i
\(628\) −1.67939 7.35788i −0.0670149 0.293612i
\(629\) −17.1160 8.24265i −0.682461 0.328656i
\(630\) 0.0497403 + 0.0239537i 0.00198170 + 0.000954337i
\(631\) 6.02722 26.4070i 0.239940 1.05125i −0.701130 0.713033i \(-0.747321\pi\)
0.941070 0.338212i \(-0.109822\pi\)
\(632\) −2.58355 3.23967i −0.102768 0.128867i
\(633\) −7.95044 + 9.96954i −0.316002 + 0.396253i
\(634\) 0.213348 + 0.934739i 0.00847313 + 0.0371232i
\(635\) −4.10846 + 18.0003i −0.163039 + 0.714322i
\(636\) −5.14755 + 6.45483i −0.204114 + 0.255951i
\(637\) −24.9889 −0.990095
\(638\) −0.455421 0.985399i −0.0180303 0.0390123i
\(639\) 12.8548 0.508527
\(640\) 3.17506 3.98140i 0.125505 0.157379i
\(641\) −6.11273 + 26.7816i −0.241438 + 1.05781i 0.698270 + 0.715834i \(0.253953\pi\)
−0.939709 + 0.341976i \(0.888904\pi\)
\(642\) 0.299319 + 1.31140i 0.0118132 + 0.0517570i
\(643\) −16.5799 + 20.7905i −0.653848 + 0.819899i −0.992658 0.120956i \(-0.961404\pi\)
0.338810 + 0.940855i \(0.389976\pi\)
\(644\) 1.48140 + 1.85761i 0.0583752 + 0.0732002i
\(645\) −0.00362608 + 0.0158869i −0.000142777 + 0.000625545i
\(646\) 0.622699 + 0.299876i 0.0244997 + 0.0117985i
\(647\) 21.9390 + 10.5653i 0.862510 + 0.415363i 0.812206 0.583371i \(-0.198267\pi\)
0.0503045 + 0.998734i \(0.483981\pi\)
\(648\) −0.0738877 0.323723i −0.00290258 0.0127170i
\(649\) 12.5982 6.06697i 0.494522 0.238149i
\(650\) 0.384582 0.0150846
\(651\) 3.40546 1.63998i 0.133470 0.0642760i
\(652\) 7.55767 + 9.47702i 0.295981 + 0.371149i
\(653\) 12.9368 + 16.2223i 0.506257 + 0.634826i 0.967628 0.252381i \(-0.0812137\pi\)
−0.461371 + 0.887207i \(0.652642\pi\)
\(654\) −0.689236 + 0.331918i −0.0269513 + 0.0129790i
\(655\) 32.4351 1.26734
\(656\) −18.8425 + 9.07406i −0.735675 + 0.354283i
\(657\) −0.102183 0.447694i −0.00398654 0.0174662i
\(658\) −0.149366 0.0719307i −0.00582288 0.00280415i
\(659\) 12.0386 + 5.79749i 0.468958 + 0.225838i 0.653411 0.757003i \(-0.273337\pi\)
−0.184454 + 0.982841i \(0.559052\pi\)
\(660\) 2.07538 9.09284i 0.0807841 0.353938i
\(661\) 21.5768 + 27.0564i 0.839240 + 1.05237i 0.997883 + 0.0650374i \(0.0207167\pi\)
−0.158643 + 0.987336i \(0.550712\pi\)
\(662\) −0.637912 + 0.799916i −0.0247932 + 0.0310896i
\(663\) −4.97217 21.7845i −0.193103 0.846040i
\(664\) −0.212683 + 0.931825i −0.00825370 + 0.0361618i
\(665\) −0.559095 + 0.701083i −0.0216808 + 0.0271868i
\(666\) 0.256721 0.00994772
\(667\) 18.1298 + 4.44187i 0.701989 + 0.171990i
\(668\) 15.2979 0.591894
\(669\) −11.9329 + 14.9634i −0.461354 + 0.578519i
\(670\) 0.393423 1.72370i 0.0151992 0.0665922i
\(671\) −3.36483 14.7423i −0.129898 0.569120i
\(672\) 0.212991 0.267083i 0.00821632 0.0103029i
\(673\) 23.0254 + 28.8729i 0.887562 + 1.11297i 0.992950 + 0.118537i \(0.0378204\pi\)
−0.105387 + 0.994431i \(0.533608\pi\)
\(674\) 0.566001 2.47981i 0.0218015 0.0955187i
\(675\) −1.14751 0.552611i −0.0441677 0.0212700i
\(676\) 0.333295 + 0.160506i 0.0128190 + 0.00617332i
\(677\) 0.875640 + 3.83643i 0.0336536 + 0.147446i 0.988963 0.148161i \(-0.0473353\pi\)
−0.955310 + 0.295607i \(0.904478\pi\)
\(678\) 1.51761 0.730845i 0.0582836 0.0280679i
\(679\) −0.936920 −0.0359557
\(680\) 3.55368 1.71136i 0.136277 0.0656278i
\(681\) 15.4320 + 19.3511i 0.591354 + 0.741535i
\(682\) 1.38128 + 1.73207i 0.0528921 + 0.0663245i
\(683\) −3.50044 + 1.68572i −0.133941 + 0.0645024i −0.499654 0.866225i \(-0.666539\pi\)
0.365713 + 0.930728i \(0.380825\pi\)
\(684\) 2.69201 0.102931
\(685\) 10.0026 4.81702i 0.382182 0.184049i
\(686\) −0.0883426 0.387054i −0.00337294 0.0147778i
\(687\) −17.5091 8.43194i −0.668014 0.321699i
\(688\) 0.0301072 + 0.0144989i 0.00114783 + 0.000552764i
\(689\) 3.34708 14.6645i 0.127514 0.558674i
\(690\) −0.346910 0.435012i −0.0132066 0.0165606i
\(691\) 4.78202 5.99646i 0.181917 0.228116i −0.682509 0.730877i \(-0.739111\pi\)
0.864425 + 0.502761i \(0.167683\pi\)
\(692\) −6.64953 29.1335i −0.252777 1.10749i
\(693\) 0.185521 0.812820i 0.00704736 0.0308765i
\(694\) 0.119471 0.149812i 0.00453505 0.00568678i
\(695\) 3.02459 0.114729
\(696\) 0.0283787 1.78791i 0.00107569 0.0677705i
\(697\) −32.5100 −1.23140
\(698\) −0.473001 + 0.593124i −0.0179033 + 0.0224501i
\(699\) 4.06861 17.8257i 0.153889 0.674232i
\(700\) −0.194270 0.851154i −0.00734273 0.0321706i
\(701\) 24.5309 30.7608i 0.926520 1.16182i −0.0600034 0.998198i \(-0.519111\pi\)
0.986523 0.163621i \(-0.0523174\pi\)
\(702\) 0.188266 + 0.236078i 0.00710564 + 0.00891019i
\(703\) −0.927874 + 4.06528i −0.0349954 + 0.153325i
\(704\) −17.1112 8.24033i −0.644903 0.310569i
\(705\) −10.0818 4.85513i −0.379702 0.182855i
\(706\) −0.269525 1.18087i −0.0101437 0.0444425i
\(707\) 5.66113 2.72625i 0.212909 0.102531i
\(708\) 11.4965 0.432065
\(709\) −33.8628 + 16.3075i −1.27175 + 0.612440i −0.943256 0.332067i \(-0.892254\pi\)
−0.328490 + 0.944508i \(0.606540\pi\)
\(710\) −1.28656 1.61329i −0.0482836 0.0605457i
\(711\) −7.78066 9.75663i −0.291797 0.365902i
\(712\) 3.65698 1.76111i 0.137051 0.0660003i
\(713\) −38.0939 −1.42663
\(714\) 0.158559 0.0763580i 0.00593392 0.00285763i
\(715\) 3.78113 + 16.5662i 0.141406 + 0.619542i
\(716\) −28.8754 13.9057i −1.07913 0.519679i
\(717\) 7.38239 + 3.55517i 0.275700 + 0.132770i
\(718\) 0.0694094 0.304102i 0.00259034 0.0113490i
\(719\) 2.88863 + 3.62223i 0.107728 + 0.135086i 0.832772 0.553616i \(-0.186752\pi\)
−0.725045 + 0.688702i \(0.758181\pi\)
\(720\) 4.76441 5.97438i 0.177559 0.222652i
\(721\) 1.22982 + 5.38818i 0.0458007 + 0.200666i
\(722\) −0.317817 + 1.39245i −0.0118279 + 0.0518216i
\(723\) 4.45317 5.58410i 0.165615 0.207675i
\(724\) 11.3076 0.420244
\(725\) −5.29385 4.36093i −0.196609 0.161961i
\(726\) −0.426051 −0.0158122
\(727\) 3.43787 4.31095i 0.127503 0.159884i −0.713982 0.700164i \(-0.753110\pi\)
0.841485 + 0.540280i \(0.181682\pi\)
\(728\) −0.0922753 + 0.404285i −0.00341995 + 0.0149838i
\(729\) −0.222521 0.974928i −0.00824152 0.0361084i
\(730\) −0.0459592 + 0.0576311i −0.00170103 + 0.00213302i
\(731\) 0.0323876 + 0.0406127i 0.00119790 + 0.00150212i
\(732\) 2.76650 12.1208i 0.102253 0.447999i
\(733\) −39.1400 18.8488i −1.44567 0.696197i −0.463831 0.885924i \(-0.653525\pi\)
−0.981837 + 0.189727i \(0.939240\pi\)
\(734\) 1.04505 + 0.503271i 0.0385736 + 0.0185761i
\(735\) −2.95604 12.9512i −0.109035 0.477714i
\(736\) −3.10193 + 1.49381i −0.114339 + 0.0550625i
\(737\) −26.7000 −0.983509
\(738\) 0.395816 0.190615i 0.0145702 0.00701664i
\(739\) 27.6111 + 34.6233i 1.01569 + 1.27364i 0.961412 + 0.275112i \(0.0887150\pi\)
0.0542802 + 0.998526i \(0.482714\pi\)
\(740\) 7.40569 + 9.28645i 0.272239 + 0.341377i
\(741\) −4.41886 + 2.12801i −0.162331 + 0.0781744i
\(742\) 0.118468 0.00434910
\(743\) 31.8973 15.3609i 1.17020 0.563538i 0.255157 0.966900i \(-0.417873\pi\)
0.915041 + 0.403362i \(0.132158\pi\)
\(744\) 0.812034 + 3.55775i 0.0297706 + 0.130434i
\(745\) −21.9688 10.5796i −0.804876 0.387608i
\(746\) −0.573899 0.276375i −0.0210119 0.0101188i
\(747\) −0.640518 + 2.80629i −0.0234353 + 0.102677i
\(748\) −18.5370 23.2446i −0.677779 0.849908i
\(749\) −3.46868 + 4.34959i −0.126743 + 0.158930i
\(750\) 0.224092 + 0.981809i 0.00818267 + 0.0358506i
\(751\) 0.791159 3.46629i 0.0288698 0.126487i −0.958440 0.285296i \(-0.907908\pi\)
0.987309 + 0.158809i \(0.0507654\pi\)
\(752\) −14.3071 + 17.9405i −0.521726 + 0.654224i
\(753\) −2.32177 −0.0846100
\(754\) 0.682189 + 1.47606i 0.0248439 + 0.0537549i
\(755\) −19.8205 −0.721342
\(756\) 0.427384 0.535923i 0.0155438 0.0194913i
\(757\) −4.80769 + 21.0639i −0.174739 + 0.765580i 0.809267 + 0.587441i \(0.199865\pi\)
−0.984005 + 0.178139i \(0.942992\pi\)
\(758\) −0.232594 1.01906i −0.00844818 0.0370139i
\(759\) −5.23891 + 6.56938i −0.190160 + 0.238453i
\(760\) −0.539788 0.676873i −0.0195802 0.0245528i
\(761\) −3.67857 + 16.1169i −0.133348 + 0.584236i 0.863461 + 0.504415i \(0.168292\pi\)
−0.996809 + 0.0798205i \(0.974565\pi\)
\(762\) −0.716586 0.345090i −0.0259592 0.0125013i
\(763\) −2.85062 1.37278i −0.103199 0.0496981i
\(764\) 0.282464 + 1.23755i 0.0102192