Properties

Label 87.2.g.b.52.1
Level $87$
Weight $2$
Character 87.52
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 52.1
Root \(0.488787 + 2.14152i\) of defining polynomial
Character \(\chi\) \(=\) 87.52
Dual form 87.2.g.b.82.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36955 + 1.71736i) q^{2} +(0.222521 - 0.974928i) q^{3} +(-0.628623 - 2.75418i) q^{4} +(-2.54240 + 3.18806i) q^{5} +(1.36955 + 1.71736i) q^{6} +(-0.811607 + 3.55588i) q^{7} +(1.63274 + 0.786286i) q^{8} +(-0.900969 - 0.433884i) q^{9} +O(q^{10})\) \(q+(-1.36955 + 1.71736i) q^{2} +(0.222521 - 0.974928i) q^{3} +(-0.628623 - 2.75418i) q^{4} +(-2.54240 + 3.18806i) q^{5} +(1.36955 + 1.71736i) q^{6} +(-0.811607 + 3.55588i) q^{7} +(1.63274 + 0.786286i) q^{8} +(-0.900969 - 0.433884i) q^{9} +(-1.99312 - 8.73243i) q^{10} +(3.17840 - 1.53064i) q^{11} -2.82501 q^{12} +(-0.834784 + 0.402011i) q^{13} +(-4.99521 - 6.26379i) q^{14} +(2.54240 + 3.18806i) q^{15} +(1.50403 - 0.724302i) q^{16} +1.61861 q^{17} +(1.97906 - 0.953065i) q^{18} +(0.886987 + 3.88614i) q^{19} +(10.3787 + 4.99812i) q^{20} +(3.28613 + 1.58252i) q^{21} +(-1.72433 + 7.55476i) q^{22} +(0.963772 + 1.20853i) q^{23} +(1.12989 - 1.41684i) q^{24} +(-2.58737 - 11.3360i) q^{25} +(0.452881 - 1.98420i) q^{26} +(-0.623490 + 0.781831i) q^{27} +10.3037 q^{28} +(5.19154 - 1.43104i) q^{29} -8.95700 q^{30} +(-1.00241 + 1.25699i) q^{31} +(-1.62246 + 7.10847i) q^{32} +(-0.785001 - 3.43931i) q^{33} +(-2.21677 + 2.77975i) q^{34} +(-9.27296 - 11.6279i) q^{35} +(-0.628623 + 2.75418i) q^{36} +(4.77878 + 2.30134i) q^{37} +(-7.88869 - 3.79899i) q^{38} +(0.206175 + 0.903310i) q^{39} +(-6.65780 + 3.20623i) q^{40} -6.71590 q^{41} +(-7.21828 + 3.47614i) q^{42} +(2.76166 + 3.46301i) q^{43} +(-6.21367 - 7.79170i) q^{44} +(3.67387 - 1.76924i) q^{45} -3.39542 q^{46} +(-3.00732 + 1.44825i) q^{47} +(-0.371464 - 1.62749i) q^{48} +(-5.67882 - 2.73478i) q^{49} +(23.0116 + 11.0818i) q^{50} +(0.360175 - 1.57803i) q^{51} +(1.63197 + 2.04643i) q^{52} +(1.27081 - 1.59355i) q^{53} +(-0.488787 - 2.14152i) q^{54} +(-3.20099 + 14.0244i) q^{55} +(-4.12109 + 5.16768i) q^{56} +3.98608 q^{57} +(-4.65248 + 10.8756i) q^{58} +7.29049 q^{59} +(7.18229 - 9.00630i) q^{60} +(1.33636 - 5.85497i) q^{61} +(-0.785846 - 3.44302i) q^{62} +(2.27407 - 2.85160i) q^{63} +(-7.90414 - 9.91148i) q^{64} +(0.840715 - 3.68341i) q^{65} +(6.98165 + 3.36219i) q^{66} +(-8.54330 - 4.11424i) q^{67} +(-1.01750 - 4.45795i) q^{68} +(1.39269 - 0.670684i) q^{69} +32.6692 q^{70} +(-7.61102 + 3.66527i) q^{71} +(-1.12989 - 1.41684i) q^{72} +(4.71831 + 5.91657i) q^{73} +(-10.4970 + 5.05509i) q^{74} -11.6275 q^{75} +(10.1456 - 4.88584i) q^{76} +(2.86316 + 12.5443i) q^{77} +(-1.83368 - 0.883053i) q^{78} +(-0.259377 - 0.124909i) q^{79} +(-1.51471 + 6.63640i) q^{80} +(0.623490 + 0.781831i) q^{81} +(9.19777 - 11.5336i) q^{82} +(1.44139 + 6.31514i) q^{83} +(2.29280 - 10.0454i) q^{84} +(-4.11515 + 5.16024i) q^{85} -9.72949 q^{86} +(-0.239930 - 5.37982i) q^{87} +6.39303 q^{88} +(10.2934 - 12.9075i) q^{89} +(-1.99312 + 8.73243i) q^{90} +(-0.751987 - 3.29467i) q^{91} +(2.72266 - 3.41411i) q^{92} +(1.00241 + 1.25699i) q^{93} +(1.63151 - 7.14811i) q^{94} +(-14.6443 - 7.05234i) q^{95} +(6.56921 + 3.16357i) q^{96} +(-2.23682 - 9.80015i) q^{97} +(12.4740 - 6.00718i) q^{98} -3.52776 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36955 + 1.71736i −0.968419 + 1.21436i 0.00832808 + 0.999965i \(0.497349\pi\)
−0.976747 + 0.214394i \(0.931222\pi\)
\(3\) 0.222521 0.974928i 0.128473 0.562875i
\(4\) −0.628623 2.75418i −0.314312 1.37709i
\(5\) −2.54240 + 3.18806i −1.13699 + 1.42575i −0.247447 + 0.968901i \(0.579592\pi\)
−0.889547 + 0.456844i \(0.848980\pi\)
\(6\) 1.36955 + 1.71736i 0.559117 + 0.701111i
\(7\) −0.811607 + 3.55588i −0.306759 + 1.34400i 0.552951 + 0.833214i \(0.313502\pi\)
−0.859709 + 0.510784i \(0.829355\pi\)
\(8\) 1.63274 + 0.786286i 0.577261 + 0.277994i
\(9\) −0.900969 0.433884i −0.300323 0.144628i
\(10\) −1.99312 8.73243i −0.630280 2.76144i
\(11\) 3.17840 1.53064i 0.958325 0.461505i 0.111728 0.993739i \(-0.464362\pi\)
0.846597 + 0.532234i \(0.178647\pi\)
\(12\) −2.82501 −0.815510
\(13\) −0.834784 + 0.402011i −0.231527 + 0.111498i −0.546051 0.837752i \(-0.683870\pi\)
0.314524 + 0.949250i \(0.398155\pi\)
\(14\) −4.99521 6.26379i −1.33503 1.67407i
\(15\) 2.54240 + 3.18806i 0.656444 + 0.823154i
\(16\) 1.50403 0.724302i 0.376007 0.181075i
\(17\) 1.61861 0.392571 0.196286 0.980547i \(-0.437112\pi\)
0.196286 + 0.980547i \(0.437112\pi\)
\(18\) 1.97906 0.953065i 0.466469 0.224640i
\(19\) 0.886987 + 3.88614i 0.203489 + 0.891542i 0.968793 + 0.247873i \(0.0797316\pi\)
−0.765304 + 0.643669i \(0.777411\pi\)
\(20\) 10.3787 + 4.99812i 2.32075 + 1.11761i
\(21\) 3.28613 + 1.58252i 0.717093 + 0.345334i
\(22\) −1.72433 + 7.55476i −0.367627 + 1.61068i
\(23\) 0.963772 + 1.20853i 0.200960 + 0.251996i 0.872092 0.489342i \(-0.162763\pi\)
−0.671132 + 0.741338i \(0.734192\pi\)
\(24\) 1.12989 1.41684i 0.230638 0.289211i
\(25\) −2.58737 11.3360i −0.517473 2.26720i
\(26\) 0.452881 1.98420i 0.0888173 0.389134i
\(27\) −0.623490 + 0.781831i −0.119991 + 0.150464i
\(28\) 10.3037 1.94722
\(29\) 5.19154 1.43104i 0.964046 0.265737i
\(30\) −8.95700 −1.63532
\(31\) −1.00241 + 1.25699i −0.180039 + 0.225762i −0.863659 0.504076i \(-0.831833\pi\)
0.683620 + 0.729838i \(0.260404\pi\)
\(32\) −1.62246 + 7.10847i −0.286813 + 1.25661i
\(33\) −0.785001 3.43931i −0.136651 0.598708i
\(34\) −2.21677 + 2.77975i −0.380174 + 0.476723i
\(35\) −9.27296 11.6279i −1.56742 1.96548i
\(36\) −0.628623 + 2.75418i −0.104771 + 0.459030i
\(37\) 4.77878 + 2.30134i 0.785626 + 0.378338i 0.783287 0.621660i \(-0.213541\pi\)
0.00233856 + 0.999997i \(0.499256\pi\)
\(38\) −7.88869 3.79899i −1.27972 0.616278i
\(39\) 0.206175 + 0.903310i 0.0330143 + 0.144645i
\(40\) −6.65780 + 3.20623i −1.05269 + 0.506949i
\(41\) −6.71590 −1.04885 −0.524423 0.851458i \(-0.675719\pi\)
−0.524423 + 0.851458i \(0.675719\pi\)
\(42\) −7.21828 + 3.47614i −1.11381 + 0.536380i
\(43\) 2.76166 + 3.46301i 0.421149 + 0.528105i 0.946467 0.322802i \(-0.104625\pi\)
−0.525317 + 0.850906i \(0.676053\pi\)
\(44\) −6.21367 7.79170i −0.936747 1.17464i
\(45\) 3.67387 1.76924i 0.547668 0.263743i
\(46\) −3.39542 −0.500628
\(47\) −3.00732 + 1.44825i −0.438663 + 0.211249i −0.640162 0.768240i \(-0.721133\pi\)
0.201499 + 0.979489i \(0.435419\pi\)
\(48\) −0.371464 1.62749i −0.0536162 0.234908i
\(49\) −5.67882 2.73478i −0.811260 0.390682i
\(50\) 23.0116 + 11.0818i 3.25433 + 1.56720i
\(51\) 0.360175 1.57803i 0.0504346 0.220969i
\(52\) 1.63197 + 2.04643i 0.226314 + 0.283789i
\(53\) 1.27081 1.59355i 0.174560 0.218891i −0.686853 0.726796i \(-0.741009\pi\)
0.861413 + 0.507905i \(0.169580\pi\)
\(54\) −0.488787 2.14152i −0.0665155 0.291424i
\(55\) −3.20099 + 14.0244i −0.431621 + 1.89106i
\(56\) −4.12109 + 5.16768i −0.550703 + 0.690560i
\(57\) 3.98608 0.527970
\(58\) −4.65248 + 10.8756i −0.610900 + 1.42804i
\(59\) 7.29049 0.949141 0.474571 0.880217i \(-0.342603\pi\)
0.474571 + 0.880217i \(0.342603\pi\)
\(60\) 7.18229 9.00630i 0.927229 1.16271i
\(61\) 1.33636 5.85497i 0.171103 0.749652i −0.814443 0.580244i \(-0.802957\pi\)
0.985546 0.169408i \(-0.0541856\pi\)
\(62\) −0.785846 3.44302i −0.0998026 0.437264i
\(63\) 2.27407 2.85160i 0.286506 0.359268i
\(64\) −7.90414 9.91148i −0.988018 1.23893i
\(65\) 0.840715 3.68341i 0.104278 0.456871i
\(66\) 6.98165 + 3.36219i 0.859382 + 0.413857i
\(67\) −8.54330 4.11424i −1.04373 0.502634i −0.168178 0.985757i \(-0.553788\pi\)
−0.875553 + 0.483123i \(0.839503\pi\)
\(68\) −1.01750 4.45795i −0.123390 0.540606i
\(69\) 1.39269 0.670684i 0.167660 0.0807409i
\(70\) 32.6692 3.90471
\(71\) −7.61102 + 3.66527i −0.903262 + 0.434988i −0.827066 0.562105i \(-0.809992\pi\)
−0.0761959 + 0.997093i \(0.524277\pi\)
\(72\) −1.12989 1.41684i −0.133159 0.166976i
\(73\) 4.71831 + 5.91657i 0.552236 + 0.692482i 0.977101 0.212775i \(-0.0682500\pi\)
−0.424865 + 0.905257i \(0.639679\pi\)
\(74\) −10.4970 + 5.05509i −1.22025 + 0.587643i
\(75\) −11.6275 −1.34263
\(76\) 10.1456 4.88584i 1.16377 0.560445i
\(77\) 2.86316 + 12.5443i 0.326287 + 1.42956i
\(78\) −1.83368 0.883053i −0.207623 0.0999860i
\(79\) −0.259377 0.124909i −0.0291822 0.0140534i 0.419236 0.907877i \(-0.362298\pi\)
−0.448418 + 0.893824i \(0.648012\pi\)
\(80\) −1.51471 + 6.63640i −0.169350 + 0.741972i
\(81\) 0.623490 + 0.781831i 0.0692766 + 0.0868702i
\(82\) 9.19777 11.5336i 1.01572 1.27368i
\(83\) 1.44139 + 6.31514i 0.158213 + 0.693176i 0.990348 + 0.138603i \(0.0442613\pi\)
−0.832135 + 0.554573i \(0.812882\pi\)
\(84\) 2.29280 10.0454i 0.250165 1.09604i
\(85\) −4.11515 + 5.16024i −0.446351 + 0.559707i
\(86\) −9.72949 −1.04916
\(87\) −0.239930 5.37982i −0.0257232 0.576777i
\(88\) 6.39303 0.681499
\(89\) 10.2934 12.9075i 1.09110 1.36819i 0.167036 0.985951i \(-0.446580\pi\)
0.924062 0.382243i \(-0.124848\pi\)
\(90\) −1.99312 + 8.73243i −0.210093 + 0.920479i
\(91\) −0.751987 3.29467i −0.0788296 0.345375i
\(92\) 2.72266 3.41411i 0.283857 0.355946i
\(93\) 1.00241 + 1.25699i 0.103945 + 0.130344i
\(94\) 1.63151 7.14811i 0.168277 0.737272i
\(95\) −14.6443 7.05234i −1.50248 0.723555i
\(96\) 6.56921 + 3.16357i 0.670467 + 0.322880i
\(97\) −2.23682 9.80015i −0.227115 0.995054i −0.951979 0.306163i \(-0.900955\pi\)
0.724864 0.688892i \(-0.241902\pi\)
\(98\) 12.4740 6.00718i 1.26007 0.606817i
\(99\) −3.52776 −0.354554
\(100\) −29.5949 + 14.2521i −2.95949 + 1.42521i
\(101\) 5.13707 + 6.44168i 0.511158 + 0.640971i 0.968705 0.248214i \(-0.0798435\pi\)
−0.457548 + 0.889185i \(0.651272\pi\)
\(102\) 2.21677 + 2.77975i 0.219493 + 0.275236i
\(103\) −6.87172 + 3.30925i −0.677091 + 0.326070i −0.740634 0.671909i \(-0.765474\pi\)
0.0635423 + 0.997979i \(0.479760\pi\)
\(104\) −1.67908 −0.164647
\(105\) −13.3998 + 6.45301i −1.30769 + 0.629749i
\(106\) 0.996260 + 4.36490i 0.0967653 + 0.423957i
\(107\) 15.0981 + 7.27087i 1.45959 + 0.702902i 0.984231 0.176890i \(-0.0566037\pi\)
0.475360 + 0.879792i \(0.342318\pi\)
\(108\) 2.54524 + 1.22573i 0.244916 + 0.117945i
\(109\) 2.82860 12.3929i 0.270931 1.18702i −0.637987 0.770047i \(-0.720232\pi\)
0.908917 0.416977i \(-0.136910\pi\)
\(110\) −19.7011 24.7045i −1.87843 2.35548i
\(111\) 3.30702 4.14687i 0.313888 0.393603i
\(112\) 1.35485 + 5.93600i 0.128022 + 0.560899i
\(113\) 1.88360 8.25259i 0.177194 0.776338i −0.805723 0.592292i \(-0.798223\pi\)
0.982918 0.184046i \(-0.0589196\pi\)
\(114\) −5.45915 + 6.84555i −0.511296 + 0.641145i
\(115\) −6.30316 −0.587773
\(116\) −7.20486 13.3989i −0.668954 1.24405i
\(117\) 0.926540 0.0856587
\(118\) −9.98471 + 12.5204i −0.919167 + 1.15260i
\(119\) −1.31368 + 5.75560i −0.120425 + 0.527615i
\(120\) 1.64434 + 7.20433i 0.150107 + 0.657662i
\(121\) 0.901012 1.12983i 0.0819101 0.102712i
\(122\) 8.22489 + 10.3137i 0.744647 + 0.933758i
\(123\) −1.49443 + 6.54751i −0.134748 + 0.590370i
\(124\) 4.09211 + 1.97066i 0.367482 + 0.176970i
\(125\) 24.3486 + 11.7257i 2.17781 + 1.04878i
\(126\) 1.78277 + 7.81082i 0.158822 + 0.695843i
\(127\) 16.0419 7.72538i 1.42349 0.685516i 0.445715 0.895175i \(-0.352950\pi\)
0.977775 + 0.209659i \(0.0672354\pi\)
\(128\) 13.2642 1.17240
\(129\) 3.99072 1.92183i 0.351363 0.169207i
\(130\) 5.17436 + 6.48844i 0.453821 + 0.569074i
\(131\) 7.06407 + 8.85807i 0.617191 + 0.773933i 0.987946 0.154798i \(-0.0494726\pi\)
−0.370755 + 0.928731i \(0.620901\pi\)
\(132\) −8.97902 + 4.32407i −0.781523 + 0.376362i
\(133\) −14.5386 −1.26065
\(134\) 18.7661 9.03729i 1.62115 0.780703i
\(135\) −0.907370 3.97545i −0.0780940 0.342152i
\(136\) 2.64278 + 1.27269i 0.226616 + 0.109133i
\(137\) −7.48927 3.60664i −0.639851 0.308136i 0.0856826 0.996322i \(-0.472693\pi\)
−0.725534 + 0.688186i \(0.758407\pi\)
\(138\) −0.755553 + 3.31029i −0.0643169 + 0.281791i
\(139\) −1.94077 2.43365i −0.164614 0.206419i 0.692682 0.721243i \(-0.256429\pi\)
−0.857296 + 0.514824i \(0.827857\pi\)
\(140\) −26.1962 + 32.8490i −2.21398 + 2.77624i
\(141\) 0.742747 + 3.25419i 0.0625506 + 0.274052i
\(142\) 4.12908 18.0907i 0.346504 1.51814i
\(143\) −2.03795 + 2.55550i −0.170422 + 0.213702i
\(144\) −1.66934 −0.139112
\(145\) −8.63673 + 20.1892i −0.717241 + 1.67662i
\(146\) −16.6229 −1.37572
\(147\) −3.92987 + 4.92790i −0.324130 + 0.406446i
\(148\) 3.33425 14.6083i 0.274073 1.20079i
\(149\) −3.37249 14.7758i −0.276285 1.21048i −0.902450 0.430794i \(-0.858234\pi\)
0.626165 0.779691i \(-0.284624\pi\)
\(150\) 15.9245 19.9687i 1.30023 1.63044i
\(151\) 0.423281 + 0.530778i 0.0344461 + 0.0431941i 0.798756 0.601655i \(-0.205492\pi\)
−0.764310 + 0.644849i \(0.776920\pi\)
\(152\) −1.60740 + 7.04249i −0.130378 + 0.571221i
\(153\) −1.45832 0.702290i −0.117898 0.0567768i
\(154\) −25.4644 12.2630i −2.05198 0.988181i
\(155\) −1.45882 6.39152i −0.117175 0.513379i
\(156\) 2.35827 1.13568i 0.188813 0.0909274i
\(157\) −6.23584 −0.497674 −0.248837 0.968545i \(-0.580048\pi\)
−0.248837 + 0.968545i \(0.580048\pi\)
\(158\) 0.569745 0.274375i 0.0453265 0.0218281i
\(159\) −1.27081 1.59355i −0.100782 0.126377i
\(160\) −18.5373 23.2450i −1.46550 1.83768i
\(161\) −5.07960 + 2.44621i −0.400329 + 0.192788i
\(162\) −2.19659 −0.172580
\(163\) 13.7996 6.64551i 1.08086 0.520517i 0.193271 0.981145i \(-0.438090\pi\)
0.887593 + 0.460629i \(0.152376\pi\)
\(164\) 4.22177 + 18.4968i 0.329665 + 1.44436i
\(165\) 12.9605 + 6.24146i 1.00898 + 0.485897i
\(166\) −12.8194 6.17352i −0.994981 0.479158i
\(167\) 3.51273 15.3903i 0.271823 1.19094i −0.636036 0.771660i \(-0.719427\pi\)
0.907859 0.419276i \(-0.137716\pi\)
\(168\) 4.12109 + 5.16768i 0.317949 + 0.398695i
\(169\) −7.57012 + 9.49263i −0.582317 + 0.730202i
\(170\) −3.22609 14.1344i −0.247430 1.08406i
\(171\) 0.886987 3.88614i 0.0678296 0.297181i
\(172\) 7.80172 9.78304i 0.594875 0.745950i
\(173\) −3.44502 −0.261920 −0.130960 0.991388i \(-0.541806\pi\)
−0.130960 + 0.991388i \(0.541806\pi\)
\(174\) 9.56770 + 6.95589i 0.725325 + 0.527325i
\(175\) 42.4094 3.20585
\(176\) 3.67176 4.60425i 0.276770 0.347058i
\(177\) 1.62229 7.10771i 0.121939 0.534248i
\(178\) 8.06955 + 35.3550i 0.604838 + 2.64997i
\(179\) −7.50542 + 9.41150i −0.560981 + 0.703448i −0.978739 0.205110i \(-0.934245\pi\)
0.417758 + 0.908559i \(0.362816\pi\)
\(180\) −7.18229 9.00630i −0.535336 0.671290i
\(181\) −0.538337 + 2.35861i −0.0400143 + 0.175314i −0.990986 0.133963i \(-0.957230\pi\)
0.950972 + 0.309277i \(0.100087\pi\)
\(182\) 6.68803 + 3.22078i 0.495750 + 0.238740i
\(183\) −5.41080 2.60571i −0.399978 0.192619i
\(184\) 0.623337 + 2.73102i 0.0459530 + 0.201333i
\(185\) −19.4863 + 9.38413i −1.43266 + 0.689935i
\(186\) −3.53156 −0.258947
\(187\) 5.14461 2.47751i 0.376211 0.181174i
\(188\) 5.87921 + 7.37230i 0.428785 + 0.537680i
\(189\) −2.27407 2.85160i −0.165414 0.207423i
\(190\) 32.1676 15.4911i 2.33368 1.12384i
\(191\) 5.83662 0.422323 0.211162 0.977451i \(-0.432275\pi\)
0.211162 + 0.977451i \(0.432275\pi\)
\(192\) −11.4218 + 5.50046i −0.824298 + 0.396961i
\(193\) −4.44827 19.4891i −0.320193 1.40286i −0.837209 0.546883i \(-0.815814\pi\)
0.517015 0.855976i \(-0.327043\pi\)
\(194\) 19.8939 + 9.58038i 1.42830 + 0.687831i
\(195\) −3.40399 1.63927i −0.243764 0.117391i
\(196\) −3.96222 + 17.3596i −0.283016 + 1.23997i
\(197\) −7.30267 9.15726i −0.520294 0.652428i 0.450378 0.892838i \(-0.351289\pi\)
−0.970671 + 0.240411i \(0.922718\pi\)
\(198\) 4.83145 6.05845i 0.343356 0.430555i
\(199\) 3.70461 + 16.2310i 0.262613 + 1.15058i 0.918405 + 0.395641i \(0.129478\pi\)
−0.655792 + 0.754941i \(0.727665\pi\)
\(200\) 4.68884 20.5431i 0.331551 1.45262i
\(201\) −5.91215 + 7.41360i −0.417011 + 0.522915i
\(202\) −18.0982 −1.27338
\(203\) 0.875104 + 19.6220i 0.0614202 + 1.37719i
\(204\) −4.57260 −0.320146
\(205\) 17.0745 21.4107i 1.19253 1.49539i
\(206\) 3.72800 16.3334i 0.259742 1.13800i
\(207\) −0.343966 1.50701i −0.0239073 0.104745i
\(208\) −0.964361 + 1.20927i −0.0668664 + 0.0838478i
\(209\) 8.76749 + 10.9941i 0.606460 + 0.760476i
\(210\) 7.26957 31.8501i 0.501648 2.19786i
\(211\) 21.8426 + 10.5189i 1.50371 + 0.724148i 0.990931 0.134373i \(-0.0429019\pi\)
0.512778 + 0.858521i \(0.328616\pi\)
\(212\) −5.18779 2.49831i −0.356299 0.171584i
\(213\) 1.87977 + 8.23580i 0.128799 + 0.564307i
\(214\) −33.1644 + 15.9711i −2.26707 + 1.09176i
\(215\) −18.0615 −1.23179
\(216\) −1.63274 + 0.786286i −0.111094 + 0.0535000i
\(217\) −3.65613 4.58465i −0.248195 0.311226i
\(218\) 17.4092 + 21.8304i 1.17910 + 1.47854i
\(219\) 6.81815 3.28345i 0.460728 0.221875i
\(220\) 40.6381 2.73982
\(221\) −1.35119 + 0.650700i −0.0908910 + 0.0437708i
\(222\) 2.59255 + 11.3587i 0.174000 + 0.762346i
\(223\) −25.5135 12.2867i −1.70851 0.822776i −0.992151 0.125048i \(-0.960092\pi\)
−0.716362 0.697729i \(-0.754194\pi\)
\(224\) −23.9601 11.5386i −1.60090 0.770953i
\(225\) −2.58737 + 11.3360i −0.172491 + 0.755733i
\(226\) 11.5930 + 14.5372i 0.771155 + 0.966998i
\(227\) 6.15022 7.71213i 0.408204 0.511872i −0.534652 0.845073i \(-0.679557\pi\)
0.942856 + 0.333201i \(0.108129\pi\)
\(228\) −2.50575 10.9784i −0.165947 0.727061i
\(229\) −3.48401 + 15.2644i −0.230230 + 1.00870i 0.719219 + 0.694783i \(0.244500\pi\)
−0.949449 + 0.313920i \(0.898358\pi\)
\(230\) 8.63251 10.8248i 0.569211 0.713768i
\(231\) 12.8669 0.846581
\(232\) 9.60165 + 1.74553i 0.630379 + 0.114600i
\(233\) −19.7879 −1.29635 −0.648176 0.761491i \(-0.724468\pi\)
−0.648176 + 0.761491i \(0.724468\pi\)
\(234\) −1.26894 + 1.59121i −0.0829535 + 0.104020i
\(235\) 3.02869 13.2695i 0.197570 0.865610i
\(236\) −4.58298 20.0793i −0.298326 1.30705i
\(237\) −0.179495 + 0.225079i −0.0116594 + 0.0146205i
\(238\) −8.08531 10.1387i −0.524093 0.657191i
\(239\) 2.07678 9.09899i 0.134336 0.588564i −0.862285 0.506424i \(-0.830967\pi\)
0.996621 0.0821407i \(-0.0261757\pi\)
\(240\) 6.13295 + 2.95347i 0.395880 + 0.190646i
\(241\) 22.1401 + 10.6621i 1.42617 + 0.686807i 0.978281 0.207282i \(-0.0664619\pi\)
0.447888 + 0.894089i \(0.352176\pi\)
\(242\) 0.706352 + 3.09473i 0.0454060 + 0.198937i
\(243\) 0.900969 0.433884i 0.0577972 0.0278337i
\(244\) −16.9657 −1.08612
\(245\) 23.1564 11.1516i 1.47941 0.712447i
\(246\) −9.19777 11.5336i −0.586428 0.735358i
\(247\) −2.30271 2.88751i −0.146518 0.183728i
\(248\) −2.62503 + 1.26415i −0.166690 + 0.0802736i
\(249\) 6.47754 0.410498
\(250\) −53.4840 + 25.7565i −3.38262 + 1.62899i
\(251\) −1.03735 4.54494i −0.0654771 0.286874i 0.931580 0.363536i \(-0.118431\pi\)
−0.997057 + 0.0766624i \(0.975574\pi\)
\(252\) −9.28335 4.47062i −0.584796 0.281623i
\(253\) 4.91308 + 2.36602i 0.308883 + 0.148750i
\(254\) −8.70294 + 38.1301i −0.546071 + 2.39249i
\(255\) 4.11515 + 5.16024i 0.257701 + 0.323147i
\(256\) −2.35770 + 2.95647i −0.147356 + 0.184779i
\(257\) 6.30942 + 27.6434i 0.393571 + 1.72435i 0.651915 + 0.758292i \(0.273966\pi\)
−0.258344 + 0.966053i \(0.583177\pi\)
\(258\) −2.16502 + 9.48555i −0.134788 + 0.590545i
\(259\) −12.0618 + 15.1250i −0.749482 + 0.939821i
\(260\) −10.6733 −0.661928
\(261\) −5.29832 0.963208i −0.327958 0.0596211i
\(262\) −24.8871 −1.53753
\(263\) −16.6977 + 20.9383i −1.02963 + 1.29111i −0.0737713 + 0.997275i \(0.523503\pi\)
−0.955856 + 0.293836i \(0.905068\pi\)
\(264\) 1.42258 6.23274i 0.0875539 0.383599i
\(265\) 1.84943 + 8.10287i 0.113609 + 0.497756i
\(266\) 19.9113 24.9680i 1.22084 1.53089i
\(267\) −10.2934 12.9075i −0.629946 0.789927i
\(268\) −5.96083 + 26.1161i −0.364115 + 1.59529i
\(269\) 0.707757 + 0.340838i 0.0431527 + 0.0207812i 0.455336 0.890320i \(-0.349519\pi\)
−0.412183 + 0.911101i \(0.635234\pi\)
\(270\) 8.06998 + 3.88630i 0.491123 + 0.236513i
\(271\) 2.70395 + 11.8468i 0.164253 + 0.719641i 0.988225 + 0.153009i \(0.0488965\pi\)
−0.823971 + 0.566631i \(0.808246\pi\)
\(272\) 2.43444 1.17236i 0.147610 0.0710850i
\(273\) −3.37940 −0.204530
\(274\) 16.4509 7.92231i 0.993832 0.478604i
\(275\) −25.5750 32.0701i −1.54223 1.93390i
\(276\) −2.72266 3.41411i −0.163885 0.205505i
\(277\) 14.2206 6.84830i 0.854435 0.411474i 0.0452134 0.998977i \(-0.485603\pi\)
0.809222 + 0.587503i \(0.199889\pi\)
\(278\) 6.83744 0.410083
\(279\) 1.44853 0.697575i 0.0867212 0.0417627i
\(280\) −5.99746 26.2766i −0.358417 1.57033i
\(281\) −18.0845 8.70903i −1.07883 0.519537i −0.191887 0.981417i \(-0.561461\pi\)
−0.886942 + 0.461880i \(0.847175\pi\)
\(282\) −6.60585 3.18121i −0.393373 0.189438i
\(283\) 0.435154 1.90654i 0.0258672 0.113332i −0.960346 0.278811i \(-0.910060\pi\)
0.986213 + 0.165479i \(0.0529170\pi\)
\(284\) 14.8793 + 18.6580i 0.882923 + 1.10715i
\(285\) −10.1342 + 12.7079i −0.600298 + 0.752750i
\(286\) −1.59766 6.99979i −0.0944714 0.413906i
\(287\) 5.45067 23.8809i 0.321743 1.40965i
\(288\) 4.54604 5.70055i 0.267878 0.335908i
\(289\) −14.3801 −0.845888
\(290\) −22.8438 42.4826i −1.34143 2.49466i
\(291\) −10.0522 −0.589269
\(292\) 13.3293 16.7144i 0.780035 0.978134i
\(293\) 0.537209 2.35367i 0.0313841 0.137503i −0.956809 0.290718i \(-0.906106\pi\)
0.988193 + 0.153216i \(0.0489629\pi\)
\(294\) −3.08083 13.4980i −0.179678 0.787220i
\(295\) −18.5353 + 23.2426i −1.07917 + 1.35323i
\(296\) 5.99299 + 7.51497i 0.348336 + 0.436799i
\(297\) −0.785001 + 3.43931i −0.0455504 + 0.199569i
\(298\) 29.9943 + 14.4445i 1.73752 + 0.836747i
\(299\) −1.29038 0.621416i −0.0746248 0.0359374i
\(300\) 7.30933 + 32.0243i 0.422005 + 1.84892i
\(301\) −14.5555 + 7.00954i −0.838963 + 0.404023i
\(302\) −1.49124 −0.0858114
\(303\) 7.42328 3.57486i 0.426456 0.205371i
\(304\) 4.14879 + 5.20242i 0.237950 + 0.298379i
\(305\) 15.2685 + 19.1460i 0.874269 + 1.09630i
\(306\) 3.20333 1.54264i 0.183122 0.0881870i
\(307\) −1.11367 −0.0635606 −0.0317803 0.999495i \(-0.510118\pi\)
−0.0317803 + 0.999495i \(0.510118\pi\)
\(308\) 32.7494 15.7713i 1.86607 0.898653i
\(309\) 1.69718 + 7.43581i 0.0965490 + 0.423009i
\(310\) 12.9745 + 6.24819i 0.736902 + 0.354873i
\(311\) −3.99119 1.92206i −0.226320 0.108990i 0.317288 0.948329i \(-0.397228\pi\)
−0.543608 + 0.839339i \(0.682942\pi\)
\(312\) −0.373631 + 1.63698i −0.0211527 + 0.0926759i
\(313\) −18.7672 23.5333i −1.06078 1.33018i −0.941385 0.337334i \(-0.890475\pi\)
−0.119399 0.992846i \(-0.538097\pi\)
\(314\) 8.54030 10.7092i 0.481957 0.604355i
\(315\) 3.30948 + 14.4998i 0.186468 + 0.816970i
\(316\) −0.180973 + 0.792892i −0.0101805 + 0.0446037i
\(317\) −3.87230 + 4.85571i −0.217490 + 0.272724i −0.878593 0.477571i \(-0.841517\pi\)
0.661103 + 0.750295i \(0.270089\pi\)
\(318\) 4.47715 0.251066
\(319\) 14.3104 12.4948i 0.801230 0.699574i
\(320\) 51.6939 2.88978
\(321\) 10.4482 13.1017i 0.583163 0.731263i
\(322\) 2.75575 12.0737i 0.153572 0.672843i
\(323\) 1.43569 + 6.29016i 0.0798838 + 0.349994i
\(324\) 1.76136 2.20868i 0.0978535 0.122704i
\(325\) 6.71708 + 8.42296i 0.372597 + 0.467221i
\(326\) −7.48644 + 32.8002i −0.414635 + 1.81664i
\(327\) −11.4528 5.51536i −0.633339 0.305000i
\(328\) −10.9653 5.28062i −0.605458 0.291573i
\(329\) −2.70904 11.8691i −0.149354 0.654364i
\(330\) −28.4690 + 13.7099i −1.56717 + 0.754707i
\(331\) 10.0058 0.549967 0.274984 0.961449i \(-0.411328\pi\)
0.274984 + 0.961449i \(0.411328\pi\)
\(332\) 16.4869 7.93969i 0.904838 0.435747i
\(333\) −3.30702 4.14687i −0.181223 0.227247i
\(334\) 21.6198 + 27.1104i 1.18298 + 1.48342i
\(335\) 34.8369 16.7766i 1.90334 0.916602i
\(336\) 6.08865 0.332163
\(337\) 24.5924 11.8431i 1.33963 0.645133i 0.379634 0.925137i \(-0.376050\pi\)
0.959999 + 0.280004i \(0.0903358\pi\)
\(338\) −5.93462 26.0013i −0.322801 1.41428i
\(339\) −7.62654 3.67275i −0.414217 0.199476i
\(340\) 16.7991 + 8.09003i 0.911060 + 0.438743i
\(341\) −1.26208 + 5.52955i −0.0683456 + 0.299442i
\(342\) 5.45915 + 6.84555i 0.295197 + 0.370165i
\(343\) −1.58499 + 1.98752i −0.0855816 + 0.107316i
\(344\) 1.78616 + 7.82566i 0.0963030 + 0.421931i
\(345\) −1.40259 + 6.14513i −0.0755127 + 0.330843i
\(346\) 4.71813 5.91635i 0.253648 0.318065i
\(347\) 1.19493 0.0641473 0.0320736 0.999486i \(-0.489789\pi\)
0.0320736 + 0.999486i \(0.489789\pi\)
\(348\) −14.6662 + 4.04269i −0.786189 + 0.216711i
\(349\) 7.25120 0.388148 0.194074 0.980987i \(-0.437830\pi\)
0.194074 + 0.980987i \(0.437830\pi\)
\(350\) −58.0819 + 72.8324i −3.10461 + 3.89305i
\(351\) 0.206175 0.903310i 0.0110048 0.0482151i
\(352\) 5.72366 + 25.0770i 0.305072 + 1.33661i
\(353\) −3.28176 + 4.11519i −0.174670 + 0.219030i −0.861459 0.507828i \(-0.830449\pi\)
0.686788 + 0.726858i \(0.259020\pi\)
\(354\) 9.98471 + 12.5204i 0.530681 + 0.665453i
\(355\) 7.66510 33.5830i 0.406821 1.78240i
\(356\) −42.0203 20.2359i −2.22707 1.07250i
\(357\) 5.31897 + 2.56148i 0.281510 + 0.135568i
\(358\) −5.88390 25.7791i −0.310974 1.36247i
\(359\) 13.1799 6.34711i 0.695609 0.334987i −0.0524468 0.998624i \(-0.516702\pi\)
0.748055 + 0.663636i \(0.230988\pi\)
\(360\) 7.38960 0.389466
\(361\) 2.80304 1.34988i 0.147529 0.0710461i
\(362\) −3.31331 4.15476i −0.174144 0.218369i
\(363\) −0.901012 1.12983i −0.0472908 0.0593008i
\(364\) −8.60139 + 4.14221i −0.450835 + 0.217111i
\(365\) −30.8582 −1.61519
\(366\) 11.8853 5.72367i 0.621255 0.299181i
\(367\) −1.23570 5.41395i −0.0645030 0.282606i 0.932382 0.361474i \(-0.117726\pi\)
−0.996885 + 0.0788683i \(0.974869\pi\)
\(368\) 2.32488 + 1.11960i 0.121193 + 0.0583634i
\(369\) 6.05081 + 2.91392i 0.314993 + 0.151693i
\(370\) 10.5716 46.3172i 0.549591 2.40792i
\(371\) 4.63508 + 5.81221i 0.240641 + 0.301755i
\(372\) 2.83183 3.55100i 0.146823 0.184111i
\(373\) −6.61909 29.0001i −0.342724 1.50157i −0.793299 0.608832i \(-0.791638\pi\)
0.450575 0.892738i \(-0.351219\pi\)
\(374\) −2.79102 + 12.2282i −0.144320 + 0.632307i
\(375\) 16.8498 21.1290i 0.870119 1.09109i
\(376\) −6.04891 −0.311949
\(377\) −3.75852 + 3.28166i −0.193574 + 0.169014i
\(378\) 8.01169 0.412077
\(379\) −1.22348 + 1.53420i −0.0628460 + 0.0788064i −0.812261 0.583294i \(-0.801763\pi\)
0.749415 + 0.662101i \(0.230335\pi\)
\(380\) −10.2176 + 44.7664i −0.524154 + 2.29647i
\(381\) −3.96202 17.3588i −0.202981 0.889316i
\(382\) −7.99356 + 10.0236i −0.408986 + 0.512852i
\(383\) −7.36748 9.23852i −0.376460 0.472067i 0.557121 0.830431i \(-0.311906\pi\)
−0.933582 + 0.358365i \(0.883334\pi\)
\(384\) 2.95156 12.9316i 0.150621 0.659914i
\(385\) −47.2713 22.7647i −2.40917 1.16020i
\(386\) 39.5621 + 19.0521i 2.01366 + 0.969726i
\(387\) −0.985625 4.31831i −0.0501022 0.219512i
\(388\) −25.5853 + 12.3212i −1.29889 + 0.625515i
\(389\) 11.9013 0.603422 0.301711 0.953399i \(-0.402442\pi\)
0.301711 + 0.953399i \(0.402442\pi\)
\(390\) 7.47716 3.60081i 0.378621 0.182334i
\(391\) 1.55997 + 1.95614i 0.0788912 + 0.0989265i
\(392\) −7.12172 8.93036i −0.359701 0.451051i
\(393\) 10.2079 4.91586i 0.514919 0.247972i
\(394\) 25.7277 1.29614
\(395\) 1.05766 0.509342i 0.0532166 0.0256278i
\(396\) 2.21763 + 9.71609i 0.111440 + 0.488252i
\(397\) −17.7291 8.53790i −0.889799 0.428505i −0.0676053 0.997712i \(-0.521536\pi\)
−0.822194 + 0.569207i \(0.807250\pi\)
\(398\) −32.9481 15.8670i −1.65154 0.795340i
\(399\) −3.23513 + 14.1740i −0.161959 + 0.709590i
\(400\) −12.1022 15.1756i −0.605108 0.758781i
\(401\) −12.7980 + 16.0482i −0.639102 + 0.801408i −0.990890 0.134671i \(-0.957002\pi\)
0.351789 + 0.936079i \(0.385574\pi\)
\(402\) −4.63485 20.3066i −0.231165 1.01280i
\(403\) 0.331477 1.45229i 0.0165120 0.0723439i
\(404\) 14.5123 18.1978i 0.722012 0.905375i
\(405\) −4.07769 −0.202622
\(406\) −34.8965 25.3704i −1.73189 1.25911i
\(407\) 18.7114 0.927490
\(408\) 1.82886 2.29331i 0.0905419 0.113536i
\(409\) −7.16116 + 31.3751i −0.354097 + 1.55140i 0.413524 + 0.910493i \(0.364298\pi\)
−0.767620 + 0.640905i \(0.778559\pi\)
\(410\) 13.3856 + 58.6461i 0.661067 + 2.89633i
\(411\) −5.18273 + 6.49894i −0.255645 + 0.320569i
\(412\) 13.4340 + 16.8457i 0.661845 + 0.829928i
\(413\) −5.91702 + 25.9241i −0.291157 + 1.27564i
\(414\) 3.05917 + 1.47322i 0.150350 + 0.0724047i
\(415\) −23.7976 11.4603i −1.16818 0.562566i
\(416\) −1.50328 6.58628i −0.0737041 0.322919i
\(417\) −2.80449 + 1.35057i −0.137337 + 0.0661379i
\(418\) −30.8884 −1.51080
\(419\) −1.42979 + 0.688551i −0.0698499 + 0.0336379i −0.468483 0.883473i \(-0.655199\pi\)
0.398633 + 0.917111i \(0.369485\pi\)
\(420\) 26.1962 + 32.8490i 1.27824 + 1.60287i
\(421\) 3.65562 + 4.58401i 0.178164 + 0.223411i 0.862892 0.505388i \(-0.168650\pi\)
−0.684728 + 0.728799i \(0.740079\pi\)
\(422\) −47.9793 + 23.1056i −2.33560 + 1.12476i
\(423\) 3.33787 0.162293
\(424\) 3.32790 1.60263i 0.161617 0.0778306i
\(425\) −4.18795 18.3486i −0.203145 0.890037i
\(426\) −16.7183 8.05110i −0.810004 0.390077i
\(427\) 19.7350 + 9.50387i 0.955043 + 0.459924i
\(428\) 10.5343 46.1536i 0.509192 2.23092i
\(429\) 2.03795 + 2.55550i 0.0983930 + 0.123381i
\(430\) 24.7362 31.0182i 1.19289 1.49583i
\(431\) 1.88305 + 8.25019i 0.0907034 + 0.397397i 0.999817 0.0191516i \(-0.00609653\pi\)
−0.909113 + 0.416549i \(0.863239\pi\)
\(432\) −0.371464 + 1.62749i −0.0178721 + 0.0783027i
\(433\) 7.92985 9.94372i 0.381084 0.477864i −0.553885 0.832593i \(-0.686855\pi\)
0.934969 + 0.354729i \(0.115427\pi\)
\(434\) 12.8808 0.618297
\(435\) 17.7612 + 12.9127i 0.851584 + 0.619117i
\(436\) −35.9104 −1.71980
\(437\) −3.84167 + 4.81731i −0.183772 + 0.230443i
\(438\) −3.69893 + 16.2061i −0.176742 + 0.774357i
\(439\) 1.67011 + 7.31721i 0.0797098 + 0.349232i 0.999018 0.0443069i \(-0.0141080\pi\)
−0.919308 + 0.393538i \(0.871251\pi\)
\(440\) −16.2536 + 20.3814i −0.774860 + 0.971644i
\(441\) 3.92987 + 4.92790i 0.187136 + 0.234662i
\(442\) 0.733039 3.21165i 0.0348671 0.152763i
\(443\) 10.5038 + 5.05834i 0.499048 + 0.240329i 0.666436 0.745562i \(-0.267819\pi\)
−0.167388 + 0.985891i \(0.553533\pi\)
\(444\) −13.5001 6.50130i −0.640686 0.308538i
\(445\) 14.9801 + 65.6320i 0.710124 + 3.11126i
\(446\) 56.0428 26.9888i 2.65370 1.27796i
\(447\) −15.1558 −0.716847
\(448\) 41.6591 20.0620i 1.96821 0.947839i
\(449\) −12.1276 15.2075i −0.572337 0.717687i 0.408448 0.912782i \(-0.366070\pi\)
−0.980784 + 0.195094i \(0.937499\pi\)
\(450\) −15.9245 19.9687i −0.750688 0.941333i
\(451\) −21.3458 + 10.2796i −1.00514 + 0.484048i
\(452\) −23.9132 −1.12478
\(453\) 0.611659 0.294559i 0.0287383 0.0138396i
\(454\) 4.82149 + 21.1243i 0.226284 + 0.991413i
\(455\) 12.4155 + 5.97897i 0.582046 + 0.280298i
\(456\) 6.50824 + 3.13420i 0.304776 + 0.146772i
\(457\) −3.80789 + 16.6835i −0.178126 + 0.780419i 0.804369 + 0.594130i \(0.202503\pi\)
−0.982495 + 0.186290i \(0.940354\pi\)
\(458\) −21.4431 26.8888i −1.00197 1.25643i
\(459\) −1.00919 + 1.26548i −0.0471049 + 0.0590677i
\(460\) 3.96232 + 17.3600i 0.184744 + 0.809416i
\(461\) −1.89815 + 8.31633i −0.0884056 + 0.387330i −0.999702 0.0244213i \(-0.992226\pi\)
0.911296 + 0.411752i \(0.135083\pi\)
\(462\) −17.6219 + 22.0972i −0.819845 + 1.02805i
\(463\) 1.49772 0.0696050 0.0348025 0.999394i \(-0.488920\pi\)
0.0348025 + 0.999394i \(0.488920\pi\)
\(464\) 6.77172 5.91256i 0.314369 0.274484i
\(465\) −6.55589 −0.304022
\(466\) 27.1006 33.9831i 1.25541 1.57424i
\(467\) 4.76878 20.8934i 0.220673 0.966831i −0.736300 0.676655i \(-0.763429\pi\)
0.956973 0.290176i \(-0.0937140\pi\)
\(468\) −0.582445 2.55186i −0.0269235 0.117960i
\(469\) 21.5636 27.0398i 0.995712 1.24858i
\(470\) 18.6407 + 23.3747i 0.859831 + 1.07819i
\(471\) −1.38760 + 6.07949i −0.0639374 + 0.280128i
\(472\) 11.9035 + 5.73242i 0.547902 + 0.263856i
\(473\) 14.0783 + 6.77975i 0.647321 + 0.311733i
\(474\) −0.140715 0.616515i −0.00646328 0.0283175i
\(475\) 41.7583 20.1098i 1.91600 0.922699i
\(476\) 16.6778 0.764424
\(477\) −1.83638 + 0.884354i −0.0840821 + 0.0404918i
\(478\) 12.7820 + 16.0281i 0.584635 + 0.733109i
\(479\) −17.8030 22.3242i −0.813439 1.02002i −0.999299 0.0374436i \(-0.988079\pi\)
0.185860 0.982576i \(-0.440493\pi\)
\(480\) −26.7872 + 12.9000i −1.22266 + 0.588803i
\(481\) −4.91441 −0.224078
\(482\) −48.6327 + 23.4203i −2.21516 + 1.06677i
\(483\) 1.25456 + 5.49658i 0.0570844 + 0.250103i
\(484\) −3.67816 1.77131i −0.167189 0.0805140i
\(485\) 36.9304 + 17.7847i 1.67692 + 0.807563i
\(486\) −0.488787 + 2.14152i −0.0221718 + 0.0971412i
\(487\) 15.6842 + 19.6674i 0.710720 + 0.891214i 0.997773 0.0667002i \(-0.0212471\pi\)
−0.287053 + 0.957915i \(0.592676\pi\)
\(488\) 6.78561 8.50888i 0.307170 0.385179i
\(489\) −3.40821 14.9323i −0.154124 0.675263i
\(490\) −12.5627 + 55.0407i −0.567524 + 2.48648i
\(491\) −13.5202 + 16.9537i −0.610156 + 0.765111i −0.986922 0.161197i \(-0.948465\pi\)
0.376766 + 0.926308i \(0.377036\pi\)
\(492\) 18.9725 0.855345
\(493\) 8.40310 2.31629i 0.378457 0.104321i
\(494\) 8.11259 0.365003
\(495\) 8.96897 11.2467i 0.403125 0.505503i
\(496\) −0.597221 + 2.61659i −0.0268160 + 0.117489i
\(497\) −6.85613 30.0387i −0.307539 1.34742i
\(498\) −8.87133 + 11.1243i −0.397534 + 0.498491i
\(499\) 3.54720 + 4.44805i 0.158795 + 0.199122i 0.854864 0.518853i \(-0.173641\pi\)
−0.696069 + 0.717975i \(0.745069\pi\)
\(500\) 16.9885 74.4316i 0.759750 3.32868i
\(501\) −14.2228 6.84932i −0.635426 0.306005i
\(502\) 9.22602 + 4.44302i 0.411778 + 0.198302i
\(503\) 2.10721 + 9.23230i 0.0939560 + 0.411648i 0.999932 0.0116814i \(-0.00371840\pi\)
−0.905976 + 0.423330i \(0.860861\pi\)
\(504\) 5.95514 2.86785i 0.265263 0.127744i
\(505\) −33.5970 −1.49505
\(506\) −10.7920 + 5.19717i −0.479764 + 0.231042i
\(507\) 7.57012 + 9.49263i 0.336201 + 0.421582i
\(508\) −31.3614 39.3259i −1.39144 1.74481i
\(509\) 27.5641 13.2742i 1.22176 0.588368i 0.291957 0.956431i \(-0.405693\pi\)
0.929801 + 0.368064i \(0.119979\pi\)
\(510\) −14.4979 −0.641979
\(511\) −24.8680 + 11.9758i −1.10010 + 0.529779i
\(512\) 4.05479 + 17.7652i 0.179198 + 0.785117i
\(513\) −3.59134 1.72950i −0.158561 0.0763591i
\(514\) −56.1148 27.0234i −2.47512 1.19195i
\(515\) 6.92055 30.3209i 0.304956 1.33610i
\(516\) −7.80172 9.78304i −0.343451 0.430674i
\(517\) −7.34173 + 9.20624i −0.322889 + 0.404890i
\(518\) −9.45588 41.4289i −0.415467 1.82028i
\(519\) −0.766589 + 3.35865i −0.0336495 + 0.147428i
\(520\) 4.26889 5.35301i 0.187203 0.234745i
\(521\) 8.99098 0.393902 0.196951 0.980413i \(-0.436896\pi\)
0.196951 + 0.980413i \(0.436896\pi\)
\(522\) 8.91050 7.77998i 0.390002 0.340521i
\(523\) −1.43930 −0.0629362 −0.0314681 0.999505i \(-0.510018\pi\)
−0.0314681 + 0.999505i \(0.510018\pi\)
\(524\) 19.9561 25.0241i 0.871785 1.09318i
\(525\) 9.43698 41.3461i 0.411864 1.80449i
\(526\) −13.0903 57.3522i −0.570763 2.50067i
\(527\) −1.62252 + 2.03458i −0.0706781 + 0.0886275i
\(528\) −3.67176 4.60425i −0.159793 0.200374i
\(529\) 4.58629 20.0938i 0.199404 0.873645i
\(530\) −16.4485 7.92116i −0.714476 0.344073i
\(531\) −6.56851 3.16323i −0.285049 0.137272i
\(532\) 9.13928 + 40.0418i 0.396238 + 1.73603i
\(533\) 5.60632 2.69986i 0.242837 0.116944i
\(534\) 36.2642 1.56931
\(535\) −61.5654 + 29.6483i −2.66170 + 1.28181i
\(536\) −10.7140 13.4350i −0.462775 0.580302i
\(537\) 7.50542 + 9.41150i 0.323883 + 0.406136i
\(538\) −1.55465 + 0.748681i −0.0670258 + 0.0322779i
\(539\) −22.2355 −0.957753
\(540\) −10.3787 + 4.99812i −0.446628 + 0.215085i
\(541\) 6.01572 + 26.3566i 0.258636 + 1.13316i 0.922711 + 0.385493i \(0.125969\pi\)
−0.664075 + 0.747666i \(0.731174\pi\)
\(542\) −24.0484 11.5811i −1.03297 0.497451i
\(543\) 2.17968 + 1.04968i 0.0935391 + 0.0450461i
\(544\) −2.62614 + 11.5059i −0.112595 + 0.493310i
\(545\) 32.3179 + 40.5254i 1.38435 + 1.73592i
\(546\) 4.62826 5.80365i 0.198071 0.248373i
\(547\) 8.29422 + 36.3394i 0.354635 + 1.55376i 0.766336 + 0.642440i \(0.222078\pi\)
−0.411701 + 0.911319i \(0.635065\pi\)
\(548\) −5.22541 + 22.8940i −0.223218 + 0.977984i
\(549\) −3.74439 + 4.69532i −0.159807 + 0.200391i
\(550\) 90.1022 3.84197
\(551\) 10.1660 + 18.9058i 0.433088 + 0.805413i
\(552\) 2.80125 0.119229
\(553\) 0.654676 0.820938i 0.0278397 0.0349098i
\(554\) −7.71488 + 33.8011i −0.327774 + 1.43607i
\(555\) 4.81273 + 21.0860i 0.204289 + 0.895049i
\(556\) −5.48269 + 6.87508i −0.232518 + 0.291568i
\(557\) 19.8070 + 24.8372i 0.839249 + 1.05239i 0.997882 + 0.0650476i \(0.0207199\pi\)
−0.158633 + 0.987338i \(0.550709\pi\)
\(558\) −0.785846 + 3.44302i −0.0332675 + 0.145755i
\(559\) −3.69756 1.78065i −0.156390 0.0753135i
\(560\) −22.3689 10.7723i −0.945259 0.455213i
\(561\) −1.27061 5.56692i −0.0536453 0.235036i
\(562\) 39.7242 19.1302i 1.67566 0.806957i
\(563\) 13.4735 0.567842 0.283921 0.958848i \(-0.408365\pi\)
0.283921 + 0.958848i \(0.408365\pi\)
\(564\) 8.49570 4.09132i 0.357734 0.172275i
\(565\) 21.5209 + 26.9864i 0.905392 + 1.13533i
\(566\) 2.67825 + 3.35842i 0.112575 + 0.141165i
\(567\) −3.28613 + 1.58252i −0.138005 + 0.0664595i
\(568\) −15.3088 −0.642342
\(569\) 4.98991 2.40302i 0.209188 0.100740i −0.326356 0.945247i \(-0.605821\pi\)
0.535544 + 0.844507i \(0.320107\pi\)
\(570\) −7.94475 34.8082i −0.332769 1.45796i
\(571\) −37.2132 17.9209i −1.55732 0.749968i −0.560392 0.828228i \(-0.689349\pi\)
−0.996933 + 0.0782596i \(0.975064\pi\)
\(572\) 8.31942 + 4.00642i 0.347852 + 0.167517i
\(573\) 1.29877 5.69029i 0.0542569 0.237715i
\(574\) 33.5473 + 42.0670i 1.40024 + 1.75584i
\(575\) 11.2063 14.0522i 0.467334 0.586018i
\(576\) 2.82095 + 12.3594i 0.117540 + 0.514975i
\(577\) 8.85347 38.7896i 0.368575 1.61483i −0.362123 0.932130i \(-0.617948\pi\)
0.730698 0.682701i \(-0.239195\pi\)
\(578\) 19.6943 24.6958i 0.819174 1.02721i
\(579\) −19.9903 −0.830770
\(580\) 61.0340 + 11.0957i 2.53430 + 0.460722i
\(581\) −23.6257 −0.980161
\(582\) 13.7670 17.2632i 0.570660 0.715584i
\(583\) 1.60001 7.01011i 0.0662657 0.290329i
\(584\) 3.05165 + 13.3702i 0.126278 + 0.553261i
\(585\) −2.35563 + 2.95387i −0.0973934 + 0.122127i
\(586\) 3.30637 + 4.14605i 0.136585 + 0.171272i
\(587\) −8.61390 + 37.7400i −0.355534 + 1.55769i 0.408647 + 0.912692i \(0.366001\pi\)
−0.764181 + 0.645002i \(0.776856\pi\)
\(588\) 16.0427 + 7.72577i 0.661590 + 0.318605i
\(589\) −5.77396 2.78059i −0.237912 0.114572i
\(590\) −14.5308 63.6638i −0.598225 2.62100i
\(591\) −10.5527 + 5.08189i −0.434079 + 0.209041i
\(592\) 8.85427 0.363908
\(593\) 1.26777 0.610524i 0.0520610 0.0250712i −0.407672 0.913128i \(-0.633659\pi\)
0.459733 + 0.888057i \(0.347945\pi\)
\(594\) −4.83145 6.05845i −0.198237 0.248581i
\(595\) −15.0093 18.8211i −0.615322 0.771590i
\(596\) −38.5753 + 18.5769i −1.58011 + 0.760939i
\(597\) 16.6484 0.681373
\(598\) 2.83444 1.36500i 0.115909 0.0558188i
\(599\) −6.84151 29.9746i −0.279537 1.22473i −0.898381 0.439217i \(-0.855256\pi\)
0.618845 0.785513i \(-0.287601\pi\)
\(600\) −18.9847 9.14256i −0.775048 0.373244i
\(601\) 11.9409 + 5.75041i 0.487078 + 0.234564i 0.661271 0.750147i \(-0.270017\pi\)
−0.174193 + 0.984712i \(0.555732\pi\)
\(602\) 7.89652 34.5969i 0.321838 1.41007i
\(603\) 5.91215 + 7.41360i 0.240761 + 0.301905i
\(604\) 1.19577 1.49945i 0.0486553 0.0610118i
\(605\) 1.31125 + 5.74496i 0.0533099 + 0.233566i
\(606\) −4.02723 + 17.6444i −0.163595 + 0.716756i
\(607\) 6.14313 7.70324i 0.249342 0.312665i −0.641371 0.767231i \(-0.721634\pi\)
0.890713 + 0.454566i \(0.150206\pi\)
\(608\) −29.0636 −1.17869
\(609\) 19.3247 + 3.51314i 0.783078 + 0.142359i
\(610\) −53.7916 −2.17796
\(611\) 1.92825 2.41795i 0.0780087 0.0978198i
\(612\) −1.01750 + 4.45795i −0.0411299 + 0.180202i
\(613\) 5.13236 + 22.4863i 0.207294 + 0.908214i 0.966358 + 0.257199i \(0.0827996\pi\)
−0.759064 + 0.651015i \(0.774343\pi\)
\(614\) 1.52523 1.91258i 0.0615533 0.0771854i
\(615\) −17.0745 21.4107i −0.688509 0.863363i
\(616\) −5.18863 + 22.7329i −0.209056 + 0.915933i
\(617\) 1.93195 + 0.930376i 0.0777772 + 0.0374555i 0.472368 0.881401i \(-0.343399\pi\)
−0.394591 + 0.918857i \(0.629114\pi\)
\(618\) −15.0944 7.26906i −0.607184 0.292405i
\(619\) −6.61917 29.0005i −0.266047 1.16563i −0.914569 0.404431i \(-0.867470\pi\)
0.648522 0.761196i \(-0.275388\pi\)
\(620\) −16.6863 + 8.03572i −0.670140 + 0.322722i
\(621\) −1.54577 −0.0620296
\(622\) 8.76701 4.22197i 0.351525 0.169286i
\(623\) 37.5434 + 47.0780i 1.50415 + 1.88614i
\(624\) 0.964361 + 1.20927i 0.0386053 + 0.0484096i
\(625\) −46.9059 + 22.5887i −1.87624 + 0.903548i
\(626\) 66.1178 2.64260
\(627\) 12.6694 6.10125i 0.505966 0.243661i
\(628\) 3.91999 + 17.1746i 0.156425 + 0.685342i
\(629\) 7.73499 + 3.72497i 0.308414 + 0.148524i
\(630\) −29.4339 14.1746i −1.17267 0.564730i
\(631\) 1.00667 4.41052i 0.0400750 0.175580i −0.950930 0.309407i \(-0.899869\pi\)
0.991005 + 0.133827i \(0.0427266\pi\)
\(632\) −0.325281 0.407889i −0.0129390 0.0162250i
\(633\) 15.1156 18.9543i 0.600790 0.753367i
\(634\) −3.03571 13.3003i −0.120563 0.528222i
\(635\) −16.1559 + 70.7836i −0.641127 + 2.80896i
\(636\) −3.59006 + 4.50179i −0.142355 + 0.178508i
\(637\) 5.84000 0.231389
\(638\) 1.85923 + 41.6885i 0.0736076 + 1.65046i
\(639\) 8.44759 0.334182
\(640\) −33.7228 + 42.2871i −1.33301 + 1.67154i
\(641\) 6.84340 29.9829i 0.270298 1.18425i −0.639364 0.768904i \(-0.720802\pi\)
0.909662 0.415349i \(-0.136340\pi\)
\(642\) 8.19093 + 35.8868i 0.323270 + 1.41634i
\(643\) 10.5190 13.1905i 0.414831 0.520181i −0.529886 0.848069i \(-0.677765\pi\)
0.944717 + 0.327888i \(0.106337\pi\)
\(644\) 9.93045 + 12.4524i 0.391315 + 0.490693i
\(645\) −4.01907 + 17.6087i −0.158251 + 0.693342i
\(646\) −12.7687 6.14910i −0.502380 0.241933i
\(647\) −12.7316 6.13122i −0.500531 0.241043i 0.166543 0.986034i \(-0.446739\pi\)
−0.667075 + 0.744991i \(0.732454\pi\)
\(648\) 0.403254 + 1.76677i 0.0158413 + 0.0694053i
\(649\) 23.1721 11.1591i 0.909586 0.438034i
\(650\) −23.6647 −0.928205
\(651\) −5.28327 + 2.54429i −0.207068 + 0.0997185i
\(652\) −26.9777 33.8289i −1.05653 1.32484i
\(653\) −24.1439 30.2755i −0.944823 1.18477i −0.982647 0.185486i \(-0.940614\pi\)
0.0378238 0.999284i \(-0.487957\pi\)
\(654\) 25.1570 12.1150i 0.983717 0.473733i
\(655\) −46.1997 −1.80517
\(656\) −10.1009 + 4.86433i −0.394374 + 0.189920i
\(657\) −1.68394 7.37784i −0.0656969 0.287837i
\(658\) 24.0937 + 11.6029i 0.939271 + 0.452329i
\(659\) −15.6609 7.54188i −0.610061 0.293790i 0.103231 0.994657i \(-0.467082\pi\)
−0.713291 + 0.700868i \(0.752796\pi\)
\(660\) 9.04282 39.6192i 0.351991 1.54217i
\(661\) 0.597977 + 0.749840i 0.0232586 + 0.0291654i 0.793325 0.608799i \(-0.208348\pi\)
−0.770066 + 0.637964i \(0.779777\pi\)
\(662\) −13.7034 + 17.1835i −0.532599 + 0.667858i
\(663\) 0.333717 + 1.46211i 0.0129605 + 0.0567836i
\(664\) −2.61209 + 11.4443i −0.101369 + 0.444126i
\(665\) 36.9628 46.3498i 1.43335 1.79737i
\(666\) 11.6508 0.451460
\(667\) 6.73292 + 4.89495i 0.260700 + 0.189533i
\(668\) −44.5958 −1.72546
\(669\) −17.6559 + 22.1398i −0.682617 + 0.855975i
\(670\) −18.8995 + 82.8040i −0.730150 + 3.19900i
\(671\) −4.71435 20.6549i −0.181996 0.797375i
\(672\) −16.5809 + 20.7918i −0.639622 + 0.802061i
\(673\) −18.7737 23.5415i −0.723673 0.907458i 0.274866 0.961483i \(-0.411366\pi\)
−0.998540 + 0.0540246i \(0.982795\pi\)
\(674\) −13.3417 + 58.4537i −0.513903 + 2.25155i
\(675\) 10.4760 + 5.04499i 0.403223 + 0.194182i
\(676\) 30.9031 + 14.8822i 1.18858 + 0.572391i
\(677\) −9.29384 40.7190i −0.357191 1.56496i −0.760155 0.649742i \(-0.774877\pi\)
0.402964 0.915216i \(-0.367980\pi\)
\(678\) 16.7524 8.06752i 0.643371 0.309831i
\(679\) 36.6636 1.40702
\(680\) −10.7764 + 5.18964i −0.413256 + 0.199014i
\(681\) −6.15022 7.71213i −0.235677 0.295529i
\(682\) −7.76776 9.74046i −0.297443 0.372981i
\(683\) −36.2797 + 17.4714i −1.38820 + 0.668524i −0.970732 0.240165i \(-0.922798\pi\)
−0.417473 + 0.908689i \(0.637084\pi\)
\(684\) −11.2607 −0.430564
\(685\) 30.5389 14.7068i 1.16683 0.561916i
\(686\) −1.24256 5.44402i −0.0474412 0.207854i
\(687\) 14.1065 + 6.79332i 0.538195 + 0.259181i
\(688\) 6.66188 + 3.20819i 0.253982 + 0.122311i
\(689\) −0.420231 + 1.84115i −0.0160095 + 0.0701423i
\(690\) −8.63251 10.8248i −0.328634 0.412094i
\(691\) 25.7995 32.3515i 0.981458 1.23071i 0.00844425 0.999964i \(-0.497312\pi\)
0.973014 0.230746i \(-0.0741165\pi\)
\(692\) 2.16562 + 9.48820i 0.0823245 + 0.360687i
\(693\) 2.86316 12.5443i 0.108762 0.476519i
\(694\) −1.63652 + 2.05213i −0.0621215 + 0.0778978i
\(695\) 12.6928 0.481467
\(696\) 3.83833 8.97250i 0.145492 0.340102i
\(697\) −10.8704 −0.411747
\(698\) −9.93089 + 12.4529i −0.375890 + 0.471351i
\(699\) −4.40323 + 19.2918i −0.166545 + 0.729684i
\(700\) −26.6596 116.803i −1.00764 4.41474i
\(701\) 1.42703 1.78944i 0.0538981 0.0675861i −0.754152 0.656700i \(-0.771952\pi\)
0.808050 + 0.589114i \(0.200523\pi\)
\(702\) 1.26894 + 1.59121i 0.0478932 + 0.0600562i
\(703\) −4.70462 + 20.6123i −0.177438 + 0.777406i
\(704\) −40.2934 19.4043i −1.51862 0.731327i
\(705\) −12.2629 5.90551i −0.461848 0.222414i
\(706\) −2.57275 11.2719i −0.0968266 0.424225i
\(707\) −27.0752 + 13.0387i −1.01827 + 0.490371i
\(708\) −20.5957 −0.774034
\(709\) 24.6036 11.8485i 0.924009 0.444979i 0.0895083 0.995986i \(-0.471470\pi\)
0.834501 + 0.551007i \(0.185756\pi\)
\(710\) 47.1764 + 59.1574i 1.77050 + 2.22014i
\(711\) 0.179495 + 0.225079i 0.00673157 + 0.00844113i
\(712\) 26.9554 12.9811i 1.01020 0.486486i
\(713\) −2.48521 −0.0930717
\(714\) −11.6836 + 5.62653i −0.437248 + 0.210568i
\(715\) −2.96584 12.9942i −0.110916 0.485956i
\(716\) 30.6390 + 14.7550i 1.14503 + 0.551420i
\(717\) −8.40873 4.04943i −0.314030 0.151229i
\(718\) −7.15027 + 31.3274i −0.266846 + 1.16913i
\(719\) −11.8932 14.9135i −0.443540 0.556181i 0.508933 0.860806i \(-0.330040\pi\)
−0.952472 + 0.304625i \(0.901469\pi\)
\(720\) 4.24413 5.32198i 0.158170 0.198338i
\(721\) −6.19016 27.1209i −0.230534 1.01003i
\(722\) −1.52069 + 6.66257i −0.0565941 + 0.247955i
\(723\) 15.3214 19.2125i 0.569810 0.714519i
\(724\) 6.83444 0.254000
\(725\) −29.6547 55.1487i −1.10135 2.04817i
\(726\) 3.17432 0.117810
\(727\) −18.2417 + 22.8744i −0.676547 + 0.848363i −0.995031 0.0995652i \(-0.968255\pi\)
0.318484 + 0.947928i \(0.396826\pi\)
\(728\) 1.36275 5.97062i 0.0505070 0.221286i
\(729\) −0.222521 0.974928i −0.00824152 0.0361084i
\(730\) 42.2619 52.9947i 1.56418 1.96142i
\(731\) 4.47006 + 5.60528i 0.165331 + 0.207319i
\(732\) −3.77522 + 16.5403i −0.139536 + 0.611348i
\(733\) −18.8742 9.08933i −0.697134 0.335722i 0.0515302 0.998671i \(-0.483590\pi\)
−0.748664 + 0.662949i \(0.769304\pi\)
\(734\) 10.9901 + 5.29254i 0.405651 + 0.195351i
\(735\) −5.71917 25.0573i −0.210955 0.924253i
\(736\) −10.1545 + 4.89014i −0.374299 + 0.180253i
\(737\) −33.4515 −1.23220
\(738\) −13.2912 + 6.40068i −0.489254 + 0.235612i
\(739\) −21.0504 26.3964i −0.774353 0.971008i 0.225642 0.974210i \(-0.427552\pi\)
−0.999995 + 0.00320223i \(0.998981\pi\)
\(740\) 38.0952 + 47.7698i 1.40041 + 1.75605i
\(741\) −3.32752 + 1.60245i −0.122239 + 0.0588674i
\(742\) −16.3297 −0.599480
\(743\) 39.9078 19.2186i 1.46407 0.705061i 0.479099 0.877761i \(-0.340963\pi\)
0.984974 + 0.172700i \(0.0552491\pi\)
\(744\) 0.648330 + 2.84052i 0.0237689 + 0.104138i
\(745\) 55.6805 + 26.8143i 2.03998 + 0.982401i
\(746\) 58.8690 + 28.3498i 2.15535 + 1.03796i
\(747\) 1.44139 6.31514i 0.0527377 0.231059i
\(748\) −10.0575 12.6117i −0.367740 0.461131i
\(749\) −38.1081 + 47.7861i −1.39244 + 1.74606i
\(750\) 13.2095 + 57.8744i 0.482341 + 2.11327i
\(751\) 1.70282 7.46053i 0.0621367 0.272239i −0.934310 0.356461i \(-0.883983\pi\)
0.996447 + 0.0842221i \(0.0268405\pi\)
\(752\) −3.47412 + 4.35641i −0.126688 + 0.158862i
\(753\) −4.66182 −0.169886
\(754\) −0.488312 10.9492i −0.0177833 0.398745i
\(755\) −2.76830 −0.100749
\(756\) −6.42428 + 8.05579i −0.233649 + 0.292986i
\(757\) −3.62389 + 15.8773i −0.131713 + 0.577070i 0.865397 + 0.501088i \(0.167067\pi\)
−0.997109 + 0.0759828i \(0.975791\pi\)
\(758\) −0.959153 4.20232i −0.0348380 0.152635i
\(759\) 3.39996 4.26341i 0.123411 0.154752i
\(760\) −18.3652 23.0293i −0.666178 0.835360i
\(761\) 6.35279 27.8334i 0.230288 1.00896i −0.719113 0.694894i \(-0.755451\pi\)
0.949401 0.314066i \(-0.101691\pi\)
\(762\) 35.2375 + 16.9695i 1.27652 + 0.614740i
\(763\) 41.7720 + 20.1163i 1.51225 + 0.728260i
\(764\) −3.66904 16.0751i −0.132741 0.581577i
\(765\) 5.94657 2.86372i 0.214999 0.103538i
\(766\)