Properties

Label 87.2.g.b.49.3
Level $87$
Weight $2$
Character 87.49
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 49.3
Root \(-1.23500 + 1.54863i\) of defining polynomial
Character \(\chi\) \(=\) 87.49
Dual form 87.2.g.b.16.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.78462 - 0.859427i) q^{2} +(-0.623490 - 0.781831i) q^{3} +(1.19927 - 1.50384i) q^{4} +(-1.09830 + 0.528911i) q^{5} +(-1.78462 - 0.859427i) q^{6} +(0.245180 + 0.307445i) q^{7} +(-0.0337262 + 0.147764i) q^{8} +(-0.222521 + 0.974928i) q^{9} +O(q^{10})\) \(q+(1.78462 - 0.859427i) q^{2} +(-0.623490 - 0.781831i) q^{3} +(1.19927 - 1.50384i) q^{4} +(-1.09830 + 0.528911i) q^{5} +(-1.78462 - 0.859427i) q^{6} +(0.245180 + 0.307445i) q^{7} +(-0.0337262 + 0.147764i) q^{8} +(-0.222521 + 0.974928i) q^{9} +(-1.50548 + 1.88781i) q^{10} +(0.554919 + 2.43126i) q^{11} -1.92348 q^{12} +(-0.735270 - 3.22143i) q^{13} +(0.701779 + 0.337959i) q^{14} +(1.09830 + 0.528911i) q^{15} +(0.922834 + 4.04320i) q^{16} -4.30028 q^{17} +(0.440765 + 1.93112i) q^{18} +(3.34887 - 4.19936i) q^{19} +(-0.521757 + 2.28597i) q^{20} +(0.0875036 - 0.383378i) q^{21} +(3.07981 + 3.86196i) q^{22} +(-2.70461 - 1.30247i) q^{23} +(0.136554 - 0.0657611i) q^{24} +(-2.19094 + 2.74736i) q^{25} +(-4.08076 - 5.11712i) q^{26} +(0.900969 - 0.433884i) q^{27} +0.756386 q^{28} +(-1.86053 - 5.05355i) q^{29} +2.41460 q^{30} +(9.01303 - 4.34044i) q^{31} +(4.93275 + 6.18547i) q^{32} +(1.55485 - 1.94972i) q^{33} +(-7.67437 + 3.69578i) q^{34} +(-0.431891 - 0.207988i) q^{35} +(1.19927 + 1.50384i) q^{36} +(-0.812038 + 3.55777i) q^{37} +(2.36742 - 10.3724i) q^{38} +(-2.06018 + 2.58339i) q^{39} +(-0.0411127 - 0.180127i) q^{40} -7.82011 q^{41} +(-0.173325 - 0.759387i) q^{42} +(-2.11613 - 1.01908i) q^{43} +(4.32172 + 2.08123i) q^{44} +(-0.271257 - 1.18845i) q^{45} -5.94608 q^{46} +(1.90056 + 8.32691i) q^{47} +(2.58572 - 3.24240i) q^{48} +(1.52324 - 6.67374i) q^{49} +(-1.54885 + 6.78594i) q^{50} +(2.68118 + 3.36210i) q^{51} +(-5.72630 - 2.75764i) q^{52} +(9.83963 - 4.73852i) q^{53} +(1.23500 - 1.54863i) q^{54} +(-1.89539 - 2.37674i) q^{55} +(-0.0536983 + 0.0258597i) q^{56} -5.37118 q^{57} +(-7.66351 - 7.41968i) q^{58} +10.2851 q^{59} +(2.11255 - 1.01735i) q^{60} +(2.32106 + 2.91052i) q^{61} +(12.3545 - 15.4921i) q^{62} +(-0.354295 + 0.170619i) q^{63} +(6.64609 + 3.20059i) q^{64} +(2.51140 + 3.14919i) q^{65} +(1.09917 - 4.81578i) q^{66} +(-1.14527 + 5.01776i) q^{67} +(-5.15721 + 6.46693i) q^{68} +(0.667984 + 2.92663i) q^{69} -0.949512 q^{70} +(1.80048 + 7.88840i) q^{71} +(-0.136554 - 0.0657611i) q^{72} +(-7.88943 - 3.79935i) q^{73} +(1.60847 + 7.04716i) q^{74} +3.51400 q^{75} +(-2.29895 - 10.0723i) q^{76} +(-0.611425 + 0.766702i) q^{77} +(-1.45641 + 6.38094i) q^{78} +(-1.62424 + 7.11624i) q^{79} +(-3.15204 - 3.95253i) q^{80} +(-0.900969 - 0.433884i) q^{81} +(-13.9559 + 6.72082i) q^{82} +(-2.33795 + 2.93170i) q^{83} +(-0.471599 - 0.591366i) q^{84} +(4.72298 - 2.27447i) q^{85} -4.65232 q^{86} +(-2.79100 + 4.60546i) q^{87} -0.377968 q^{88} +(-9.38092 + 4.51762i) q^{89} +(-1.50548 - 1.88781i) q^{90} +(0.810141 - 1.01588i) q^{91} +(-5.20227 + 2.50528i) q^{92} +(-9.01303 - 4.34044i) q^{93} +(10.5482 + 13.2270i) q^{94} +(-1.45697 + 6.38339i) q^{95} +(1.76048 - 7.71316i) q^{96} +(-10.1017 + 12.6672i) q^{97} +(-3.01719 - 13.2192i) q^{98} -2.49378 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78462 0.859427i 1.26192 0.607707i 0.321236 0.946999i \(-0.395902\pi\)
0.940681 + 0.339292i \(0.110188\pi\)
\(3\) −0.623490 0.781831i −0.359972 0.451391i
\(4\) 1.19927 1.50384i 0.599636 0.751920i
\(5\) −1.09830 + 0.528911i −0.491173 + 0.236536i −0.663040 0.748584i \(-0.730734\pi\)
0.171867 + 0.985120i \(0.445020\pi\)
\(6\) −1.78462 0.859427i −0.728568 0.350860i
\(7\) 0.245180 + 0.307445i 0.0926692 + 0.116203i 0.826004 0.563664i \(-0.190609\pi\)
−0.733335 + 0.679867i \(0.762037\pi\)
\(8\) −0.0337262 + 0.147764i −0.0119240 + 0.0522424i
\(9\) −0.222521 + 0.974928i −0.0741736 + 0.324976i
\(10\) −1.50548 + 1.88781i −0.476074 + 0.596978i
\(11\) 0.554919 + 2.43126i 0.167314 + 0.733052i 0.987064 + 0.160329i \(0.0512557\pi\)
−0.819749 + 0.572723i \(0.805887\pi\)
\(12\) −1.92348 −0.555262
\(13\) −0.735270 3.22143i −0.203927 0.893464i −0.968517 0.248947i \(-0.919916\pi\)
0.764590 0.644517i \(-0.222942\pi\)
\(14\) 0.701779 + 0.337959i 0.187558 + 0.0903234i
\(15\) 1.09830 + 0.528911i 0.283579 + 0.136564i
\(16\) 0.922834 + 4.04320i 0.230709 + 1.01080i
\(17\) −4.30028 −1.04297 −0.521486 0.853260i \(-0.674622\pi\)
−0.521486 + 0.853260i \(0.674622\pi\)
\(18\) 0.440765 + 1.93112i 0.103889 + 0.455168i
\(19\) 3.34887 4.19936i 0.768284 0.963398i −0.231671 0.972794i \(-0.574419\pi\)
0.999956 + 0.00939593i \(0.00299086\pi\)
\(20\) −0.521757 + 2.28597i −0.116669 + 0.511158i
\(21\) 0.0875036 0.383378i 0.0190948 0.0836600i
\(22\) 3.07981 + 3.86196i 0.656618 + 0.823372i
\(23\) −2.70461 1.30247i −0.563951 0.271584i 0.130112 0.991499i \(-0.458466\pi\)
−0.694062 + 0.719915i \(0.744181\pi\)
\(24\) 0.136554 0.0657611i 0.0278741 0.0134234i
\(25\) −2.19094 + 2.74736i −0.438189 + 0.549471i
\(26\) −4.08076 5.11712i −0.800304 1.00355i
\(27\) 0.900969 0.433884i 0.173392 0.0835010i
\(28\) 0.756386 0.142943
\(29\) −1.86053 5.05355i −0.345492 0.938422i
\(30\) 2.41460 0.440844
\(31\) 9.01303 4.34044i 1.61879 0.779567i 0.618805 0.785544i \(-0.287617\pi\)
0.999982 + 0.00597750i \(0.00190271\pi\)
\(32\) 4.93275 + 6.18547i 0.871995 + 1.09345i
\(33\) 1.55485 1.94972i 0.270664 0.339402i
\(34\) −7.67437 + 3.69578i −1.31614 + 0.633821i
\(35\) −0.431891 0.207988i −0.0730029 0.0351564i
\(36\) 1.19927 + 1.50384i 0.199879 + 0.250640i
\(37\) −0.812038 + 3.55777i −0.133498 + 0.584894i 0.863283 + 0.504721i \(0.168405\pi\)
−0.996781 + 0.0801733i \(0.974453\pi\)
\(38\) 2.36742 10.3724i 0.384047 1.68262i
\(39\) −2.06018 + 2.58339i −0.329893 + 0.413673i
\(40\) −0.0411127 0.180127i −0.00650049 0.0284805i
\(41\) −7.82011 −1.22130 −0.610648 0.791902i \(-0.709091\pi\)
−0.610648 + 0.791902i \(0.709091\pi\)
\(42\) −0.173325 0.759387i −0.0267447 0.117176i
\(43\) −2.11613 1.01908i −0.322708 0.155408i 0.265515 0.964107i \(-0.414458\pi\)
−0.588223 + 0.808699i \(0.700172\pi\)
\(44\) 4.32172 + 2.08123i 0.651524 + 0.313757i
\(45\) −0.271257 1.18845i −0.0404366 0.177164i
\(46\) −5.94608 −0.876702
\(47\) 1.90056 + 8.32691i 0.277226 + 1.21461i 0.901284 + 0.433228i \(0.142625\pi\)
−0.624059 + 0.781377i \(0.714517\pi\)
\(48\) 2.58572 3.24240i 0.373217 0.468000i
\(49\) 1.52324 6.67374i 0.217605 0.953391i
\(50\) −1.54885 + 6.78594i −0.219040 + 0.959677i
\(51\) 2.68118 + 3.36210i 0.375440 + 0.470787i
\(52\) −5.72630 2.75764i −0.794095 0.382416i
\(53\) 9.83963 4.73852i 1.35158 0.650885i 0.388836 0.921307i \(-0.372877\pi\)
0.962742 + 0.270422i \(0.0871632\pi\)
\(54\) 1.23500 1.54863i 0.168062 0.210743i
\(55\) −1.89539 2.37674i −0.255574 0.320479i
\(56\) −0.0536983 + 0.0258597i −0.00717574 + 0.00345565i
\(57\) −5.37118 −0.711430
\(58\) −7.66351 7.41968i −1.00627 0.974252i
\(59\) 10.2851 1.33901 0.669503 0.742809i \(-0.266507\pi\)
0.669503 + 0.742809i \(0.266507\pi\)
\(60\) 2.11255 1.01735i 0.272729 0.131340i
\(61\) 2.32106 + 2.91052i 0.297182 + 0.372654i 0.907895 0.419198i \(-0.137689\pi\)
−0.610713 + 0.791852i \(0.709117\pi\)
\(62\) 12.3545 15.4921i 1.56903 1.96750i
\(63\) −0.354295 + 0.170619i −0.0446369 + 0.0214960i
\(64\) 6.64609 + 3.20059i 0.830761 + 0.400073i
\(65\) 2.51140 + 3.14919i 0.311500 + 0.390609i
\(66\) 1.09917 4.81578i 0.135299 0.592782i
\(67\) −1.14527 + 5.01776i −0.139917 + 0.613017i 0.855534 + 0.517746i \(0.173229\pi\)
−0.995451 + 0.0952705i \(0.969628\pi\)
\(68\) −5.15721 + 6.46693i −0.625403 + 0.784231i
\(69\) 0.667984 + 2.92663i 0.0804158 + 0.352325i
\(70\) −0.949512 −0.113488
\(71\) 1.80048 + 7.88840i 0.213677 + 0.936181i 0.962044 + 0.272896i \(0.0879813\pi\)
−0.748366 + 0.663285i \(0.769162\pi\)
\(72\) −0.136554 0.0657611i −0.0160931 0.00775003i
\(73\) −7.88943 3.79935i −0.923387 0.444680i −0.0891081 0.996022i \(-0.528402\pi\)
−0.834279 + 0.551342i \(0.814116\pi\)
\(74\) 1.60847 + 7.04716i 0.186981 + 0.819215i
\(75\) 3.51400 0.405762
\(76\) −2.29895 10.0723i −0.263707 1.15538i
\(77\) −0.611425 + 0.766702i −0.0696783 + 0.0873738i
\(78\) −1.45641 + 6.38094i −0.164906 + 0.722499i
\(79\) −1.62424 + 7.11624i −0.182741 + 0.800640i 0.797577 + 0.603216i \(0.206115\pi\)
−0.980318 + 0.197423i \(0.936743\pi\)
\(80\) −3.15204 3.95253i −0.352409 0.441907i
\(81\) −0.900969 0.433884i −0.100108 0.0482093i
\(82\) −13.9559 + 6.72082i −1.54117 + 0.742190i
\(83\) −2.33795 + 2.93170i −0.256624 + 0.321796i −0.893408 0.449246i \(-0.851693\pi\)
0.636785 + 0.771042i \(0.280264\pi\)
\(84\) −0.471599 0.591366i −0.0514556 0.0645233i
\(85\) 4.72298 2.27447i 0.512279 0.246701i
\(86\) −4.65232 −0.501672
\(87\) −2.79100 + 4.60546i −0.299227 + 0.493758i
\(88\) −0.377968 −0.0402915
\(89\) −9.38092 + 4.51762i −0.994376 + 0.478866i −0.859026 0.511932i \(-0.828930\pi\)
−0.135350 + 0.990798i \(0.543216\pi\)
\(90\) −1.50548 1.88781i −0.158691 0.198993i
\(91\) 0.810141 1.01588i 0.0849258 0.106494i
\(92\) −5.20227 + 2.50528i −0.542375 + 0.261194i
\(93\) −9.01303 4.34044i −0.934607 0.450083i
\(94\) 10.5482 + 13.2270i 1.08796 + 1.36426i
\(95\) −1.45697 + 6.38339i −0.149482 + 0.654922i
\(96\) 1.76048 7.71316i 0.179678 0.787221i
\(97\) −10.1017 + 12.6672i −1.02568 + 1.28616i −0.0681928 + 0.997672i \(0.521723\pi\)
−0.957484 + 0.288486i \(0.906848\pi\)
\(98\) −3.01719 13.2192i −0.304783 1.33534i
\(99\) −2.49378 −0.250635
\(100\) 1.50404 + 6.58965i 0.150404 + 0.658965i
\(101\) 2.49049 + 1.19936i 0.247813 + 0.119341i 0.553668 0.832738i \(-0.313228\pi\)
−0.305854 + 0.952078i \(0.598942\pi\)
\(102\) 7.67437 + 3.69578i 0.759875 + 0.365937i
\(103\) −0.842490 3.69119i −0.0830130 0.363704i 0.916311 0.400467i \(-0.131152\pi\)
−0.999324 + 0.0367637i \(0.988295\pi\)
\(104\) 0.500809 0.0491084
\(105\) 0.106668 + 0.467344i 0.0104098 + 0.0456081i
\(106\) 13.4876 16.9129i 1.31003 1.64273i
\(107\) 2.51363 11.0129i 0.243002 1.06466i −0.695266 0.718752i \(-0.744714\pi\)
0.938268 0.345909i \(-0.112429\pi\)
\(108\) 0.428015 1.87526i 0.0411858 0.180447i
\(109\) 9.27648 + 11.6323i 0.888526 + 1.11418i 0.992819 + 0.119630i \(0.0381707\pi\)
−0.104293 + 0.994547i \(0.533258\pi\)
\(110\) −5.42518 2.61263i −0.517270 0.249104i
\(111\) 3.28788 1.58336i 0.312071 0.150286i
\(112\) −1.01680 + 1.27503i −0.0960789 + 0.120479i
\(113\) −0.0109212 0.0136948i −0.00102738 0.00128830i 0.781318 0.624134i \(-0.214548\pi\)
−0.782345 + 0.622845i \(0.785977\pi\)
\(114\) −9.58551 + 4.61614i −0.897765 + 0.432341i
\(115\) 3.65936 0.341237
\(116\) −9.83102 3.26264i −0.912787 0.302929i
\(117\) 3.30428 0.305480
\(118\) 18.3550 8.83930i 1.68971 0.813724i
\(119\) −1.05434 1.32210i −0.0966513 0.121197i
\(120\) −0.115195 + 0.144450i −0.0105158 + 0.0131865i
\(121\) 4.30757 2.07442i 0.391598 0.188583i
\(122\) 6.64360 + 3.19939i 0.601483 + 0.289659i
\(123\) 4.87576 + 6.11401i 0.439632 + 0.551281i
\(124\) 4.28174 18.7595i 0.384511 1.68465i
\(125\) 2.30948 10.1185i 0.206566 0.905025i
\(126\) −0.485646 + 0.608981i −0.0432648 + 0.0542524i
\(127\) −2.28217 9.99883i −0.202510 0.887253i −0.969402 0.245477i \(-0.921055\pi\)
0.766893 0.641775i \(-0.221802\pi\)
\(128\) −1.21162 −0.107093
\(129\) 0.522642 + 2.28984i 0.0460161 + 0.201610i
\(130\) 7.18839 + 3.46174i 0.630463 + 0.303615i
\(131\) −4.46222 2.14889i −0.389866 0.187750i 0.228674 0.973503i \(-0.426561\pi\)
−0.618540 + 0.785754i \(0.712275\pi\)
\(132\) −1.06738 4.67648i −0.0929032 0.407036i
\(133\) 2.11215 0.183146
\(134\) 2.26853 + 9.93906i 0.195971 + 0.858604i
\(135\) −0.760044 + 0.953065i −0.0654142 + 0.0820268i
\(136\) 0.145032 0.635427i 0.0124364 0.0544874i
\(137\) 3.01935 13.2286i 0.257960 1.13020i −0.665468 0.746426i \(-0.731768\pi\)
0.923428 0.383771i \(-0.125375\pi\)
\(138\) 3.70732 + 4.64884i 0.315588 + 0.395735i
\(139\) −14.8411 7.14709i −1.25880 0.606208i −0.318946 0.947773i \(-0.603329\pi\)
−0.939858 + 0.341564i \(0.889043\pi\)
\(140\) −0.830735 + 0.400061i −0.0702099 + 0.0338113i
\(141\) 5.32526 6.67767i 0.448468 0.562361i
\(142\) 9.99267 + 12.5304i 0.838567 + 1.05153i
\(143\) 7.42411 3.57527i 0.620836 0.298979i
\(144\) −4.14718 −0.345598
\(145\) 4.71630 + 4.56624i 0.391667 + 0.379206i
\(146\) −17.3449 −1.43547
\(147\) −6.16746 + 2.97009i −0.508684 + 0.244969i
\(148\) 4.37646 + 5.48791i 0.359743 + 0.451103i
\(149\) 4.97975 6.24440i 0.407957 0.511562i −0.534829 0.844960i \(-0.679624\pi\)
0.942786 + 0.333399i \(0.108195\pi\)
\(150\) 6.27115 3.02003i 0.512037 0.246584i
\(151\) 18.2927 + 8.80931i 1.48864 + 0.716891i 0.988803 0.149228i \(-0.0476788\pi\)
0.499837 + 0.866119i \(0.333393\pi\)
\(152\) 0.507569 + 0.636471i 0.0411693 + 0.0516246i
\(153\) 0.956903 4.19246i 0.0773610 0.338941i
\(154\) −0.432235 + 1.89375i −0.0348305 + 0.152602i
\(155\) −7.60326 + 9.53418i −0.610708 + 0.765804i
\(156\) 1.41428 + 6.19636i 0.113233 + 0.496106i
\(157\) −4.08988 −0.326408 −0.163204 0.986592i \(-0.552183\pi\)
−0.163204 + 0.986592i \(0.552183\pi\)
\(158\) 3.21725 + 14.0957i 0.255951 + 1.12139i
\(159\) −9.83963 4.73852i −0.780334 0.375789i
\(160\) −8.68918 4.18449i −0.686940 0.330813i
\(161\) −0.262676 1.15086i −0.0207018 0.0907005i
\(162\) −1.98078 −0.155625
\(163\) −4.28966 18.7942i −0.335992 1.47208i −0.807317 0.590118i \(-0.799081\pi\)
0.471325 0.881960i \(-0.343776\pi\)
\(164\) −9.37844 + 11.7602i −0.732333 + 0.918316i
\(165\) −0.676455 + 2.96374i −0.0526620 + 0.230727i
\(166\) −1.65277 + 7.24127i −0.128280 + 0.562031i
\(167\) −2.02456 2.53871i −0.156665 0.196452i 0.697304 0.716775i \(-0.254383\pi\)
−0.853969 + 0.520324i \(0.825811\pi\)
\(168\) 0.0536983 + 0.0258597i 0.00414292 + 0.00199512i
\(169\) 1.87561 0.903244i 0.144277 0.0694803i
\(170\) 6.47398 8.11812i 0.496532 0.622631i
\(171\) 3.34887 + 4.19936i 0.256095 + 0.321133i
\(172\) −4.07035 + 1.96018i −0.310361 + 0.149462i
\(173\) −8.02956 −0.610476 −0.305238 0.952276i \(-0.598736\pi\)
−0.305238 + 0.952276i \(0.598736\pi\)
\(174\) −1.02282 + 10.6177i −0.0775398 + 0.804923i
\(175\) −1.38184 −0.104457
\(176\) −9.31797 + 4.48730i −0.702368 + 0.338243i
\(177\) −6.41266 8.04122i −0.482005 0.604415i
\(178\) −12.8588 + 16.1244i −0.963809 + 1.20858i
\(179\) 9.51892 4.58407i 0.711478 0.342630i −0.0428918 0.999080i \(-0.513657\pi\)
0.754369 + 0.656450i \(0.227943\pi\)
\(180\) −2.11255 1.01735i −0.157460 0.0758289i
\(181\) −7.63399 9.57273i −0.567430 0.711535i 0.412482 0.910966i \(-0.364662\pi\)
−0.979912 + 0.199431i \(0.936091\pi\)
\(182\) 0.572714 2.50922i 0.0424524 0.185996i
\(183\) 0.828378 3.62936i 0.0612355 0.268290i
\(184\) 0.283675 0.355717i 0.0209128 0.0262238i
\(185\) −0.989888 4.33698i −0.0727780 0.318861i
\(186\) −19.8151 −1.45292
\(187\) −2.38631 10.4551i −0.174504 0.764552i
\(188\) 14.8016 + 7.12809i 1.07952 + 0.519869i
\(189\) 0.354295 + 0.170619i 0.0257712 + 0.0124107i
\(190\) 2.88593 + 12.6441i 0.209367 + 0.917298i
\(191\) 6.79213 0.491461 0.245731 0.969338i \(-0.420972\pi\)
0.245731 + 0.969338i \(0.420972\pi\)
\(192\) −1.64145 7.19165i −0.118461 0.519013i
\(193\) −15.2461 + 19.1181i −1.09744 + 1.37615i −0.177487 + 0.984123i \(0.556797\pi\)
−0.919954 + 0.392025i \(0.871775\pi\)
\(194\) −7.14124 + 31.2878i −0.512711 + 2.24634i
\(195\) 0.896307 3.92698i 0.0641859 0.281217i
\(196\) −8.20945 10.2943i −0.586389 0.735309i
\(197\) 6.77867 + 3.26444i 0.482960 + 0.232581i 0.659489 0.751714i \(-0.270773\pi\)
−0.176529 + 0.984295i \(0.556487\pi\)
\(198\) −4.45045 + 2.14323i −0.316280 + 0.152312i
\(199\) −14.3765 + 18.0276i −1.01913 + 1.27794i −0.0590340 + 0.998256i \(0.518802\pi\)
−0.960091 + 0.279687i \(0.909769\pi\)
\(200\) −0.332068 0.416400i −0.0234808 0.0294439i
\(201\) 4.63710 2.23311i 0.327076 0.157512i
\(202\) 5.47534 0.385244
\(203\) 1.09753 1.81104i 0.0770313 0.127110i
\(204\) 8.27152 0.579122
\(205\) 8.58879 4.13614i 0.599867 0.288881i
\(206\) −4.67583 5.86331i −0.325781 0.408516i
\(207\) 1.87165 2.34697i 0.130089 0.163126i
\(208\) 12.3464 5.94569i 0.856066 0.412260i
\(209\) 12.0681 + 5.81168i 0.834766 + 0.402002i
\(210\) 0.592011 + 0.742358i 0.0408526 + 0.0512276i
\(211\) −1.45370 + 6.36909i −0.100077 + 0.438466i 0.899920 + 0.436055i \(0.143625\pi\)
−0.999997 + 0.00241130i \(0.999232\pi\)
\(212\) 4.67443 20.4800i 0.321041 1.40657i
\(213\) 5.04482 6.32601i 0.345666 0.433451i
\(214\) −4.97895 21.8142i −0.340354 1.49119i
\(215\) 2.86314 0.195265
\(216\) 0.0337262 + 0.147764i 0.00229477 + 0.0100541i
\(217\) 3.54426 + 1.70683i 0.240600 + 0.115867i
\(218\) 26.5521 + 12.7868i 1.79834 + 0.866034i
\(219\) 1.94853 + 8.53706i 0.131669 + 0.576881i
\(220\) −5.84731 −0.394226
\(221\) 3.16187 + 13.8531i 0.212690 + 0.931857i
\(222\) 4.50683 5.65138i 0.302478 0.379296i
\(223\) 2.71840 11.9101i 0.182038 0.797560i −0.798621 0.601834i \(-0.794437\pi\)
0.980659 0.195725i \(-0.0627061\pi\)
\(224\) −0.692286 + 3.03310i −0.0462553 + 0.202658i
\(225\) −2.19094 2.74736i −0.146063 0.183157i
\(226\) −0.0312600 0.0150540i −0.00207938 0.00100138i
\(227\) 13.0371 6.27836i 0.865306 0.416709i 0.0520700 0.998643i \(-0.483418\pi\)
0.813236 + 0.581934i \(0.197704\pi\)
\(228\) −6.44150 + 8.07739i −0.426599 + 0.534938i
\(229\) 6.49636 + 8.14618i 0.429292 + 0.538315i 0.948686 0.316220i \(-0.102414\pi\)
−0.519394 + 0.854535i \(0.673842\pi\)
\(230\) 6.53056 3.14495i 0.430612 0.207372i
\(231\) 0.980649 0.0645220
\(232\) 0.809482 0.104483i 0.0531451 0.00685963i
\(233\) −18.5595 −1.21587 −0.607935 0.793987i \(-0.708002\pi\)
−0.607935 + 0.793987i \(0.708002\pi\)
\(234\) 5.89687 2.83979i 0.385491 0.185643i
\(235\) −6.49158 8.14018i −0.423464 0.531007i
\(236\) 12.3346 15.4671i 0.802916 1.00683i
\(237\) 6.57640 3.16703i 0.427183 0.205720i
\(238\) −3.01785 1.45332i −0.195618 0.0942047i
\(239\) −14.8606 18.6346i −0.961252 1.20537i −0.978652 0.205523i \(-0.934111\pi\)
0.0174007 0.999849i \(-0.494461\pi\)
\(240\) −1.12495 + 4.92873i −0.0726152 + 0.318148i
\(241\) −4.06237 + 17.7984i −0.261680 + 1.14650i 0.657748 + 0.753238i \(0.271509\pi\)
−0.919428 + 0.393258i \(0.871348\pi\)
\(242\) 5.90457 7.40409i 0.379560 0.475953i
\(243\) 0.222521 + 0.974928i 0.0142747 + 0.0625417i
\(244\) 7.16054 0.458407
\(245\) 1.85685 + 8.13539i 0.118630 + 0.519751i
\(246\) 13.9559 + 6.72082i 0.889797 + 0.428504i
\(247\) −15.9903 7.70050i −1.01744 0.489971i
\(248\) 0.337387 + 1.47819i 0.0214241 + 0.0938650i
\(249\) 3.74978 0.237633
\(250\) −4.57457 20.0425i −0.289321 1.26760i
\(251\) −10.6999 + 13.4173i −0.675372 + 0.846889i −0.994919 0.100681i \(-0.967898\pi\)
0.319547 + 0.947570i \(0.396469\pi\)
\(252\) −0.168312 + 0.737421i −0.0106026 + 0.0464532i
\(253\) 1.66581 7.29838i 0.104728 0.458845i
\(254\) −12.6661 15.8828i −0.794740 0.996573i
\(255\) −4.72298 2.27447i −0.295765 0.142433i
\(256\) −15.4545 + 7.44248i −0.965904 + 0.465155i
\(257\) −1.02439 + 1.28454i −0.0638996 + 0.0801275i −0.812754 0.582607i \(-0.802033\pi\)
0.748855 + 0.662734i \(0.230604\pi\)
\(258\) 2.90067 + 3.63733i 0.180588 + 0.226450i
\(259\) −1.29292 + 0.622636i −0.0803379 + 0.0386887i
\(260\) 7.74772 0.480493
\(261\) 5.34086 0.689364i 0.330591 0.0426706i
\(262\) −9.81019 −0.606075
\(263\) −6.19347 + 2.98262i −0.381906 + 0.183916i −0.614980 0.788543i \(-0.710836\pi\)
0.233074 + 0.972459i \(0.425122\pi\)
\(264\) 0.235659 + 0.295507i 0.0145038 + 0.0181872i
\(265\) −8.30057 + 10.4086i −0.509900 + 0.639394i
\(266\) 3.76938 1.81524i 0.231116 0.111299i
\(267\) 9.38092 + 4.51762i 0.574103 + 0.276474i
\(268\) 6.17241 + 7.73996i 0.377040 + 0.472793i
\(269\) 0.898416 3.93622i 0.0547774 0.239995i −0.940126 0.340827i \(-0.889293\pi\)
0.994904 + 0.100831i \(0.0321502\pi\)
\(270\) −0.537299 + 2.35406i −0.0326990 + 0.143264i
\(271\) 8.04210 10.0845i 0.488523 0.612589i −0.475074 0.879946i \(-0.657579\pi\)
0.963598 + 0.267357i \(0.0861503\pi\)
\(272\) −3.96845 17.3869i −0.240622 1.05424i
\(273\) −1.29936 −0.0786411
\(274\) −5.98066 26.2030i −0.361305 1.58298i
\(275\) −7.89533 3.80219i −0.476106 0.229281i
\(276\) 5.20227 + 2.50528i 0.313140 + 0.150800i
\(277\) 0.712674 + 3.12243i 0.0428204 + 0.187608i 0.991815 0.127684i \(-0.0407544\pi\)
−0.948994 + 0.315293i \(0.897897\pi\)
\(278\) −32.6281 −1.95690
\(279\) 2.22603 + 9.75289i 0.133269 + 0.583890i
\(280\) 0.0452991 0.0568033i 0.00270714 0.00339465i
\(281\) −4.28030 + 18.7532i −0.255341 + 1.11872i 0.670828 + 0.741613i \(0.265939\pi\)
−0.926169 + 0.377109i \(0.876918\pi\)
\(282\) 3.76460 16.4938i 0.224178 0.982190i
\(283\) 17.6050 + 22.0760i 1.04651 + 1.31228i 0.948390 + 0.317105i \(0.102711\pi\)
0.0981179 + 0.995175i \(0.468718\pi\)
\(284\) 14.0221 + 6.75271i 0.832061 + 0.400700i
\(285\) 5.89914 2.84088i 0.349435 0.168279i
\(286\) 10.1765 12.7610i 0.601751 0.754572i
\(287\) −1.91733 2.40426i −0.113176 0.141919i
\(288\) −7.12803 + 3.43268i −0.420023 + 0.202272i
\(289\) 1.49242 0.0877892
\(290\) 12.3412 + 4.09569i 0.724697 + 0.240507i
\(291\) 16.2019 0.949775
\(292\) −15.1752 + 7.30798i −0.888060 + 0.427667i
\(293\) −20.7774 26.0541i −1.21383 1.52210i −0.785986 0.618245i \(-0.787844\pi\)
−0.427846 0.903852i \(-0.640727\pi\)
\(294\) −8.45399 + 10.6010i −0.493047 + 0.618261i
\(295\) −11.2961 + 5.43991i −0.657683 + 0.316724i
\(296\) −0.498323 0.239980i −0.0289645 0.0139486i
\(297\) 1.55485 + 1.94972i 0.0902214 + 0.113134i
\(298\) 3.52034 15.4236i 0.203928 0.893466i
\(299\) −2.20720 + 9.67039i −0.127646 + 0.559253i
\(300\) 4.21424 5.28449i 0.243309 0.305100i
\(301\) −0.205522 0.900453i −0.0118461 0.0519012i
\(302\) 40.2165 2.31420
\(303\) −0.615101 2.69493i −0.0353366 0.154820i
\(304\) 20.0693 + 9.66486i 1.15105 + 0.554318i
\(305\) −4.08862 1.96898i −0.234114 0.112743i
\(306\) −1.89541 8.30434i −0.108353 0.474728i
\(307\) −0.940065 −0.0536523 −0.0268262 0.999640i \(-0.508540\pi\)
−0.0268262 + 0.999640i \(0.508540\pi\)
\(308\) 0.419733 + 1.83897i 0.0239165 + 0.104785i
\(309\) −2.36060 + 2.96010i −0.134290 + 0.168394i
\(310\) −5.37498 + 23.5493i −0.305279 + 1.33751i
\(311\) −1.94755 + 8.53276i −0.110435 + 0.483848i 0.889217 + 0.457485i \(0.151250\pi\)
−0.999652 + 0.0263630i \(0.991607\pi\)
\(312\) −0.312249 0.391548i −0.0176776 0.0221671i
\(313\) 29.6754 + 14.2909i 1.67735 + 0.807771i 0.997206 + 0.0746966i \(0.0237988\pi\)
0.680148 + 0.733075i \(0.261915\pi\)
\(314\) −7.29888 + 3.51496i −0.411900 + 0.198361i
\(315\) 0.298878 0.374781i 0.0168399 0.0211165i
\(316\) 8.75378 + 10.9769i 0.492439 + 0.617499i
\(317\) 21.1355 10.1783i 1.18709 0.571672i 0.267120 0.963663i \(-0.413928\pi\)
0.919969 + 0.391991i \(0.128214\pi\)
\(318\) −21.6324 −1.21309
\(319\) 11.2541 7.32775i 0.630106 0.410275i
\(320\) −8.99219 −0.502679
\(321\) −10.1775 + 4.90122i −0.568052 + 0.273559i
\(322\) −1.45786 1.82810i −0.0812433 0.101876i
\(323\) −14.4011 + 18.0584i −0.801299 + 1.00480i
\(324\) −1.73300 + 0.834568i −0.0962777 + 0.0463649i
\(325\) 10.4613 + 5.03792i 0.580291 + 0.279454i
\(326\) −23.8077 29.8539i −1.31859 1.65345i
\(327\) 3.31074 14.5053i 0.183084 0.802145i
\(328\) 0.263742 1.15553i 0.0145627 0.0638035i
\(329\) −2.09409 + 2.62591i −0.115451 + 0.144771i
\(330\) 1.33991 + 5.87052i 0.0737595 + 0.323161i
\(331\) −26.4233 −1.45236 −0.726178 0.687506i \(-0.758705\pi\)
−0.726178 + 0.687506i \(0.758705\pi\)
\(332\) 1.60496 + 7.03181i 0.0880839 + 0.385921i
\(333\) −3.28788 1.58336i −0.180174 0.0867674i
\(334\) −5.79490 2.79068i −0.317083 0.152699i
\(335\) −1.39610 6.11673i −0.0762773 0.334192i
\(336\) 1.63083 0.0889689
\(337\) 1.42909 + 6.26127i 0.0778476 + 0.341073i 0.998821 0.0485537i \(-0.0154612\pi\)
−0.920973 + 0.389627i \(0.872604\pi\)
\(338\) 2.57097 3.22389i 0.139842 0.175357i
\(339\) −0.00389775 + 0.0170771i −0.000211697 + 0.000927503i
\(340\) 2.24370 9.83031i 0.121682 0.533123i
\(341\) 15.5542 + 19.5044i 0.842310 + 1.05622i
\(342\) 9.58551 + 4.61614i 0.518325 + 0.249612i
\(343\) 4.90534 2.36229i 0.264863 0.127552i
\(344\) 0.221952 0.278319i 0.0119668 0.0150059i
\(345\) −2.28157 2.86100i −0.122836 0.154031i
\(346\) −14.3297 + 6.90082i −0.770370 + 0.370990i
\(347\) −5.30429 −0.284749 −0.142375 0.989813i \(-0.545474\pi\)
−0.142375 + 0.989813i \(0.545474\pi\)
\(348\) 3.57870 + 9.72042i 0.191839 + 0.521069i
\(349\) 13.3972 0.717134 0.358567 0.933504i \(-0.383265\pi\)
0.358567 + 0.933504i \(0.383265\pi\)
\(350\) −2.46605 + 1.18759i −0.131816 + 0.0634793i
\(351\) −2.06018 2.58339i −0.109964 0.137891i
\(352\) −12.3012 + 15.4252i −0.655657 + 0.822167i
\(353\) 14.4975 6.98162i 0.771623 0.371594i −0.00627832 0.999980i \(-0.501998\pi\)
0.777902 + 0.628386i \(0.216284\pi\)
\(354\) −18.3550 8.83930i −0.975557 0.469803i
\(355\) −6.14972 7.71151i −0.326393 0.409284i
\(356\) −4.45651 + 19.5253i −0.236195 + 1.03484i
\(357\) −0.376290 + 1.64863i −0.0199154 + 0.0872550i
\(358\) 13.0480 16.3616i 0.689607 0.864740i
\(359\) 2.68955 + 11.7837i 0.141949 + 0.621920i 0.994981 + 0.100061i \(0.0319039\pi\)
−0.853032 + 0.521858i \(0.825239\pi\)
\(360\) 0.184759 0.00973765
\(361\) −2.19173 9.60259i −0.115354 0.505400i
\(362\) −21.8508 10.5228i −1.14845 0.553067i
\(363\) −4.30757 2.07442i −0.226089 0.108879i
\(364\) −0.556148 2.43664i −0.0291501 0.127715i
\(365\) 10.6744 0.558726
\(366\) −1.64083 7.18896i −0.0857677 0.375773i
\(367\) −4.56482 + 5.72410i −0.238282 + 0.298796i −0.886566 0.462603i \(-0.846916\pi\)
0.648284 + 0.761399i \(0.275487\pi\)
\(368\) 2.77025 12.1373i 0.144409 0.632698i
\(369\) 1.74014 7.62404i 0.0905880 0.396892i
\(370\) −5.49389 6.88913i −0.285614 0.358149i
\(371\) 3.86931 + 1.86336i 0.200885 + 0.0967410i
\(372\) −17.3364 + 8.34877i −0.898850 + 0.432864i
\(373\) −5.15974 + 6.47011i −0.267161 + 0.335010i −0.897258 0.441507i \(-0.854444\pi\)
0.630096 + 0.776517i \(0.283015\pi\)
\(374\) −13.2440 16.6075i −0.684833 0.858754i
\(375\) −9.35089 + 4.50315i −0.482878 + 0.232542i
\(376\) −1.29452 −0.0667596
\(377\) −14.9117 + 9.70931i −0.767991 + 0.500055i
\(378\) 0.778916 0.0400631
\(379\) 3.47602 1.67396i 0.178551 0.0859858i −0.342473 0.939528i \(-0.611264\pi\)
0.521024 + 0.853542i \(0.325550\pi\)
\(380\) 7.85229 + 9.84647i 0.402814 + 0.505113i
\(381\) −6.39449 + 8.01844i −0.327600 + 0.410797i
\(382\) 12.1214 5.83734i 0.620183 0.298665i
\(383\) 4.98332 + 2.39984i 0.254636 + 0.122626i 0.556848 0.830615i \(-0.312011\pi\)
−0.302212 + 0.953241i \(0.597725\pi\)
\(384\) 0.755435 + 0.947286i 0.0385507 + 0.0483410i
\(385\) 0.266008 1.16546i 0.0135570 0.0593971i
\(386\) −10.7780 + 47.2214i −0.548585 + 2.40351i
\(387\) 1.46441 1.83631i 0.0744402 0.0933450i
\(388\) 6.93468 + 30.3828i 0.352055 + 1.54245i
\(389\) 8.73816 0.443042 0.221521 0.975156i \(-0.428898\pi\)
0.221521 + 0.975156i \(0.428898\pi\)
\(390\) −1.77538 7.77847i −0.0899001 0.393878i
\(391\) 11.6306 + 5.60100i 0.588184 + 0.283255i
\(392\) 0.934765 + 0.450159i 0.0472128 + 0.0227365i
\(393\) 1.10208 + 4.82852i 0.0555925 + 0.243567i
\(394\) 14.9029 0.750797
\(395\) −1.97997 8.67482i −0.0996231 0.436477i
\(396\) −2.99072 + 3.75025i −0.150290 + 0.188457i
\(397\) 1.50235 6.58223i 0.0754008 0.330353i −0.923133 0.384480i \(-0.874381\pi\)
0.998534 + 0.0541277i \(0.0172378\pi\)
\(398\) −10.1632 + 44.5280i −0.509436 + 2.23199i
\(399\) −1.31690 1.65134i −0.0659276 0.0826706i
\(400\) −13.1300 6.32307i −0.656499 0.316153i
\(401\) 21.1650 10.1925i 1.05693 0.508992i 0.177059 0.984200i \(-0.443342\pi\)
0.879873 + 0.475209i \(0.157627\pi\)
\(402\) 6.35627 7.97051i 0.317022 0.397533i
\(403\) −20.6095 25.8434i −1.02663 1.28735i
\(404\) 4.79042 2.30694i 0.238332 0.114775i
\(405\) 1.21902 0.0605734
\(406\) 0.402211 4.17526i 0.0199614 0.207215i
\(407\) −9.10048 −0.451094
\(408\) −0.587222 + 0.282791i −0.0290718 + 0.0140003i
\(409\) −15.2154 19.0795i −0.752355 0.943423i 0.247320 0.968934i \(-0.420450\pi\)
−0.999675 + 0.0255111i \(0.991879\pi\)
\(410\) 11.7730 14.7629i 0.581428 0.729087i
\(411\) −12.2251 + 5.88729i −0.603019 + 0.290399i
\(412\) −6.56133 3.15977i −0.323254 0.155671i
\(413\) 2.52170 + 3.16211i 0.124085 + 0.155597i
\(414\) 1.32313 5.79700i 0.0650282 0.284907i
\(415\) 1.01715 4.45644i 0.0499301 0.218758i
\(416\) 16.2992 20.4385i 0.799132 1.00208i
\(417\) 3.66545 + 16.0594i 0.179498 + 0.786431i
\(418\) 26.5316 1.29770
\(419\) −3.72073 16.3016i −0.181769 0.796384i −0.980788 0.195077i \(-0.937504\pi\)
0.799019 0.601306i \(-0.205353\pi\)
\(420\) 0.830735 + 0.400061i 0.0405357 + 0.0195210i
\(421\) 20.8550 + 10.0432i 1.01641 + 0.489478i 0.866476 0.499218i \(-0.166379\pi\)
0.149935 + 0.988696i \(0.452094\pi\)
\(422\) 2.87946 + 12.6158i 0.140170 + 0.614125i
\(423\) −8.54106 −0.415280
\(424\) 0.368329 + 1.61375i 0.0178876 + 0.0783709i
\(425\) 9.42167 11.8144i 0.457018 0.573083i
\(426\) 3.56634 15.6252i 0.172790 0.757042i
\(427\) −0.325749 + 1.42720i −0.0157641 + 0.0690671i
\(428\) −13.5472 16.9876i −0.654827 0.821127i
\(429\) −7.42411 3.57527i −0.358440 0.172615i
\(430\) 5.10962 2.46066i 0.246408 0.118664i
\(431\) 23.4128 29.3588i 1.12776 1.41416i 0.230267 0.973127i \(-0.426040\pi\)
0.897490 0.441035i \(-0.145389\pi\)
\(432\) 2.58572 + 3.24240i 0.124406 + 0.156000i
\(433\) −15.4657 + 7.44790i −0.743235 + 0.357923i −0.766874 0.641797i \(-0.778189\pi\)
0.0236390 + 0.999721i \(0.492475\pi\)
\(434\) 7.79205 0.374030
\(435\) 0.629467 6.53435i 0.0301806 0.313298i
\(436\) 28.6182 1.37056
\(437\) −14.5270 + 6.99581i −0.694918 + 0.334655i
\(438\) 10.8144 + 13.5608i 0.516730 + 0.647959i
\(439\) 3.30350 4.14245i 0.157667 0.197709i −0.696723 0.717340i \(-0.745359\pi\)
0.854390 + 0.519632i \(0.173931\pi\)
\(440\) 0.415120 0.199911i 0.0197901 0.00953040i
\(441\) 6.16746 + 2.97009i 0.293689 + 0.141433i
\(442\) 17.5484 + 22.0050i 0.834694 + 1.04667i
\(443\) −3.07345 + 13.4656i −0.146024 + 0.639772i 0.847943 + 0.530088i \(0.177841\pi\)
−0.993966 + 0.109684i \(0.965016\pi\)
\(444\) 1.56194 6.84331i 0.0741265 0.324769i
\(445\) 7.91361 9.92336i 0.375141 0.470412i
\(446\) −5.38456 23.5913i −0.254966 1.11708i
\(447\) −7.98689 −0.377767
\(448\) 0.645479 + 2.82803i 0.0304960 + 0.133612i
\(449\) −15.5953 7.51031i −0.735989 0.354433i 0.0280478 0.999607i \(-0.491071\pi\)
−0.764036 + 0.645173i \(0.776785\pi\)
\(450\) −6.27115 3.02003i −0.295625 0.142365i
\(451\) −4.33953 19.0127i −0.204340 0.895273i
\(452\) −0.0336923 −0.00158475
\(453\) −4.51793 19.7943i −0.212271 0.930019i
\(454\) 17.8706 22.4090i 0.838707 1.05171i
\(455\) −0.352461 + 1.54423i −0.0165236 + 0.0723948i
\(456\) 0.181149 0.793666i 0.00848309 0.0371668i
\(457\) −12.7243 15.9558i −0.595219 0.746381i 0.389406 0.921066i \(-0.372680\pi\)
−0.984624 + 0.174686i \(0.944109\pi\)
\(458\) 18.5946 + 8.95468i 0.868868 + 0.418425i
\(459\) −3.87442 + 1.86582i −0.180842 + 0.0870891i
\(460\) 4.38856 5.50308i 0.204618 0.256583i
\(461\) 10.5622 + 13.2446i 0.491931 + 0.616861i 0.964388 0.264492i \(-0.0852043\pi\)
−0.472457 + 0.881354i \(0.656633\pi\)
\(462\) 1.75009 0.842797i 0.0814213 0.0392105i
\(463\) 26.1995 1.21759 0.608796 0.793327i \(-0.291653\pi\)
0.608796 + 0.793327i \(0.291653\pi\)
\(464\) 18.7156 12.1861i 0.868849 0.565726i
\(465\) 12.1947 0.565515
\(466\) −33.1216 + 15.9505i −1.53433 + 0.738893i
\(467\) 17.6788 + 22.1685i 0.818077 + 1.02584i 0.999103 + 0.0423574i \(0.0134868\pi\)
−0.181026 + 0.983478i \(0.557942\pi\)
\(468\) 3.96272 4.96910i 0.183177 0.229697i
\(469\) −1.82348 + 0.878143i −0.0842006 + 0.0405489i
\(470\) −18.5809 8.94809i −0.857073 0.412745i
\(471\) 2.55000 + 3.19760i 0.117498 + 0.147338i
\(472\) −0.346877 + 1.51977i −0.0159663 + 0.0699530i
\(473\) 1.30336 5.71038i 0.0599284 0.262563i
\(474\) 9.01454 11.3039i 0.414051 0.519204i
\(475\) 4.19993 + 18.4011i 0.192706 + 0.844300i
\(476\) −3.25267 −0.149086
\(477\) 2.43019 + 10.6474i 0.111271 + 0.487509i
\(478\) −42.5356 20.4841i −1.94553 0.936919i
\(479\) −30.3344 14.6083i −1.38601 0.667469i −0.415741 0.909483i \(-0.636478\pi\)
−0.970273 + 0.242014i \(0.922192\pi\)
\(480\) 2.14605 + 9.40246i 0.0979534 + 0.429162i
\(481\) 12.0582 0.549806
\(482\) 8.04666 + 35.2547i 0.366515 + 1.60581i
\(483\) −0.736003 + 0.922918i −0.0334893 + 0.0419942i
\(484\) 2.04636 8.96569i 0.0930164 0.407531i
\(485\) 4.39488 19.2552i 0.199561 0.874336i
\(486\) 1.23500 + 1.54863i 0.0560205 + 0.0702475i
\(487\) 20.9826 + 10.1047i 0.950814 + 0.457888i 0.843971 0.536388i \(-0.180212\pi\)
0.106843 + 0.994276i \(0.465926\pi\)
\(488\) −0.508351 + 0.244809i −0.0230120 + 0.0110820i
\(489\) −12.0194 + 15.0718i −0.543534 + 0.681570i
\(490\) 10.3056 + 12.9228i 0.465557 + 0.583791i
\(491\) 13.3643 6.43593i 0.603124 0.290449i −0.107296 0.994227i \(-0.534219\pi\)
0.710420 + 0.703778i \(0.248505\pi\)
\(492\) 15.0418 0.678139
\(493\) 8.00082 + 21.7317i 0.360339 + 0.978747i
\(494\) −35.1545 −1.58168
\(495\) 2.73891 1.31899i 0.123105 0.0592842i
\(496\) 25.8668 + 32.4360i 1.16145 + 1.45642i
\(497\) −1.98381 + 2.48762i −0.0889862 + 0.111585i
\(498\) 6.69194 3.22267i 0.299873 0.144411i
\(499\) −20.8748 10.0528i −0.934484 0.450024i −0.0962638 0.995356i \(-0.530689\pi\)
−0.838220 + 0.545332i \(0.816404\pi\)
\(500\) −12.4469 15.6079i −0.556642 0.698007i
\(501\) −0.722556 + 3.16572i −0.0322814 + 0.141434i
\(502\) −7.56410 + 33.1405i −0.337602 + 1.47913i
\(503\) −9.67873 + 12.1367i −0.431553 + 0.541151i −0.949295 0.314386i \(-0.898201\pi\)
0.517742 + 0.855537i \(0.326773\pi\)
\(504\) −0.0132624 0.0581063i −0.000590754 0.00258826i
\(505\) −3.36965 −0.149948
\(506\) −3.29960 14.4565i −0.146685 0.642668i
\(507\) −1.87561 0.903244i −0.0832986 0.0401145i
\(508\) −17.7736 8.55930i −0.788575 0.379758i
\(509\) −7.19126 31.5070i −0.318747 1.39652i −0.839753 0.542969i \(-0.817300\pi\)
0.521006 0.853553i \(-0.325557\pi\)
\(510\) −10.3835 −0.459787
\(511\) −0.766234 3.35709i −0.0338962 0.148509i
\(512\) −19.6732 + 24.6694i −0.869441 + 1.09024i
\(513\) 1.19520 5.23651i 0.0527693 0.231198i
\(514\) −0.724172 + 3.17281i −0.0319419 + 0.139946i
\(515\) 2.87762 + 3.60842i 0.126803 + 0.159006i
\(516\) 4.07035 + 1.96018i 0.179187 + 0.0862920i
\(517\) −19.1902 + 9.24152i −0.843985 + 0.406442i
\(518\) −1.77225 + 2.22234i −0.0778683 + 0.0976438i
\(519\) 5.00635 + 6.27776i 0.219754 + 0.275563i
\(520\) −0.550037 + 0.264884i −0.0241207 + 0.0116159i
\(521\) −0.674556 −0.0295529 −0.0147764 0.999891i \(-0.504704\pi\)
−0.0147764 + 0.999891i \(0.504704\pi\)
\(522\) 8.93894 5.82033i 0.391247 0.254749i
\(523\) −6.73109 −0.294330 −0.147165 0.989112i \(-0.547015\pi\)
−0.147165 + 0.989112i \(0.547015\pi\)
\(524\) −8.58301 + 4.13336i −0.374950 + 0.180567i
\(525\) 0.861561 + 1.08036i 0.0376016 + 0.0471509i
\(526\) −8.48964 + 10.6457i −0.370166 + 0.464173i
\(527\) −38.7585 + 18.6651i −1.68835 + 0.813066i
\(528\) 9.31797 + 4.48730i 0.405513 + 0.195285i
\(529\) −8.72177 10.9368i −0.379208 0.475511i
\(530\) −5.86794 + 25.7091i −0.254887 + 1.11673i
\(531\) −2.28865 + 10.0272i −0.0993190 + 0.435145i
\(532\) 2.53304 3.17633i 0.109821 0.137711i
\(533\) 5.74989 + 25.1919i 0.249056 + 1.09118i
\(534\) 20.6239 0.892485
\(535\) 3.06416 + 13.4250i 0.132475 + 0.580411i
\(536\) −0.702818 0.338459i −0.0303571 0.0146192i
\(537\) −9.51892 4.58407i −0.410772 0.197817i
\(538\) −1.77956 7.79678i −0.0767224 0.336143i
\(539\) 17.0709 0.735294
\(540\) 0.521757 + 2.28597i 0.0224529 + 0.0983724i
\(541\) −9.76755 + 12.2481i −0.419940 + 0.526588i −0.946133 0.323777i \(-0.895047\pi\)
0.526194 + 0.850365i \(0.323619\pi\)
\(542\) 5.68522 24.9086i 0.244201 1.06991i
\(543\) −2.72454 + 11.9370i −0.116921 + 0.512265i
\(544\) −21.2122 26.5993i −0.909466 1.14043i
\(545\) −16.3408 7.86931i −0.699963 0.337084i
\(546\) −2.31887 + 1.11671i −0.0992386 + 0.0477908i
\(547\) −8.06654 + 10.1151i −0.344901 + 0.432492i −0.923781 0.382921i \(-0.874918\pi\)
0.578881 + 0.815412i \(0.303490\pi\)
\(548\) −16.2727 20.4053i −0.695136 0.871673i
\(549\) −3.35403 + 1.61522i −0.143147 + 0.0689358i
\(550\) −17.3579 −0.740142
\(551\) −27.4524 9.11068i −1.16951 0.388128i
\(552\) −0.454979 −0.0193652
\(553\) −2.58609 + 1.24539i −0.109972 + 0.0529595i
\(554\) 3.95535 + 4.95985i 0.168047 + 0.210724i
\(555\) −2.77360 + 3.47799i −0.117733 + 0.147632i
\(556\) −28.5466 + 13.7473i −1.21064 + 0.583016i
\(557\) −8.78368 4.23000i −0.372177 0.179231i 0.238440 0.971157i \(-0.423364\pi\)
−0.610616 + 0.791926i \(0.709078\pi\)
\(558\) 12.3545 + 15.4921i 0.523009 + 0.655832i
\(559\) −1.72695 + 7.56628i −0.0730424 + 0.320019i
\(560\) 0.442373 1.93816i 0.0186937 0.0819022i
\(561\) −6.68628 + 8.38434i −0.282295 + 0.353987i
\(562\) 8.47832 + 37.1459i 0.357636 + 1.56691i
\(563\) 39.5811 1.66814 0.834072 0.551656i \(-0.186004\pi\)
0.834072 + 0.551656i \(0.186004\pi\)
\(564\) −3.65570 16.0167i −0.153933 0.674424i
\(565\) 0.0192381 + 0.00926458i 0.000809353 + 0.000389764i
\(566\) 50.3909 + 24.2670i 2.11809 + 1.02002i
\(567\) −0.0875036 0.383378i −0.00367480 0.0161004i
\(568\) −1.22634 −0.0514563
\(569\) 6.44938 + 28.2566i 0.270372 + 1.18458i 0.909575 + 0.415540i \(0.136407\pi\)
−0.639203 + 0.769038i \(0.720736\pi\)
\(570\) 8.08619 10.1398i 0.338693 0.424708i
\(571\) 6.72499 29.4641i 0.281432 1.23303i −0.614526 0.788897i \(-0.710653\pi\)
0.895958 0.444138i \(-0.146490\pi\)
\(572\) 3.52691 15.4524i 0.147467 0.646097i
\(573\) −4.23482 5.31030i −0.176912 0.221841i
\(574\) −5.48799 2.64288i −0.229064 0.110312i
\(575\) 9.50401 4.57689i 0.396344 0.190869i
\(576\) −4.59923 + 5.76726i −0.191635 + 0.240302i
\(577\) −16.1799 20.2889i −0.673577 0.844639i 0.321168 0.947022i \(-0.395925\pi\)
−0.994745 + 0.102383i \(0.967353\pi\)
\(578\) 2.66340 1.28262i 0.110783 0.0533501i
\(579\) 24.4529 1.01623
\(580\) 12.5230 1.61639i 0.519990 0.0671170i
\(581\) −1.47456 −0.0611749
\(582\) 28.9143 13.9244i 1.19854 0.577185i
\(583\) 16.9808 + 21.2932i 0.703271 + 0.881874i
\(584\) 0.827487 1.03764i 0.0342416 0.0429377i
\(585\) −3.62907 + 1.74767i −0.150044 + 0.0722572i
\(586\) −59.4714 28.6399i −2.45674 1.18310i
\(587\) 0.483492 + 0.606280i 0.0199559 + 0.0250239i 0.791709 0.610898i \(-0.209191\pi\)
−0.771753 + 0.635922i \(0.780620\pi\)
\(588\) −2.92992 + 12.8368i −0.120828 + 0.529381i
\(589\) 11.9564 52.3845i 0.492656 2.15847i
\(590\) −15.4840 + 19.4163i −0.637466 + 0.799358i
\(591\) −1.67419 7.33512i −0.0688671 0.301727i
\(592\) −15.1342 −0.622010
\(593\) 6.10600 + 26.7521i 0.250743 + 1.09858i 0.930832 + 0.365449i \(0.119084\pi\)
−0.680088 + 0.733130i \(0.738058\pi\)
\(594\) 4.45045 + 2.14323i 0.182604 + 0.0879376i
\(595\) 1.85725 + 0.894406i 0.0761400 + 0.0366671i
\(596\) −3.41851 14.9775i −0.140028 0.613501i
\(597\) 23.0582 0.943708
\(598\) 4.37198 + 19.1549i 0.178784 + 0.783302i
\(599\) 26.9705 33.8200i 1.10199 1.38185i 0.185090 0.982722i \(-0.440742\pi\)
0.916896 0.399125i \(-0.130686\pi\)
\(600\) −0.118514 + 0.519242i −0.00483830 + 0.0211980i
\(601\) 7.35145 32.2088i 0.299872 1.31382i −0.570447 0.821335i \(-0.693230\pi\)
0.870318 0.492490i \(-0.163913\pi\)
\(602\) −1.14065 1.43033i −0.0464896 0.0582961i
\(603\) −4.63710 2.23311i −0.188837 0.0909393i
\(604\) 35.1857 16.9446i 1.43169 0.689464i
\(605\) −3.63381 + 4.55665i −0.147735 + 0.185254i
\(606\) −3.41382 4.28079i −0.138677 0.173895i
\(607\) 15.8783 7.64658i 0.644480 0.310365i −0.0829433 0.996554i \(-0.526432\pi\)
0.727423 + 0.686189i \(0.240718\pi\)
\(608\) 42.4942 1.72337
\(609\) −2.10023 + 0.271084i −0.0851055 + 0.0109849i
\(610\) −8.98883 −0.363947
\(611\) 25.4271 12.2451i 1.02867 0.495382i
\(612\) −5.15721 6.46693i −0.208468 0.261410i
\(613\) 23.7282 29.7542i 0.958371 1.20176i −0.0210185 0.999779i \(-0.506691\pi\)
0.979390 0.201980i \(-0.0647377\pi\)
\(614\) −1.67766 + 0.807917i −0.0677048 + 0.0326049i
\(615\) −8.58879 4.13614i −0.346334 0.166785i
\(616\) −0.0926700 0.116204i −0.00373378 0.00468201i
\(617\) 1.14817 5.03046i 0.0462235 0.202519i −0.946543 0.322577i \(-0.895451\pi\)
0.992767 + 0.120058i \(0.0383081\pi\)
\(618\) −1.66879 + 7.31143i −0.0671284 + 0.294109i
\(619\) −18.4979 + 23.1956i −0.743494 + 0.932312i −0.999409 0.0343876i \(-0.989052\pi\)
0.255915 + 0.966699i \(0.417623\pi\)
\(620\) 5.21951 + 22.8682i 0.209620 + 0.918407i
\(621\) −3.00189 −0.120462
\(622\) 3.85766 + 16.9015i 0.154678 + 0.677688i
\(623\) −3.68893 1.77650i −0.147794 0.0711738i
\(624\) −12.3464 5.94569i −0.494250 0.238018i
\(625\) −1.09440 4.79488i −0.0437760 0.191795i
\(626\) 65.2414 2.60757
\(627\) −2.98057 13.0587i −0.119032 0.521515i
\(628\) −4.90488 + 6.15053i −0.195726 + 0.245433i
\(629\) 3.49199 15.2994i 0.139235 0.610028i
\(630\) 0.211286 0.925705i 0.00841784 0.0368810i
\(631\) 6.21623 + 7.79490i 0.247464 + 0.310310i 0.890014 0.455934i \(-0.150695\pi\)
−0.642550 + 0.766244i \(0.722123\pi\)
\(632\) −0.996745 0.480007i −0.0396484 0.0190937i
\(633\) 5.88592 2.83451i 0.233945 0.112662i
\(634\) 28.9713 36.3289i 1.15060 1.44281i
\(635\) 7.79499 + 9.77461i 0.309335 + 0.387894i
\(636\) −18.9264 + 9.11446i −0.750479 + 0.361412i
\(637\) −22.6190 −0.896196
\(638\) 13.7865 22.7493i 0.545814 0.900653i
\(639\) −8.09127 −0.320086
\(640\) 1.33072 0.640842i 0.0526014 0.0253315i
\(641\) 13.9528 + 17.4963i 0.551104 + 0.691063i 0.976886 0.213763i \(-0.0685721\pi\)
−0.425781 + 0.904826i \(0.640001\pi\)
\(642\) −13.9507 + 17.4936i −0.550590 + 0.690418i
\(643\) 5.33870 2.57098i 0.210538 0.101390i −0.325643 0.945493i \(-0.605581\pi\)
0.536181 + 0.844103i \(0.319866\pi\)
\(644\) −2.04573 0.985171i −0.0806130 0.0388212i
\(645\) −1.78514 2.23850i −0.0702898 0.0881407i
\(646\) −10.1806 + 44.6041i −0.400550 + 1.75492i
\(647\) −3.42464 + 15.0043i −0.134636 + 0.589881i 0.861926 + 0.507034i \(0.169258\pi\)
−0.996562 + 0.0828464i \(0.973599\pi\)
\(648\) 0.0944986 0.118497i 0.00371226 0.00465502i
\(649\) 5.70740 + 25.0057i 0.224035 + 0.981561i
\(650\) 22.9993 0.902105
\(651\) −0.875360 3.83520i −0.0343081 0.150313i
\(652\) −33.4080 16.0884i −1.30836 0.630071i
\(653\) −30.2207 14.5535i −1.18263 0.569523i −0.263951 0.964536i \(-0.585026\pi\)
−0.918675 + 0.395013i \(0.870740\pi\)
\(654\) −6.55784 28.7318i −0.256432 1.12350i
\(655\) 6.03741 0.235901
\(656\) −7.21667 31.6183i −0.281763 1.23449i
\(657\) 5.45965 6.84619i 0.213001 0.267095i
\(658\) −1.48038 + 6.48597i −0.0577112 + 0.252849i
\(659\) −2.27680 + 9.97530i −0.0886914 + 0.388582i −0.999718 0.0237662i \(-0.992434\pi\)
0.911026 + 0.412349i \(0.135291\pi\)
\(660\) 3.64574 + 4.57161i 0.141910 + 0.177950i
\(661\) −12.0033 5.78051i −0.466876 0.224836i 0.185629 0.982620i \(-0.440568\pi\)
−0.652505 + 0.757784i \(0.726282\pi\)
\(662\) −47.1556 + 22.7089i −1.83275 + 0.882607i
\(663\) 8.85936 11.1093i 0.344069 0.431449i
\(664\) −0.354349 0.444340i −0.0137514 0.0172437i
\(665\) −2.31976 + 1.11714i −0.0899566 + 0.0433208i
\(666\) −7.22839 −0.280094
\(667\) −1.55010 + 16.0912i −0.0600199 + 0.623054i
\(668\) −6.24581 −0.241658
\(669\) −11.0066 + 5.30050i −0.425539 + 0.204929i
\(670\) −7.74840 9.71618i −0.299347 0.375369i
\(671\) −5.78823 + 7.25821i −0.223452 + 0.280200i
\(672\) 2.80301 1.34986i 0.108128 0.0520719i
\(673\) −34.2673 16.5022i −1.32091 0.636115i −0.365335 0.930876i \(-0.619046\pi\)
−0.955571 + 0.294761i \(0.904760\pi\)
\(674\) 7.93149 + 9.94577i 0.305510 + 0.383097i
\(675\) −0.781938 + 3.42590i −0.0300968 + 0.131863i
\(676\) 0.891027 3.90384i 0.0342703 0.150148i
\(677\) 5.49590 6.89164i 0.211224 0.264867i −0.664921 0.746913i \(-0.731535\pi\)
0.876146 + 0.482046i \(0.160106\pi\)
\(678\) 0.00772057 + 0.0338260i 0.000296507 + 0.00129908i
\(679\) −6.37121 −0.244505
\(680\) 0.176796 + 0.774595i 0.00677983 + 0.0297044i
\(681\) −13.0371 6.27836i −0.499585 0.240587i
\(682\) 44.5210 + 21.4402i 1.70480 + 0.820988i
\(683\) 2.25860 + 9.89559i 0.0864231 + 0.378644i 0.999580 0.0289628i \(-0.00922044\pi\)
−0.913157 + 0.407607i \(0.866363\pi\)
\(684\) 10.3314 0.395030
\(685\) 3.68063 + 16.1259i 0.140630 + 0.616139i
\(686\) 6.72395 8.43157i 0.256722 0.321919i
\(687\) 2.31852 10.1581i 0.0884572 0.387556i
\(688\) 2.16749 9.49640i 0.0826348 0.362047i
\(689\) −22.4996 28.2136i −0.857166 1.07485i
\(690\) −6.53056 3.14495i −0.248614 0.119726i
\(691\) 0.129926 0.0625692i 0.00494263 0.00238024i −0.431411 0.902156i \(-0.641984\pi\)
0.436353 + 0.899775i \(0.356270\pi\)
\(692\) −9.62962 + 12.0752i −0.366063 + 0.459029i
\(693\) −0.611425 0.766702i −0.0232261 0.0291246i
\(694\) −9.46614 + 4.55865i −0.359330 + 0.173044i
\(695\) 20.0801 0.761681
\(696\) −0.586392 0.567734i −0.0222271 0.0215199i
\(697\) 33.6287 1.27378
\(698\) 23.9088 11.5139i 0.904963 0.435807i
\(699\) 11.5716 + 14.5104i 0.437679 + 0.548832i
\(700\) −1.65720 + 2.07806i −0.0626362 + 0.0785433i
\(701\) −43.4549 + 20.9268i −1.64127 + 0.790393i −0.641539 + 0.767090i \(0.721704\pi\)
−0.999728 + 0.0233027i \(0.992582\pi\)
\(702\) −5.89687 2.83979i −0.222563 0.107181i
\(703\) 12.2209 + 15.3246i 0.460921 + 0.577977i
\(704\) −4.09341 + 17.9344i −0.154276 + 0.675929i
\(705\) −2.31682 + 10.1506i −0.0872564 + 0.382295i
\(706\) 19.8723 24.9191i 0.747904 0.937842i
\(707\) 0.241881 + 1.05975i 0.00909686 + 0.0398559i
\(708\) −19.7832 −0.743499
\(709\) −2.34972 10.2948i −0.0882454 0.386629i 0.911447 0.411417i \(-0.134966\pi\)
−0.999693 + 0.0247883i \(0.992109\pi\)
\(710\) −17.6024 8.47686i −0.660606 0.318131i
\(711\) −6.57640 3.16703i −0.246634 0.118773i
\(712\) −0.351158 1.53852i −0.0131602 0.0576586i
\(713\) −30.0301 −1.12463
\(714\) 0.745347 + 3.26558i 0.0278939 + 0.122211i
\(715\) −6.26288 + 7.85340i −0.234218 + 0.293700i
\(716\) 4.52207 19.8125i 0.168998 0.740427i
\(717\) −5.30368 + 23.2370i −0.198070 + 0.867800i
\(718\) 14.9271 + 18.7179i 0.557073 + 0.698547i
\(719\) 22.7910 + 10.9756i 0.849961 + 0.409320i 0.807563 0.589781i \(-0.200786\pi\)
0.0423980 + 0.999101i \(0.486500\pi\)
\(720\) 4.55483 2.19349i 0.169748 0.0817466i
\(721\) 0.928278 1.16402i 0.0345709 0.0433505i
\(722\) −12.1641 15.2533i −0.452702 0.567671i
\(723\) 16.4482 7.92104i 0.611715 0.294587i
\(724\) −23.5511 −0.875269
\(725\) 17.9602 + 5.96050i 0.667026 + 0.221368i
\(726\) −9.47019 −0.351472
\(727\) 44.2191 21.2948i 1.64000 0.789780i 0.640228 0.768185i \(-0.278840\pi\)
0.999767 0.0215952i \(-0.00687451\pi\)
\(728\) 0.122788 + 0.153971i 0.00455083 + 0.00570656i
\(729\) 0.623490 0.781831i 0.0230922 0.0289567i
\(730\) 19.0498 9.17391i 0.705065 0.339542i
\(731\) 9.09997 + 4.38232i 0.336575 + 0.162086i
\(732\) −4.46452 5.59834i −0.165014 0.206920i
\(733\) 0.756862 3.31603i 0.0279553 0.122480i −0.959025 0.283322i \(-0.908564\pi\)
0.986980 + 0.160841i \(0.0514207\pi\)
\(734\) −3.22701 + 14.1385i −0.119111 + 0.521860i
\(735\) 5.20278 6.52408i 0.191907 0.240644i
\(736\) −5.28477 23.1541i −0.194799 0.853471i
\(737\) −12.8350 −0.472783
\(738\) −3.44683 15.1015i −0.126879 0.555895i
\(739\) −6.51194 3.13599i −0.239546 0.115359i 0.310260 0.950652i \(-0.399584\pi\)
−0.549806 + 0.835293i \(0.685298\pi\)
\(740\) −7.70927 3.71259i −0.283398 0.136477i
\(741\) 3.94927 + 17.3029i 0.145080 + 0.635637i
\(742\) 8.50668 0.312290
\(743\) −4.95044 21.6893i −0.181614 0.795703i −0.980862 0.194702i \(-0.937626\pi\)
0.799248 0.601001i \(-0.205231\pi\)
\(744\) 0.945336 1.18541i 0.0346577 0.0434594i
\(745\) −2.16650 + 9.49205i −0.0793743 + 0.347762i
\(746\) −3.64758 + 15.9811i −0.133548 + 0.585110i
\(747\) −2.33795 2.93170i −0.0855412 0.107265i
\(748\) −18.5846 8.94988i −0.679521 0.327240i
\(749\) 4.00217 1.92734i 0.146236 0.0704236i
\(750\) −12.8176 + 16.0728i −0.468034 + 0.586896i
\(751\) 16.0400 + 20.1135i 0.585308 + 0.733953i 0.983008 0.183563i \(-0.0587630\pi\)
−0.397700 + 0.917515i \(0.630192\pi\)
\(752\) −31.9135 + 15.3687i −1.16377 + 0.560440i
\(753\) 17.1613 0.625393
\(754\) −18.2672 + 30.1429i −0.665253 + 1.09774i
\(755\) −24.7502 −0.900750
\(756\) 0.681480 0.328183i 0.0247852 0.0119359i
\(757\) −16.5778 20.7879i −0.602529 0.755548i 0.383240 0.923649i \(-0.374808\pi\)
−0.985770 + 0.168101i \(0.946237\pi\)
\(758\) 4.76473 5.97478i 0.173063 0.217014i
\(759\) −6.74472 + 3.24808i −0.244818 + 0.117898i
\(760\) −0.894097 0.430575i −0.0324323 0.0156186i
\(761\) −5.12010 6.42041i −0.185604 0.232740i 0.680321 0.732914i \(-0.261840\pi\)
−0.865924 + 0.500175i \(0.833269\pi\)
\(762\) −4.52047 + 19.8055i −0.163759 + 0.717476i
\(763\) −1.30191 + 5.70403i −0.0471322 + 0.206500i
\(764\) 8.14561 10.2143i 0.294698 0.369539i
\(765\) 1.16648 +