Properties

Label 87.2.g.b.49.2
Level $87$
Weight $2$
Character 87.49
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 49.2
Root \(0.719749 - 0.902536i\) of defining polynomial
Character \(\chi\) \(=\) 87.49
Dual form 87.2.g.b.16.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04007 + 0.500870i) q^{2} +(-0.623490 - 0.781831i) q^{3} +(-0.416111 + 0.521786i) q^{4} +(3.10796 - 1.49671i) q^{5} +(1.04007 + 0.500870i) q^{6} +(2.81664 + 3.53195i) q^{7} +(0.685187 - 3.00200i) q^{8} +(-0.222521 + 0.974928i) q^{9} +O(q^{10})\) \(q+(-1.04007 + 0.500870i) q^{2} +(-0.623490 - 0.781831i) q^{3} +(-0.416111 + 0.521786i) q^{4} +(3.10796 - 1.49671i) q^{5} +(1.04007 + 0.500870i) q^{6} +(2.81664 + 3.53195i) q^{7} +(0.685187 - 3.00200i) q^{8} +(-0.222521 + 0.974928i) q^{9} +(-2.48283 + 3.11337i) q^{10} +(0.123323 + 0.540315i) q^{11} +0.667390 q^{12} +(-0.614154 - 2.69078i) q^{13} +(-4.69854 - 2.26270i) q^{14} +(-3.10796 - 1.49671i) q^{15} +(0.493954 + 2.16416i) q^{16} -2.99688 q^{17} +(-0.256875 - 1.12544i) q^{18} +(-0.173453 + 0.217503i) q^{19} +(-0.512290 + 2.24449i) q^{20} +(1.00525 - 4.40427i) q^{21} +(-0.398892 - 0.500195i) q^{22} +(-0.836001 - 0.402597i) q^{23} +(-2.77426 + 1.33602i) q^{24} +(4.30181 - 5.39430i) q^{25} +(1.98649 + 2.49098i) q^{26} +(0.900969 - 0.433884i) q^{27} -3.01496 q^{28} +(-5.37860 - 0.265855i) q^{29} +3.98215 q^{30} +(-8.21748 + 3.95733i) q^{31} +(2.24199 + 2.81137i) q^{32} +(0.345544 - 0.433299i) q^{33} +(3.11696 - 1.50105i) q^{34} +(14.0403 + 6.76146i) q^{35} +(-0.416111 - 0.521786i) q^{36} +(1.52987 - 6.70278i) q^{37} +(0.0714618 - 0.313095i) q^{38} +(-1.72082 + 2.15784i) q^{39} +(-2.36360 - 10.3556i) q^{40} -2.85317 q^{41} +(1.16044 + 5.08423i) q^{42} +(10.1079 + 4.86770i) q^{43} +(-0.333245 - 0.160482i) q^{44} +(0.767603 + 3.36309i) q^{45} +1.07115 q^{46} +(-0.933590 - 4.09033i) q^{47} +(1.38403 - 1.73552i) q^{48} +(-2.98359 + 13.0720i) q^{49} +(-1.77233 + 7.76508i) q^{50} +(1.86853 + 2.34306i) q^{51} +(1.65957 + 0.799207i) q^{52} +(1.87299 - 0.901986i) q^{53} +(-0.719749 + 0.902536i) q^{54} +(1.19198 + 1.49470i) q^{55} +(12.5328 - 6.03550i) q^{56} +0.278196 q^{57} +(5.72726 - 2.41747i) q^{58} -14.2670 q^{59} +(2.07422 - 0.998892i) q^{60} +(-4.50873 - 5.65377i) q^{61} +(6.56462 - 8.23177i) q^{62} +(-4.07016 + 1.96009i) q^{63} +(-7.73992 - 3.72735i) q^{64} +(-5.93610 - 7.44363i) q^{65} +(-0.142363 + 0.623732i) q^{66} +(2.73383 - 11.9777i) q^{67} +(1.24704 - 1.56373i) q^{68} +(0.206475 + 0.904626i) q^{69} -17.9895 q^{70} +(0.530060 + 2.32234i) q^{71} +(2.77426 + 1.33602i) q^{72} +(0.822693 + 0.396188i) q^{73} +(1.76606 + 7.73761i) q^{74} -6.89956 q^{75} +(-0.0413145 - 0.181010i) q^{76} +(-1.56101 + 1.95744i) q^{77} +(0.708971 - 3.10621i) q^{78} +(-0.460193 + 2.01624i) q^{79} +(4.77431 + 5.98680i) q^{80} +(-0.900969 - 0.433884i) q^{81} +(2.96749 - 1.42907i) q^{82} +(-6.83994 + 8.57702i) q^{83} +(1.87979 + 2.35719i) q^{84} +(-9.31420 + 4.48548i) q^{85} -12.9510 q^{86} +(3.14565 + 4.37092i) q^{87} +1.70652 q^{88} +(6.13283 - 2.95341i) q^{89} +(-2.48283 - 3.11337i) q^{90} +(7.77387 - 9.74812i) q^{91} +(0.557938 - 0.268689i) q^{92} +(8.21748 + 3.95733i) q^{93} +(3.01972 + 3.78661i) q^{94} +(-0.213544 + 0.935599i) q^{95} +(0.800159 - 3.50572i) q^{96} +(-2.19244 + 2.74924i) q^{97} +(-3.44422 - 15.0901i) q^{98} -0.554210 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04007 + 0.500870i −0.735438 + 0.354169i −0.763821 0.645429i \(-0.776679\pi\)
0.0283821 + 0.999597i \(0.490964\pi\)
\(3\) −0.623490 0.781831i −0.359972 0.451391i
\(4\) −0.416111 + 0.521786i −0.208055 + 0.260893i
\(5\) 3.10796 1.49671i 1.38992 0.669351i 0.418831 0.908064i \(-0.362440\pi\)
0.971090 + 0.238713i \(0.0767255\pi\)
\(6\) 1.04007 + 0.500870i 0.424606 + 0.204479i
\(7\) 2.81664 + 3.53195i 1.06459 + 1.33495i 0.939402 + 0.342819i \(0.111382\pi\)
0.125187 + 0.992133i \(0.460047\pi\)
\(8\) 0.685187 3.00200i 0.242250 1.06137i
\(9\) −0.222521 + 0.974928i −0.0741736 + 0.324976i
\(10\) −2.48283 + 3.11337i −0.785139 + 0.984533i
\(11\) 0.123323 + 0.540315i 0.0371834 + 0.162911i 0.990111 0.140287i \(-0.0448027\pi\)
−0.952927 + 0.303198i \(0.901946\pi\)
\(12\) 0.667390 0.192659
\(13\) −0.614154 2.69078i −0.170336 0.746289i −0.985861 0.167567i \(-0.946409\pi\)
0.815525 0.578722i \(-0.196448\pi\)
\(14\) −4.69854 2.26270i −1.25574 0.604731i
\(15\) −3.10796 1.49671i −0.802472 0.386450i
\(16\) 0.493954 + 2.16416i 0.123489 + 0.541039i
\(17\) −2.99688 −0.726851 −0.363426 0.931623i \(-0.618393\pi\)
−0.363426 + 0.931623i \(0.618393\pi\)
\(18\) −0.256875 1.12544i −0.0605461 0.265270i
\(19\) −0.173453 + 0.217503i −0.0397928 + 0.0498985i −0.801330 0.598223i \(-0.795874\pi\)
0.761537 + 0.648122i \(0.224445\pi\)
\(20\) −0.512290 + 2.24449i −0.114552 + 0.501883i
\(21\) 1.00525 4.40427i 0.219363 0.961091i
\(22\) −0.398892 0.500195i −0.0850440 0.106642i
\(23\) −0.836001 0.402597i −0.174318 0.0839472i 0.344690 0.938717i \(-0.387984\pi\)
−0.519008 + 0.854770i \(0.673698\pi\)
\(24\) −2.77426 + 1.33602i −0.566294 + 0.272713i
\(25\) 4.30181 5.39430i 0.860362 1.07886i
\(26\) 1.98649 + 2.49098i 0.389583 + 0.488522i
\(27\) 0.900969 0.433884i 0.173392 0.0835010i
\(28\) −3.01496 −0.569773
\(29\) −5.37860 0.265855i −0.998781 0.0493681i
\(30\) 3.98215 0.727037
\(31\) −8.21748 + 3.95733i −1.47590 + 0.710757i −0.986871 0.161509i \(-0.948364\pi\)
−0.489031 + 0.872266i \(0.662650\pi\)
\(32\) 2.24199 + 2.81137i 0.396332 + 0.496985i
\(33\) 0.345544 0.433299i 0.0601515 0.0754276i
\(34\) 3.11696 1.50105i 0.534554 0.257428i
\(35\) 14.0403 + 6.76146i 2.37325 + 1.14290i
\(36\) −0.416111 0.521786i −0.0693518 0.0869644i
\(37\) 1.52987 6.70278i 0.251509 1.10193i −0.678560 0.734545i \(-0.737396\pi\)
0.930069 0.367386i \(-0.119747\pi\)
\(38\) 0.0714618 0.313095i 0.0115926 0.0507907i
\(39\) −1.72082 + 2.15784i −0.275552 + 0.345531i
\(40\) −2.36360 10.3556i −0.373718 1.63737i
\(41\) −2.85317 −0.445591 −0.222795 0.974865i \(-0.571518\pi\)
−0.222795 + 0.974865i \(0.571518\pi\)
\(42\) 1.16044 + 5.08423i 0.179060 + 0.784514i
\(43\) 10.1079 + 4.86770i 1.54144 + 0.742317i 0.995433 0.0954657i \(-0.0304340\pi\)
0.546004 + 0.837783i \(0.316148\pi\)
\(44\) −0.333245 0.160482i −0.0502386 0.0241936i
\(45\) 0.767603 + 3.36309i 0.114427 + 0.501339i
\(46\) 1.07115 0.157932
\(47\) −0.933590 4.09033i −0.136178 0.596635i −0.996254 0.0864700i \(-0.972441\pi\)
0.860076 0.510165i \(-0.170416\pi\)
\(48\) 1.38403 1.73552i 0.199767 0.250500i
\(49\) −2.98359 + 13.0720i −0.426227 + 1.86742i
\(50\) −1.77233 + 7.76508i −0.250645 + 1.09815i
\(51\) 1.86853 + 2.34306i 0.261646 + 0.328094i
\(52\) 1.65957 + 0.799207i 0.230141 + 0.110830i
\(53\) 1.87299 0.901986i 0.257275 0.123897i −0.300801 0.953687i \(-0.597254\pi\)
0.558076 + 0.829790i \(0.311540\pi\)
\(54\) −0.719749 + 0.902536i −0.0979454 + 0.122820i
\(55\) 1.19198 + 1.49470i 0.160727 + 0.201545i
\(56\) 12.5328 6.03550i 1.67477 0.806527i
\(57\) 0.278196 0.0368480
\(58\) 5.72726 2.41747i 0.752026 0.317429i
\(59\) −14.2670 −1.85741 −0.928703 0.370824i \(-0.879075\pi\)
−0.928703 + 0.370824i \(0.879075\pi\)
\(60\) 2.07422 0.998892i 0.267781 0.128956i
\(61\) −4.50873 5.65377i −0.577284 0.723891i 0.404363 0.914599i \(-0.367493\pi\)
−0.981647 + 0.190707i \(0.938922\pi\)
\(62\) 6.56462 8.23177i 0.833708 1.04544i
\(63\) −4.07016 + 1.96009i −0.512792 + 0.246948i
\(64\) −7.73992 3.72735i −0.967490 0.465919i
\(65\) −5.93610 7.44363i −0.736282 0.923269i
\(66\) −0.142363 + 0.623732i −0.0175237 + 0.0767762i
\(67\) 2.73383 11.9777i 0.333990 1.46331i −0.477340 0.878719i \(-0.658399\pi\)
0.811330 0.584588i \(-0.198744\pi\)
\(68\) 1.24704 1.56373i 0.151225 0.189631i
\(69\) 0.206475 + 0.904626i 0.0248567 + 0.108904i
\(70\) −17.9895 −2.15015
\(71\) 0.530060 + 2.32234i 0.0629065 + 0.275611i 0.996593 0.0824811i \(-0.0262844\pi\)
−0.933686 + 0.358092i \(0.883427\pi\)
\(72\) 2.77426 + 1.33602i 0.326950 + 0.157451i
\(73\) 0.822693 + 0.396188i 0.0962889 + 0.0463703i 0.481408 0.876496i \(-0.340125\pi\)
−0.385119 + 0.922867i \(0.625840\pi\)
\(74\) 1.76606 + 7.73761i 0.205300 + 0.899479i
\(75\) −6.89956 −0.796693
\(76\) −0.0413145 0.181010i −0.00473909 0.0207633i
\(77\) −1.56101 + 1.95744i −0.177893 + 0.223071i
\(78\) 0.708971 3.10621i 0.0802752 0.351709i
\(79\) −0.460193 + 2.01624i −0.0517758 + 0.226845i −0.994196 0.107588i \(-0.965687\pi\)
0.942420 + 0.334432i \(0.108545\pi\)
\(80\) 4.77431 + 5.98680i 0.533784 + 0.669345i
\(81\) −0.900969 0.433884i −0.100108 0.0482093i
\(82\) 2.96749 1.42907i 0.327705 0.157814i
\(83\) −6.83994 + 8.57702i −0.750781 + 0.941450i −0.999633 0.0270916i \(-0.991375\pi\)
0.248852 + 0.968542i \(0.419947\pi\)
\(84\) 1.87979 + 2.35719i 0.205102 + 0.257190i
\(85\) −9.31420 + 4.48548i −1.01027 + 0.486519i
\(86\) −12.9510 −1.39654
\(87\) 3.14565 + 4.37092i 0.337249 + 0.468611i
\(88\) 1.70652 0.181916
\(89\) 6.13283 2.95341i 0.650078 0.313061i −0.0796253 0.996825i \(-0.525372\pi\)
0.729703 + 0.683764i \(0.239658\pi\)
\(90\) −2.48283 3.11337i −0.261713 0.328178i
\(91\) 7.77387 9.74812i 0.814923 1.02188i
\(92\) 0.557938 0.268689i 0.0581691 0.0280128i
\(93\) 8.21748 + 3.95733i 0.852113 + 0.410356i
\(94\) 3.01972 + 3.78661i 0.311460 + 0.390559i
\(95\) −0.213544 + 0.935599i −0.0219092 + 0.0959904i
\(96\) 0.800159 3.50572i 0.0816658 0.357801i
\(97\) −2.19244 + 2.74924i −0.222609 + 0.279143i −0.880577 0.473903i \(-0.842845\pi\)
0.657968 + 0.753046i \(0.271416\pi\)
\(98\) −3.44422 15.0901i −0.347918 1.52433i
\(99\) −0.554210 −0.0557002
\(100\) 1.02464 + 4.48925i 0.102464 + 0.448925i
\(101\) 11.4159 + 5.49760i 1.13592 + 0.547032i 0.904776 0.425887i \(-0.140038\pi\)
0.231147 + 0.972919i \(0.425752\pi\)
\(102\) −3.11696 1.50105i −0.308625 0.148626i
\(103\) −0.448946 1.96696i −0.0442359 0.193810i 0.947982 0.318324i \(-0.103120\pi\)
−0.992218 + 0.124514i \(0.960263\pi\)
\(104\) −8.49854 −0.833350
\(105\) −3.46767 15.1929i −0.338410 1.48267i
\(106\) −1.49626 + 1.87625i −0.145330 + 0.182238i
\(107\) 0.127292 0.557702i 0.0123058 0.0539151i −0.968402 0.249393i \(-0.919769\pi\)
0.980708 + 0.195478i \(0.0626259\pi\)
\(108\) −0.148508 + 0.650657i −0.0142902 + 0.0626095i
\(109\) 12.1384 + 15.2210i 1.16264 + 1.45791i 0.863962 + 0.503557i \(0.167976\pi\)
0.298682 + 0.954353i \(0.403453\pi\)
\(110\) −1.98839 0.957557i −0.189585 0.0912995i
\(111\) −6.19430 + 2.98302i −0.587937 + 0.283136i
\(112\) −6.25240 + 7.84026i −0.590797 + 0.740835i
\(113\) 1.51936 + 1.90522i 0.142929 + 0.179228i 0.848143 0.529767i \(-0.177721\pi\)
−0.705214 + 0.708994i \(0.749149\pi\)
\(114\) −0.289343 + 0.139340i −0.0270994 + 0.0130504i
\(115\) −3.20083 −0.298479
\(116\) 2.37681 2.69585i 0.220681 0.250304i
\(117\) 2.75998 0.255160
\(118\) 14.8386 7.14592i 1.36601 0.657835i
\(119\) −8.44114 10.5849i −0.773798 0.970312i
\(120\) −6.62267 + 8.30456i −0.604564 + 0.758099i
\(121\) 9.63393 4.63945i 0.875811 0.421769i
\(122\) 7.52119 + 3.62201i 0.680936 + 0.327922i
\(123\) 1.77893 + 2.23070i 0.160400 + 0.201136i
\(124\) 1.35450 5.93446i 0.121638 0.532930i
\(125\) 1.45811 6.38840i 0.130417 0.571396i
\(126\) 3.25149 4.07724i 0.289666 0.363229i
\(127\) 2.04476 + 8.95869i 0.181443 + 0.794955i 0.980944 + 0.194290i \(0.0622403\pi\)
−0.799501 + 0.600665i \(0.794903\pi\)
\(128\) 2.72519 0.240875
\(129\) −2.49644 10.9376i −0.219799 0.963003i
\(130\) 9.90223 + 4.76866i 0.868483 + 0.418240i
\(131\) 11.7972 + 5.68123i 1.03073 + 0.496372i 0.871255 0.490831i \(-0.163307\pi\)
0.159471 + 0.987203i \(0.449021\pi\)
\(132\) 0.0823047 + 0.360601i 0.00716371 + 0.0313862i
\(133\) −1.25676 −0.108975
\(134\) 3.15590 + 13.8269i 0.272628 + 1.19446i
\(135\) 2.15077 2.69699i 0.185109 0.232120i
\(136\) −2.05343 + 8.99665i −0.176080 + 0.771456i
\(137\) 1.69127 7.40992i 0.144495 0.633072i −0.849864 0.527002i \(-0.823316\pi\)
0.994359 0.106070i \(-0.0338268\pi\)
\(138\) −0.667848 0.837455i −0.0568510 0.0712889i
\(139\) −7.97635 3.84121i −0.676545 0.325807i 0.0638687 0.997958i \(-0.479656\pi\)
−0.740414 + 0.672151i \(0.765370\pi\)
\(140\) −9.37036 + 4.51253i −0.791940 + 0.381378i
\(141\) −2.61586 + 3.28019i −0.220295 + 0.276242i
\(142\) −1.71449 2.14990i −0.143877 0.180416i
\(143\) 1.37813 0.663673i 0.115245 0.0554991i
\(144\) −2.21981 −0.184984
\(145\) −17.1144 + 7.22396i −1.42127 + 0.599917i
\(146\) −1.05409 −0.0872375
\(147\) 12.0803 5.81757i 0.996366 0.479825i
\(148\) 2.86083 + 3.58736i 0.235159 + 0.294879i
\(149\) 4.96925 6.23124i 0.407097 0.510483i −0.535446 0.844570i \(-0.679856\pi\)
0.942542 + 0.334087i \(0.108428\pi\)
\(150\) 7.17601 3.45578i 0.585919 0.282164i
\(151\) 0.0950717 + 0.0457841i 0.00773683 + 0.00372586i 0.437748 0.899098i \(-0.355776\pi\)
−0.430011 + 0.902823i \(0.641490\pi\)
\(152\) 0.534096 + 0.669735i 0.0433209 + 0.0543226i
\(153\) 0.666870 2.92175i 0.0539132 0.236209i
\(154\) 0.643129 2.81773i 0.0518248 0.227059i
\(155\) −19.6166 + 24.5984i −1.57564 + 1.97579i
\(156\) −0.409880 1.79580i −0.0328167 0.143779i
\(157\) −13.5037 −1.07771 −0.538857 0.842397i \(-0.681144\pi\)
−0.538857 + 0.842397i \(0.681144\pi\)
\(158\) −0.531241 2.32752i −0.0422633 0.185168i
\(159\) −1.87299 0.901986i −0.148538 0.0715321i
\(160\) 11.1758 + 5.38201i 0.883528 + 0.425485i
\(161\) −0.932758 4.08668i −0.0735117 0.322076i
\(162\) 1.15439 0.0906972
\(163\) 0.581624 + 2.54826i 0.0455563 + 0.199595i 0.992585 0.121554i \(-0.0387879\pi\)
−0.947028 + 0.321150i \(0.895931\pi\)
\(164\) 1.18724 1.48875i 0.0927076 0.116252i
\(165\) 0.425413 1.86386i 0.0331184 0.145101i
\(166\) 2.81803 12.3466i 0.218722 0.958282i
\(167\) −6.37129 7.98935i −0.493026 0.618235i 0.471615 0.881805i \(-0.343671\pi\)
−0.964640 + 0.263570i \(0.915100\pi\)
\(168\) −12.5328 6.03550i −0.966929 0.465649i
\(169\) 4.84946 2.33538i 0.373036 0.179645i
\(170\) 7.44075 9.33040i 0.570679 0.715609i
\(171\) −0.173453 0.217503i −0.0132643 0.0166328i
\(172\) −6.74589 + 3.24865i −0.514370 + 0.247707i
\(173\) 23.0919 1.75564 0.877822 0.478987i \(-0.158996\pi\)
0.877822 + 0.478987i \(0.158996\pi\)
\(174\) −5.46094 2.97049i −0.413993 0.225192i
\(175\) 31.1690 2.35616
\(176\) −1.10841 + 0.533782i −0.0835495 + 0.0402353i
\(177\) 8.89533 + 11.1544i 0.668614 + 0.838416i
\(178\) −4.89927 + 6.14350i −0.367216 + 0.460474i
\(179\) −13.3241 + 6.41655i −0.995891 + 0.479596i −0.859542 0.511065i \(-0.829251\pi\)
−0.136349 + 0.990661i \(0.543537\pi\)
\(180\) −2.07422 0.998892i −0.154603 0.0744530i
\(181\) 1.80146 + 2.25895i 0.133901 + 0.167907i 0.844261 0.535931i \(-0.180039\pi\)
−0.710360 + 0.703838i \(0.751468\pi\)
\(182\) −3.20280 + 14.0324i −0.237408 + 1.04015i
\(183\) −1.60915 + 7.05014i −0.118952 + 0.521161i
\(184\) −1.78141 + 2.23382i −0.131327 + 0.164679i
\(185\) −5.27739 23.1218i −0.388001 1.69994i
\(186\) −10.5288 −0.772012
\(187\) −0.369586 1.61926i −0.0270268 0.118412i
\(188\) 2.52275 + 1.21489i 0.183991 + 0.0886052i
\(189\) 4.07016 + 1.96009i 0.296060 + 0.142575i
\(190\) −0.246513 1.08004i −0.0178839 0.0783546i
\(191\) −4.66376 −0.337458 −0.168729 0.985663i \(-0.553966\pi\)
−0.168729 + 0.985663i \(0.553966\pi\)
\(192\) 1.91160 + 8.37528i 0.137958 + 0.604433i
\(193\) −9.09293 + 11.4022i −0.654523 + 0.820746i −0.992735 0.120324i \(-0.961607\pi\)
0.338212 + 0.941070i \(0.390178\pi\)
\(194\) 0.903278 3.95752i 0.0648516 0.284133i
\(195\) −2.11857 + 9.28206i −0.151714 + 0.664702i
\(196\) −5.57926 6.99618i −0.398519 0.499727i
\(197\) −2.60517 1.25458i −0.185611 0.0893855i 0.338770 0.940869i \(-0.389989\pi\)
−0.524381 + 0.851484i \(0.675703\pi\)
\(198\) 0.576415 0.277587i 0.0409641 0.0197273i
\(199\) 2.52561 3.16701i 0.179036 0.224504i −0.684213 0.729282i \(-0.739854\pi\)
0.863249 + 0.504778i \(0.168426\pi\)
\(200\) −13.2461 16.6101i −0.936643 1.17451i
\(201\) −11.0690 + 5.33057i −0.780750 + 0.375989i
\(202\) −14.6269 −1.02914
\(203\) −14.2106 19.7458i −0.997387 1.38588i
\(204\) −2.00009 −0.140034
\(205\) −8.86755 + 4.27039i −0.619336 + 0.298257i
\(206\) 1.45212 + 1.82091i 0.101174 + 0.126869i
\(207\) 0.578530 0.725454i 0.0402106 0.0504225i
\(208\) 5.51991 2.65825i 0.382737 0.184316i
\(209\) −0.138911 0.0668958i −0.00960865 0.00462728i
\(210\) 11.2163 + 14.0647i 0.773995 + 0.970559i
\(211\) 2.93029 12.8385i 0.201730 0.883836i −0.768154 0.640266i \(-0.778824\pi\)
0.969883 0.243570i \(-0.0783186\pi\)
\(212\) −0.308728 + 1.35263i −0.0212036 + 0.0928989i
\(213\) 1.48519 1.86237i 0.101764 0.127608i
\(214\) 0.146944 + 0.643805i 0.0100449 + 0.0440096i
\(215\) 38.7004 2.63935
\(216\) −0.685187 3.00200i −0.0466211 0.204260i
\(217\) −37.1227 17.8774i −2.52006 1.21360i
\(218\) −20.2485 9.75115i −1.37140 0.660431i
\(219\) −0.203188 0.890227i −0.0137302 0.0601559i
\(220\) −1.27591 −0.0860217
\(221\) 1.84055 + 8.06397i 0.123809 + 0.542441i
\(222\) 4.94839 6.20508i 0.332114 0.416458i
\(223\) 3.39933 14.8934i 0.227636 0.997338i −0.723925 0.689878i \(-0.757664\pi\)
0.951561 0.307459i \(-0.0994788\pi\)
\(224\) −3.61474 + 15.8372i −0.241520 + 1.05817i
\(225\) 4.30181 + 5.39430i 0.286787 + 0.359620i
\(226\) −2.53450 1.22055i −0.168593 0.0811899i
\(227\) 13.2896 6.39993i 0.882061 0.424778i 0.0626842 0.998033i \(-0.480034\pi\)
0.819377 + 0.573255i \(0.194320\pi\)
\(228\) −0.115761 + 0.145159i −0.00766643 + 0.00961340i
\(229\) 6.46791 + 8.11051i 0.427412 + 0.535957i 0.948177 0.317742i \(-0.102925\pi\)
−0.520765 + 0.853700i \(0.674353\pi\)
\(230\) 3.32908 1.60320i 0.219513 0.105712i
\(231\) 2.50366 0.164729
\(232\) −4.48344 + 15.9644i −0.294352 + 1.04811i
\(233\) 0.280226 0.0183582 0.00917911 0.999958i \(-0.497078\pi\)
0.00917911 + 0.999958i \(0.497078\pi\)
\(234\) −2.87057 + 1.38239i −0.187655 + 0.0903698i
\(235\) −9.02361 11.3152i −0.588635 0.738125i
\(236\) 5.93666 7.44433i 0.386443 0.484585i
\(237\) 1.86329 0.897311i 0.121033 0.0582866i
\(238\) 14.0810 + 6.78104i 0.912734 + 0.439550i
\(239\) 4.01459 + 5.03414i 0.259682 + 0.325631i 0.894532 0.447005i \(-0.147509\pi\)
−0.634849 + 0.772636i \(0.718938\pi\)
\(240\) 1.70393 7.46542i 0.109988 0.481891i
\(241\) 3.43240 15.0383i 0.221101 0.968705i −0.735551 0.677470i \(-0.763077\pi\)
0.956651 0.291235i \(-0.0940663\pi\)
\(242\) −7.69617 + 9.65069i −0.494728 + 0.620370i
\(243\) 0.222521 + 0.974928i 0.0142747 + 0.0625417i
\(244\) 4.82619 0.308965
\(245\) 10.2921 + 45.0927i 0.657539 + 2.88087i
\(246\) −2.96749 1.42907i −0.189200 0.0911141i
\(247\) 0.691779 + 0.333143i 0.0440169 + 0.0211974i
\(248\) 6.24939 + 27.3804i 0.396837 + 1.73866i
\(249\) 10.9704 0.695222
\(250\) 1.68322 + 7.37469i 0.106456 + 0.466416i
\(251\) −2.05218 + 2.57336i −0.129533 + 0.162429i −0.842368 0.538902i \(-0.818839\pi\)
0.712836 + 0.701331i \(0.247411\pi\)
\(252\) 0.670891 2.93937i 0.0422622 0.185163i
\(253\) 0.114431 0.501353i 0.00719419 0.0315198i
\(254\) −6.61383 8.29347i −0.414988 0.520379i
\(255\) 9.31420 + 4.48548i 0.583278 + 0.280892i
\(256\) 12.6455 6.08973i 0.790341 0.380608i
\(257\) −0.246680 + 0.309326i −0.0153874 + 0.0192953i −0.789466 0.613795i \(-0.789642\pi\)
0.774078 + 0.633090i \(0.218214\pi\)
\(258\) 8.07479 + 10.1255i 0.502714 + 0.630384i
\(259\) 27.9830 13.4759i 1.73878 0.837351i
\(260\) 6.35406 0.394062
\(261\) 1.45604 5.18459i 0.0901266 0.320918i
\(262\) −15.1154 −0.933835
\(263\) 7.33709 3.53336i 0.452425 0.217876i −0.193773 0.981046i \(-0.562073\pi\)
0.646198 + 0.763170i \(0.276358\pi\)
\(264\) −1.06400 1.33421i −0.0654847 0.0821152i
\(265\) 4.47117 5.60667i 0.274662 0.344415i
\(266\) 1.30712 0.629474i 0.0801445 0.0385955i
\(267\) −6.13283 2.95341i −0.375323 0.180746i
\(268\) 5.11222 + 6.41052i 0.312278 + 0.391585i
\(269\) −1.99769 + 8.75246i −0.121801 + 0.533647i 0.876804 + 0.480848i \(0.159671\pi\)
−0.998605 + 0.0527984i \(0.983186\pi\)
\(270\) −0.886111 + 3.88230i −0.0539270 + 0.236270i
\(271\) 3.14213 3.94011i 0.190871 0.239344i −0.677183 0.735815i \(-0.736799\pi\)
0.868054 + 0.496470i \(0.165371\pi\)
\(272\) −1.48032 6.48573i −0.0897579 0.393255i
\(273\) −12.4683 −0.754617
\(274\) 1.95238 + 8.55391i 0.117947 + 0.516761i
\(275\) 3.44513 + 1.65909i 0.207749 + 0.100047i
\(276\) −0.557938 0.268689i −0.0335839 0.0161732i
\(277\) −0.452859 1.98410i −0.0272097 0.119213i 0.959499 0.281711i \(-0.0909020\pi\)
−0.986709 + 0.162498i \(0.948045\pi\)
\(278\) 10.2199 0.612948
\(279\) −2.02955 8.89204i −0.121506 0.532352i
\(280\) 29.9181 37.5162i 1.78795 2.24202i
\(281\) −5.30139 + 23.2269i −0.316255 + 1.38560i 0.527811 + 0.849362i \(0.323013\pi\)
−0.844065 + 0.536240i \(0.819844\pi\)
\(282\) 1.07772 4.72182i 0.0641776 0.281180i
\(283\) −9.34352 11.7164i −0.555414 0.696468i 0.422288 0.906462i \(-0.361227\pi\)
−0.977703 + 0.209994i \(0.932656\pi\)
\(284\) −1.43233 0.689774i −0.0849932 0.0409306i
\(285\) 0.864623 0.416381i 0.0512159 0.0246643i
\(286\) −1.10093 + 1.38053i −0.0650996 + 0.0816323i
\(287\) −8.03636 10.0773i −0.474371 0.594843i
\(288\) −3.23978 + 1.56019i −0.190906 + 0.0919353i
\(289\) −8.01868 −0.471687
\(290\) 14.1818 16.0855i 0.832786 0.944572i
\(291\) 3.51641 0.206135
\(292\) −0.549057 + 0.264412i −0.0321311 + 0.0154735i
\(293\) 18.9354 + 23.7443i 1.10622 + 1.38715i 0.913957 + 0.405810i \(0.133011\pi\)
0.192261 + 0.981344i \(0.438418\pi\)
\(294\) −9.65048 + 12.1013i −0.562827 + 0.705763i
\(295\) −44.3413 + 21.3536i −2.58165 + 1.24326i
\(296\) −19.0735 9.18532i −1.10863 0.533886i
\(297\) 0.345544 + 0.433299i 0.0200505 + 0.0251425i
\(298\) −2.04731 + 8.96985i −0.118598 + 0.519610i
\(299\) −0.569868 + 2.49675i −0.0329563 + 0.144391i
\(300\) 2.87098 3.60010i 0.165756 0.207852i
\(301\) 11.2778 + 49.4111i 0.650039 + 2.84801i
\(302\) −0.121813 −0.00700954
\(303\) −2.81949 12.3530i −0.161976 0.709662i
\(304\) −0.556387 0.267942i −0.0319110 0.0153675i
\(305\) −22.4750 10.8234i −1.28692 0.619746i
\(306\) 0.769826 + 3.37283i 0.0440080 + 0.192812i
\(307\) 2.10479 0.120127 0.0600635 0.998195i \(-0.480870\pi\)
0.0600635 + 0.998195i \(0.480870\pi\)
\(308\) −0.371814 1.62903i −0.0211861 0.0928223i
\(309\) −1.25792 + 1.57738i −0.0715604 + 0.0897339i
\(310\) 8.08196 35.4094i 0.459025 2.01112i
\(311\) −3.75530 + 16.4530i −0.212943 + 0.932965i 0.749611 + 0.661878i \(0.230240\pi\)
−0.962555 + 0.271087i \(0.912617\pi\)
\(312\) 5.29875 + 6.64443i 0.299983 + 0.376167i
\(313\) −13.3609 6.43428i −0.755203 0.363687i 0.0163375 0.999867i \(-0.494799\pi\)
−0.771541 + 0.636180i \(0.780514\pi\)
\(314\) 14.0448 6.76361i 0.792593 0.381693i
\(315\) −9.71620 + 12.1837i −0.547446 + 0.686475i
\(316\) −0.860555 1.07910i −0.0484100 0.0607042i
\(317\) 4.96094 2.38906i 0.278634 0.134183i −0.289348 0.957224i \(-0.593439\pi\)
0.567982 + 0.823041i \(0.307724\pi\)
\(318\) 2.39981 0.134575
\(319\) −0.519661 2.93892i −0.0290954 0.164548i
\(320\) −29.6341 −1.65660
\(321\) −0.515395 + 0.248201i −0.0287665 + 0.0138532i
\(322\) 3.01703 + 3.78323i 0.168132 + 0.210831i
\(323\) 0.519818 0.651831i 0.0289234 0.0362688i
\(324\) 0.601297 0.289570i 0.0334054 0.0160872i
\(325\) −17.1569 8.26231i −0.951691 0.458310i
\(326\) −1.88127 2.35904i −0.104194 0.130655i
\(327\) 4.33213 18.9803i 0.239567 1.04961i
\(328\) −1.95496 + 8.56523i −0.107944 + 0.472936i
\(329\) 11.8172 14.8184i 0.651506 0.816963i
\(330\) 0.491091 + 2.15161i 0.0270337 + 0.118442i
\(331\) −5.88833 −0.323652 −0.161826 0.986819i \(-0.551738\pi\)
−0.161826 + 0.986819i \(0.551738\pi\)
\(332\) −1.62920 7.13798i −0.0894138 0.391747i
\(333\) 6.19430 + 2.98302i 0.339446 + 0.163468i
\(334\) 10.6282 + 5.11827i 0.581549 + 0.280059i
\(335\) −9.43054 41.3179i −0.515246 2.25744i
\(336\) 10.0281 0.547076
\(337\) −3.87848 16.9927i −0.211274 0.925652i −0.963703 0.266978i \(-0.913975\pi\)
0.752428 0.658674i \(-0.228882\pi\)
\(338\) −3.87405 + 4.85790i −0.210720 + 0.264235i
\(339\) 0.542253 2.37577i 0.0294512 0.129034i
\(340\) 1.53527 6.72648i 0.0832619 0.364794i
\(341\) −3.15161 3.95199i −0.170669 0.214012i
\(342\) 0.289343 + 0.139340i 0.0156459 + 0.00753466i
\(343\) −26.0821 + 12.5605i −1.40830 + 0.678201i
\(344\) 21.5386 27.0086i 1.16128 1.45620i
\(345\) 1.99568 + 2.50251i 0.107444 + 0.134731i
\(346\) −24.0171 + 11.5660i −1.29117 + 0.621794i
\(347\) −2.81562 −0.151150 −0.0755751 0.997140i \(-0.524079\pi\)
−0.0755751 + 0.997140i \(0.524079\pi\)
\(348\) −3.58962 0.177429i −0.192424 0.00951120i
\(349\) 23.4949 1.25765 0.628826 0.777546i \(-0.283536\pi\)
0.628826 + 0.777546i \(0.283536\pi\)
\(350\) −32.4179 + 15.6116i −1.73281 + 0.834477i
\(351\) −1.72082 2.15784i −0.0918506 0.115177i
\(352\) −1.24254 + 1.55809i −0.0662274 + 0.0830465i
\(353\) −14.5563 + 7.00993i −0.774752 + 0.373101i −0.779108 0.626889i \(-0.784328\pi\)
0.00435584 + 0.999991i \(0.498613\pi\)
\(354\) −14.8386 7.14592i −0.788665 0.379801i
\(355\) 5.12329 + 6.42440i 0.271916 + 0.340972i
\(356\) −1.01088 + 4.42897i −0.0535767 + 0.234735i
\(357\) −3.01261 + 13.1991i −0.159444 + 0.698570i
\(358\) 10.6441 13.3473i 0.562559 0.705426i
\(359\) 1.92263 + 8.42361i 0.101473 + 0.444581i 0.999984 + 0.00563099i \(0.00179241\pi\)
−0.898511 + 0.438950i \(0.855350\pi\)
\(360\) 10.6219 0.559825
\(361\) 4.21068 + 18.4482i 0.221615 + 0.970957i
\(362\) −3.00508 1.44717i −0.157943 0.0760615i
\(363\) −9.63393 4.63945i −0.505650 0.243508i
\(364\) 1.85165 + 8.11260i 0.0970527 + 0.425216i
\(365\) 3.14988 0.164872
\(366\) −1.85758 8.13859i −0.0970973 0.425411i
\(367\) 8.38364 10.5127i 0.437622 0.548761i −0.513293 0.858214i \(-0.671574\pi\)
0.950915 + 0.309453i \(0.100146\pi\)
\(368\) 0.458336 2.00810i 0.0238924 0.104679i
\(369\) 0.634891 2.78164i 0.0330511 0.144806i
\(370\) 17.0698 + 21.4049i 0.887418 + 1.11279i
\(371\) 8.46131 + 4.07475i 0.439289 + 0.211551i
\(372\) −5.48426 + 2.64108i −0.284346 + 0.136934i
\(373\) −1.99095 + 2.49657i −0.103088 + 0.129268i −0.830699 0.556722i \(-0.812059\pi\)
0.727611 + 0.685989i \(0.240630\pi\)
\(374\) 1.19543 + 1.49903i 0.0618144 + 0.0775128i
\(375\) −5.90377 + 2.84310i −0.304869 + 0.146817i
\(376\) −12.9188 −0.666238
\(377\) 2.58793 + 14.6359i 0.133285 + 0.753788i
\(378\) −5.21499 −0.268230
\(379\) 14.8677 7.15991i 0.763703 0.367780i −0.0111367 0.999938i \(-0.503545\pi\)
0.774839 + 0.632158i \(0.217831\pi\)
\(380\) −0.399325 0.500737i −0.0204849 0.0256873i
\(381\) 5.72929 7.18431i 0.293521 0.368063i
\(382\) 4.85062 2.33594i 0.248179 0.119517i
\(383\) −1.42189 0.684747i −0.0726553 0.0349889i 0.397203 0.917731i \(-0.369981\pi\)
−0.469859 + 0.882742i \(0.655695\pi\)
\(384\) −1.69913 2.13064i −0.0867083 0.108729i
\(385\) −1.92182 + 8.42003i −0.0979449 + 0.429125i
\(386\) 3.74625 16.4134i 0.190679 0.835420i
\(387\) −6.99487 + 8.77129i −0.355569 + 0.445870i
\(388\) −0.522215 2.28797i −0.0265114 0.116154i
\(389\) −14.0108 −0.710375 −0.355188 0.934795i \(-0.615583\pi\)
−0.355188 + 0.934795i \(0.615583\pi\)
\(390\) −2.44565 10.7151i −0.123840 0.542580i
\(391\) 2.50540 + 1.20654i 0.126703 + 0.0610171i
\(392\) 37.1977 + 17.9135i 1.87877 + 0.904766i
\(393\) −2.91367 12.7656i −0.146975 0.643940i
\(394\) 3.33794 0.168163
\(395\) 1.58747 + 6.95517i 0.0798744 + 0.349952i
\(396\) 0.230613 0.289179i 0.0115887 0.0145318i
\(397\) −5.32177 + 23.3162i −0.267092 + 1.17021i 0.646286 + 0.763095i \(0.276321\pi\)
−0.913378 + 0.407112i \(0.866536\pi\)
\(398\) −1.04054 + 4.55891i −0.0521576 + 0.228517i
\(399\) 0.783578 + 0.982576i 0.0392280 + 0.0491903i
\(400\) 13.7990 + 6.64525i 0.689950 + 0.332262i
\(401\) 32.3263 15.5675i 1.61430 0.777406i 0.614368 0.789019i \(-0.289411\pi\)
0.999933 + 0.0116132i \(0.00369666\pi\)
\(402\) 8.84263 11.0883i 0.441030 0.553034i
\(403\) 15.6951 + 19.6810i 0.781829 + 0.980383i
\(404\) −7.61885 + 3.66904i −0.379052 + 0.182542i
\(405\) −3.44957 −0.171411
\(406\) 24.6700 + 13.4193i 1.22435 + 0.665987i
\(407\) 3.81028 0.188869
\(408\) 8.31415 4.00388i 0.411612 0.198222i
\(409\) 9.36367 + 11.7417i 0.463004 + 0.580588i 0.957442 0.288624i \(-0.0931978\pi\)
−0.494439 + 0.869212i \(0.664626\pi\)
\(410\) 7.08394 8.88298i 0.349851 0.438699i
\(411\) −6.84779 + 3.29772i −0.337777 + 0.162665i
\(412\) 1.21314 + 0.584219i 0.0597673 + 0.0287824i
\(413\) −40.1850 50.3904i −1.97737 2.47955i
\(414\) −0.238352 + 1.04429i −0.0117144 + 0.0513240i
\(415\) −8.42092 + 36.8945i −0.413367 + 1.81108i
\(416\) 6.18786 7.75934i 0.303385 0.380433i
\(417\) 1.97000 + 8.63111i 0.0964711 + 0.422667i
\(418\) 0.177983 0.00870541
\(419\) −8.22309 36.0277i −0.401724 1.76007i −0.620415 0.784274i \(-0.713036\pi\)
0.218691 0.975794i \(-0.429821\pi\)
\(420\) 9.37036 + 4.51253i 0.457227 + 0.220189i
\(421\) −1.15916 0.558222i −0.0564940 0.0272061i 0.405423 0.914129i \(-0.367124\pi\)
−0.461917 + 0.886923i \(0.652838\pi\)
\(422\) 3.38269 + 14.8206i 0.164667 + 0.721453i
\(423\) 4.19552 0.203993
\(424\) −1.42441 6.24075i −0.0691755 0.303078i
\(425\) −12.8920 + 16.1661i −0.625355 + 0.784170i
\(426\) −0.611894 + 2.68088i −0.0296464 + 0.129889i
\(427\) 7.26938 31.8492i 0.351790 1.54129i
\(428\) 0.238034 + 0.298485i 0.0115058 + 0.0144278i
\(429\) −1.37813 0.663673i −0.0665368 0.0320424i
\(430\) −40.2510 + 19.3839i −1.94108 + 0.934774i
\(431\) −15.7634 + 19.7667i −0.759298 + 0.952130i −0.999829 0.0185118i \(-0.994107\pi\)
0.240531 + 0.970642i \(0.422679\pi\)
\(432\) 1.38403 + 1.73552i 0.0665892 + 0.0835002i
\(433\) 9.33295 4.49451i 0.448513 0.215993i −0.195972 0.980610i \(-0.562786\pi\)
0.644485 + 0.764617i \(0.277072\pi\)
\(434\) 47.5644 2.28316
\(435\) 16.3186 + 8.87649i 0.782415 + 0.425595i
\(436\) −12.9930 −0.622253
\(437\) 0.232572 0.112001i 0.0111254 0.00535773i
\(438\) 0.657217 + 0.824124i 0.0314031 + 0.0393782i
\(439\) −8.35161 + 10.4726i −0.398601 + 0.499829i −0.940113 0.340864i \(-0.889281\pi\)
0.541512 + 0.840693i \(0.317852\pi\)
\(440\) 5.30381 2.55418i 0.252849 0.121766i
\(441\) −12.0803 5.81757i −0.575252 0.277027i
\(442\) −5.95329 7.46519i −0.283169 0.355083i
\(443\) −6.85215 + 30.0213i −0.325556 + 1.42635i 0.501951 + 0.864896i \(0.332616\pi\)
−0.827506 + 0.561456i \(0.810241\pi\)
\(444\) 1.02102 4.47337i 0.0484553 0.212297i
\(445\) 14.6402 18.3582i 0.694010 0.870261i
\(446\) 3.92414 + 17.1928i 0.185813 + 0.814102i
\(447\) −7.97006 −0.376971
\(448\) −8.63573 37.8356i −0.408000 1.78756i
\(449\) −5.54036 2.66810i −0.261466 0.125915i 0.298559 0.954391i \(-0.403494\pi\)
−0.560025 + 0.828476i \(0.689208\pi\)
\(450\) −7.17601 3.45578i −0.338280 0.162907i
\(451\) −0.351863 1.54161i −0.0165686 0.0725917i
\(452\) −1.62634 −0.0764965
\(453\) −0.0234808 0.102876i −0.00110322 0.00483354i
\(454\) −10.6165 + 13.3127i −0.498259 + 0.624797i
\(455\) 9.57071 41.9320i 0.448682 1.96580i
\(456\) 0.190616 0.835145i 0.00892643 0.0391093i
\(457\) −10.6275 13.3265i −0.497134 0.623386i 0.468446 0.883492i \(-0.344814\pi\)
−0.965580 + 0.260106i \(0.916242\pi\)
\(458\) −10.7894 5.19589i −0.504154 0.242788i
\(459\) −2.70010 + 1.30030i −0.126030 + 0.0606928i
\(460\) 1.33190 1.67015i 0.0621001 0.0778711i
\(461\) −10.3278 12.9506i −0.481012 0.603170i 0.480817 0.876821i \(-0.340340\pi\)
−0.961829 + 0.273651i \(0.911769\pi\)
\(462\) −2.60398 + 1.25401i −0.121148 + 0.0583418i
\(463\) 28.9072 1.34343 0.671715 0.740809i \(-0.265558\pi\)
0.671715 + 0.740809i \(0.265558\pi\)
\(464\) −2.08143 11.7714i −0.0966280 0.546476i
\(465\) 31.4626 1.45904
\(466\) −0.291454 + 0.140357i −0.0135013 + 0.00650190i
\(467\) 14.1479 + 17.7409i 0.654688 + 0.820953i 0.992753 0.120170i \(-0.0383438\pi\)
−0.338065 + 0.941123i \(0.609772\pi\)
\(468\) −1.14846 + 1.44012i −0.0530875 + 0.0665696i
\(469\) 50.0048 24.0810i 2.30901 1.11196i
\(470\) 15.0526 + 7.24896i 0.694326 + 0.334370i
\(471\) 8.41944 + 10.5576i 0.387947 + 0.486470i
\(472\) −9.77556 + 42.8295i −0.449957 + 1.97139i
\(473\) −1.38355 + 6.06173i −0.0636158 + 0.278719i
\(474\) −1.48851 + 1.86653i −0.0683693 + 0.0857324i
\(475\) 0.427114 + 1.87131i 0.0195973 + 0.0858616i
\(476\) 9.03548 0.414140
\(477\) 0.462591 + 2.02674i 0.0211806 + 0.0927982i
\(478\) −6.69689 3.22505i −0.306309 0.147511i
\(479\) −5.87751 2.83046i −0.268550 0.129327i 0.294763 0.955570i \(-0.404759\pi\)
−0.563313 + 0.826243i \(0.690474\pi\)
\(480\) −2.76021 12.0933i −0.125986 0.551979i
\(481\) −18.9753 −0.865200
\(482\) 3.96232 + 17.3601i 0.180479 + 0.790730i
\(483\) −2.61353 + 3.27726i −0.118920 + 0.149121i
\(484\) −1.58798 + 6.95738i −0.0721807 + 0.316244i
\(485\) −2.69920 + 11.8260i −0.122564 + 0.536990i
\(486\) −0.719749 0.902536i −0.0326485 0.0409399i
\(487\) 21.1411 + 10.1810i 0.957996 + 0.461346i 0.846482 0.532417i \(-0.178716\pi\)
0.111513 + 0.993763i \(0.464430\pi\)
\(488\) −20.0619 + 9.66132i −0.908161 + 0.437347i
\(489\) 1.62967 2.04355i 0.0736964 0.0924123i
\(490\) −33.2900 41.7444i −1.50389 1.88582i
\(491\) 27.0162 13.0103i 1.21923 0.587148i 0.290130 0.956987i \(-0.406301\pi\)
0.929096 + 0.369839i \(0.120587\pi\)
\(492\) −1.90418 −0.0858470
\(493\) 16.1190 + 0.796738i 0.725965 + 0.0358833i
\(494\) −0.886358 −0.0398791
\(495\) −1.72246 + 0.829494i −0.0774189 + 0.0372830i
\(496\) −12.6233 15.8292i −0.566805 0.710750i
\(497\) −6.70942 + 8.41334i −0.300958 + 0.377390i
\(498\) −11.4100 + 5.49475i −0.511293 + 0.246226i
\(499\) −13.9764 6.73068i −0.625669 0.301307i 0.0940543 0.995567i \(-0.470017\pi\)
−0.719724 + 0.694261i \(0.755732\pi\)
\(500\) 2.72664 + 3.41910i 0.121939 + 0.152907i
\(501\) −2.27389 + 9.96256i −0.101590 + 0.445094i
\(502\) 0.845492 3.70434i 0.0377361 0.165333i
\(503\) −9.15733 + 11.4829i −0.408305 + 0.511999i −0.942885 0.333120i \(-0.891899\pi\)
0.534579 + 0.845118i \(0.320470\pi\)
\(504\) 3.09535 + 13.5616i 0.137878 + 0.604083i
\(505\) 43.7085 1.94500
\(506\) 0.132097 + 0.578755i 0.00587244 + 0.0257288i
\(507\) −4.84946 2.33538i −0.215372 0.103718i
\(508\) −5.52537 2.66088i −0.245149 0.118057i
\(509\) −7.27387 31.8689i −0.322408 1.41256i −0.833254 0.552891i \(-0.813525\pi\)
0.510845 0.859673i \(-0.329333\pi\)
\(510\) −11.9340 −0.528448
\(511\) 0.917911 + 4.02163i 0.0406060 + 0.177906i
\(512\) −13.5002 + 16.9287i −0.596631 + 0.748151i
\(513\) −0.0619045 + 0.271221i −0.00273315 + 0.0119747i
\(514\) 0.101631 0.445275i 0.00448275 0.0196402i
\(515\) −4.33928 5.44129i −0.191212 0.239772i
\(516\) 6.74589 + 3.24865i 0.296971 + 0.143014i
\(517\) 2.09493 1.00886i 0.0921349 0.0443698i
\(518\) −22.3545 + 28.0317i −0.982201 + 1.23164i
\(519\) −14.3976 18.0540i −0.631983 0.792481i
\(520\) −26.4131 + 12.7199i −1.15829 + 0.557804i
\(521\) −33.5048 −1.46787 −0.733937 0.679218i \(-0.762319\pi\)
−0.733937 + 0.679218i \(0.762319\pi\)
\(522\) 1.08242 + 6.12161i 0.0473764 + 0.267935i
\(523\) −23.3879 −1.02268 −0.511341 0.859378i \(-0.670851\pi\)
−0.511341 + 0.859378i \(0.670851\pi\)
\(524\) −7.87333 + 3.79160i −0.343948 + 0.165637i
\(525\) −19.4336 24.3689i −0.848150 1.06355i
\(526\) −5.86132 + 7.34986i −0.255566 + 0.320469i
\(527\) 24.6268 11.8597i 1.07276 0.516615i
\(528\) 1.10841 + 0.533782i 0.0482373 + 0.0232299i
\(529\) −13.8035 17.3090i −0.600150 0.752564i
\(530\) −1.84210 + 8.07079i −0.0800159 + 0.350573i
\(531\) 3.17471 13.9093i 0.137771 0.603612i
\(532\) 0.522952 0.655761i 0.0226729 0.0284309i
\(533\) 1.75229 + 7.67727i 0.0759000 + 0.332540i
\(534\) 7.85783 0.340041
\(535\) −0.439103 1.92384i −0.0189841 0.0831747i
\(536\) −34.0838 16.4139i −1.47220 0.708972i
\(537\) 13.3241 + 6.41655i 0.574978 + 0.276895i
\(538\) −2.30611 10.1037i −0.0994234 0.435602i
\(539\) −7.43091 −0.320072
\(540\) 0.512290 + 2.24449i 0.0220455 + 0.0965875i
\(541\) −9.10698 + 11.4198i −0.391540 + 0.490975i −0.938061 0.346470i \(-0.887380\pi\)
0.546521 + 0.837445i \(0.315952\pi\)
\(542\) −1.29455 + 5.67177i −0.0556055 + 0.243624i
\(543\) 0.642932 2.81687i 0.0275908 0.120883i
\(544\) −6.71900 8.42536i −0.288075 0.361234i
\(545\) 60.5071 + 29.1387i 2.59184 + 1.24816i
\(546\) 12.9679 6.24500i 0.554974 0.267262i
\(547\) 7.68546 9.63726i 0.328607 0.412060i −0.589893 0.807481i \(-0.700830\pi\)
0.918500 + 0.395422i \(0.129402\pi\)
\(548\) 3.16264 + 3.96583i 0.135101 + 0.169412i
\(549\) 6.51531 3.13761i 0.278067 0.133910i
\(550\) −4.41415 −0.188220
\(551\) 0.990756 1.12375i 0.0422076 0.0478732i
\(552\) 2.85716 0.121609
\(553\) −8.41746 + 4.05363i −0.357947 + 0.172378i
\(554\) 1.46478 + 1.83678i 0.0622326 + 0.0780372i
\(555\) −14.7869 + 18.5422i −0.627670 + 0.787073i
\(556\) 5.32333 2.56358i 0.225760 0.108720i
\(557\) 22.4253 + 10.7994i 0.950190 + 0.457587i 0.843753 0.536732i \(-0.180341\pi\)
0.106437 + 0.994319i \(0.466056\pi\)
\(558\) 6.56462 + 8.23177i 0.277903 + 0.348479i
\(559\) 6.89013 30.1876i 0.291421 1.27680i
\(560\) −7.69758 + 33.7253i −0.325282 + 1.42515i
\(561\) −1.03556 + 1.29855i −0.0437212 + 0.0548247i
\(562\) −6.11986 26.8129i −0.258151 1.13103i
\(563\) 16.2217 0.683662 0.341831 0.939762i \(-0.388953\pi\)
0.341831 + 0.939762i \(0.388953\pi\)
\(564\) −0.623069 2.72984i −0.0262359 0.114947i
\(565\) 7.57368 + 3.64729i 0.318627 + 0.153443i
\(566\) 15.5863 + 7.50596i 0.655140 + 0.315499i
\(567\) −1.00525 4.40427i −0.0422164 0.184962i
\(568\) 7.33486 0.307764
\(569\) 9.97556 + 43.7058i 0.418197 + 1.83224i 0.542575 + 0.840007i \(0.317449\pi\)
−0.124378 + 0.992235i \(0.539693\pi\)
\(570\) −0.690714 + 0.866127i −0.0289308 + 0.0362781i
\(571\) 3.78155 16.5681i 0.158253 0.693352i −0.832081 0.554653i \(-0.812851\pi\)
0.990335 0.138699i \(-0.0442920\pi\)
\(572\) −0.227160 + 0.995251i −0.00949802 + 0.0416135i
\(573\) 2.90781 + 3.64627i 0.121475 + 0.152325i
\(574\) 13.4058 + 6.45587i 0.559545 + 0.269463i
\(575\) −5.76804 + 2.77774i −0.240544 + 0.115840i
\(576\) 5.35619 6.71645i 0.223175 0.279852i
\(577\) −3.45830 4.33657i −0.143971 0.180534i 0.704618 0.709587i \(-0.251119\pi\)
−0.848589 + 0.529053i \(0.822547\pi\)
\(578\) 8.33997 4.01632i 0.346897 0.167057i
\(579\) 14.5839 0.606087
\(580\) 3.35211 11.9360i 0.139189 0.495616i
\(581\) −49.5592 −2.05606
\(582\) −3.65730 + 1.76126i −0.151600 + 0.0730066i
\(583\) 0.718340 + 0.900769i 0.0297506 + 0.0373061i
\(584\) 1.75305 2.19826i 0.0725419 0.0909647i
\(585\) 8.57791 4.13090i 0.354653 0.170792i
\(586\) −31.5869 15.2114i −1.30484 0.628379i
\(587\) −11.9358 14.9671i −0.492644 0.617756i 0.471908 0.881648i \(-0.343565\pi\)
−0.964552 + 0.263891i \(0.914994\pi\)
\(588\) −1.99122 + 8.72409i −0.0821164 + 0.359775i
\(589\) 0.564613 2.47373i 0.0232645 0.101928i
\(590\) 35.4225 44.4184i 1.45832 1.82868i
\(591\) 0.643424 + 2.81903i 0.0264669 + 0.115959i
\(592\) 15.2616 0.627246
\(593\) −7.05758 30.9213i −0.289820 1.26978i −0.884772 0.466024i \(-0.845686\pi\)
0.594952 0.803761i \(-0.297171\pi\)
\(594\) −0.576415 0.277587i −0.0236506 0.0113895i
\(595\) −42.0772 20.2633i −1.72500 0.830715i
\(596\) 1.18362 + 5.18577i 0.0484829 + 0.212418i
\(597\) −4.05076 −0.165787
\(598\) −0.657848 2.88222i −0.0269014 0.117863i
\(599\) −29.4026 + 36.8696i −1.20136 + 1.50645i −0.391129 + 0.920336i \(0.627915\pi\)
−0.810227 + 0.586117i \(0.800656\pi\)
\(600\) −4.72749 + 20.7125i −0.192999 + 0.845584i
\(601\) −3.29442 + 14.4338i −0.134382 + 0.588766i 0.862230 + 0.506517i \(0.169067\pi\)
−0.996612 + 0.0822488i \(0.973790\pi\)
\(602\) −36.4781 45.7421i −1.48674 1.86431i
\(603\) 11.0690 + 5.33057i 0.450766 + 0.217078i
\(604\) −0.0634499 + 0.0305559i −0.00258174 + 0.00124330i
\(605\) 22.9979 28.8385i 0.934998 1.17245i
\(606\) 9.11971 + 11.4358i 0.370463 + 0.464546i
\(607\) −10.5442 + 5.07781i −0.427975 + 0.206102i −0.635456 0.772137i \(-0.719188\pi\)
0.207481 + 0.978239i \(0.433474\pi\)
\(608\) −1.00036 −0.0405700
\(609\) −6.57771 + 23.4216i −0.266542 + 0.949089i
\(610\) 28.7967 1.16594
\(611\) −10.4328 + 5.02418i −0.422066 + 0.203256i
\(612\) 1.24704 + 1.56373i 0.0504084 + 0.0632102i
\(613\) −28.6483 + 35.9238i −1.15709 + 1.45095i −0.287091 + 0.957903i \(0.592688\pi\)
−0.870003 + 0.493046i \(0.835883\pi\)
\(614\) −2.18913 + 1.05423i −0.0883460 + 0.0425452i
\(615\) 8.86755 + 4.27039i 0.357574 + 0.172199i
\(616\) 4.80666 + 6.02736i 0.193666 + 0.242849i
\(617\) 9.15351 40.1041i 0.368506 1.61453i −0.362378 0.932031i \(-0.618035\pi\)
0.730885 0.682501i \(-0.239108\pi\)
\(618\) 0.518257 2.27063i 0.0208474 0.0913382i
\(619\) −1.85196 + 2.32229i −0.0744367 + 0.0933407i −0.817656 0.575708i \(-0.804727\pi\)
0.743219 + 0.669048i \(0.233298\pi\)
\(620\) −4.67245 20.4713i −0.187650 0.822149i
\(621\) −0.927891 −0.0372350
\(622\) −4.33507 18.9932i −0.173820 0.761557i
\(623\) 27.7053 + 13.3421i 1.10999 + 0.534542i
\(624\) −5.51991 2.65825i −0.220973 0.106415i
\(625\) 2.64663 + 11.5956i 0.105865 + 0.463825i
\(626\) 17.1190 0.684212
\(627\) 0.0343081 + 0.150314i 0.00137013 + 0.00600295i
\(628\) 5.61905 7.04606i 0.224224 0.281168i
\(629\) −4.58483 + 20.0875i −0.182809 + 0.800940i
\(630\) 4.00304 17.5384i 0.159485 0.698748i
\(631\) 13.4129 + 16.8192i 0.533959 + 0.669563i 0.973507 0.228656i \(-0.0734330\pi\)
−0.439549 + 0.898219i \(0.644862\pi\)
\(632\) 5.73743 + 2.76300i 0.228223 + 0.109906i
\(633\) −11.8645 + 5.71365i −0.471572 + 0.227097i
\(634\) −3.96310 + 4.96957i −0.157395 + 0.197367i
\(635\) 19.7636 + 24.7828i 0.784296 + 0.983476i
\(636\) 1.25002 0.601976i 0.0495664 0.0238699i
\(637\) 37.0062 1.46624
\(638\) 2.01250 + 2.79639i 0.0796756 + 0.110710i
\(639\) −2.38207 −0.0942331
\(640\) 8.46978 4.07883i 0.334797 0.161230i
\(641\) −20.0815 25.1814i −0.793172 0.994606i −0.999869 0.0162011i \(-0.994843\pi\)
0.206697 0.978405i \(-0.433729\pi\)
\(642\) 0.411729 0.516291i 0.0162496 0.0203764i
\(643\) −35.1799 + 16.9417i −1.38736 + 0.668117i −0.970555 0.240880i \(-0.922564\pi\)
−0.416803 + 0.908997i \(0.636850\pi\)
\(644\) 2.52051 + 1.21381i 0.0993218 + 0.0478309i
\(645\) −24.1293 30.2572i −0.950091 1.19138i
\(646\) −0.214163 + 0.938308i −0.00842612 + 0.0369173i
\(647\) 0.917446 4.01959i 0.0360685 0.158027i −0.953687 0.300802i \(-0.902746\pi\)
0.989755 + 0.142776i \(0.0456027\pi\)
\(648\) −1.91985 + 2.40742i −0.0754188 + 0.0945722i
\(649\) −1.75945 7.70867i −0.0690646 0.302592i
\(650\) 21.9826 0.862229
\(651\) 9.16856 + 40.1701i 0.359344 + 1.57439i
\(652\) −1.57167 0.756875i −0.0615512 0.0296415i
\(653\) 13.7671 + 6.62990i 0.538749 + 0.259448i 0.683412 0.730033i \(-0.260495\pi\)
−0.144663 + 0.989481i \(0.546210\pi\)
\(654\) 5.00096 + 21.9106i 0.195553 + 0.856773i
\(655\) 45.1684 1.76488
\(656\) −1.40934 6.17471i −0.0550254 0.241082i
\(657\) −0.569321 + 0.713906i −0.0222113 + 0.0278521i
\(658\) −4.86866 + 21.3310i −0.189800 + 0.831569i
\(659\) 7.68022 33.6492i 0.299179 1.31079i −0.572175 0.820132i \(-0.693900\pi\)
0.871353 0.490656i \(-0.163243\pi\)
\(660\) 0.795516 + 0.997545i 0.0309654 + 0.0388294i
\(661\) −10.7766 5.18973i −0.419160 0.201857i 0.212401 0.977182i \(-0.431872\pi\)
−0.631562 + 0.775325i \(0.717586\pi\)
\(662\) 6.12425 2.94928i 0.238026 0.114627i
\(663\) 5.15710 6.46680i 0.200285 0.251150i
\(664\) 21.0616 + 26.4104i 0.817347 + 1.02492i
\(665\) −3.90597 + 1.88101i −0.151467 + 0.0729426i
\(666\) −7.93660 −0.307537
\(667\) 4.38948 + 2.38766i 0.169961 + 0.0924506i
\(668\) 6.81990 0.263870
\(669\) −13.7636 + 6.62820i −0.532131 + 0.256261i
\(670\) 30.5033 + 38.2499i 1.17845 + 1.47772i
\(671\) 2.49878 3.13338i 0.0964645 0.120963i
\(672\) 14.6358 7.04823i 0.564588 0.271891i
\(673\) 15.9364 + 7.67456i 0.614303 + 0.295833i 0.715043 0.699080i \(-0.246407\pi\)
−0.100741 + 0.994913i \(0.532121\pi\)
\(674\) 12.5450 + 15.7310i 0.483216 + 0.605934i
\(675\) 1.53530 6.72658i 0.0590936 0.258906i
\(676\) −0.799345 + 3.50216i −0.0307440 + 0.134698i
\(677\) 18.5642 23.2788i 0.713480 0.894675i −0.284469 0.958685i \(-0.591817\pi\)
0.997949 + 0.0640097i \(0.0203889\pi\)
\(678\) 0.625970 + 2.74256i 0.0240403 + 0.105327i
\(679\) −15.8855 −0.609629
\(680\) 7.08344 + 31.0346i 0.271638 + 1.19012i
\(681\) −13.2896 6.39993i −0.509258 0.245246i
\(682\) 5.25732 + 2.53179i 0.201313 + 0.0969473i
\(683\) 3.77624 + 16.5448i 0.144494 + 0.633069i 0.994359 + 0.106068i \(0.0338262\pi\)
−0.849865 + 0.527000i \(0.823317\pi\)
\(684\) 0.185665 0.00709910
\(685\) −5.83414 25.5611i −0.222911 0.976638i
\(686\) 20.8360 26.1275i 0.795520 0.997551i
\(687\) 2.30837 10.1136i 0.0880699 0.385859i
\(688\) −5.54162 + 24.2794i −0.211272 + 0.925645i
\(689\) −3.57735 4.48586i −0.136286 0.170898i
\(690\) −3.32908 1.60320i −0.126736 0.0610327i
\(691\) 22.2454 10.7128i 0.846254 0.407534i 0.0400683 0.999197i \(-0.487242\pi\)
0.806186 + 0.591662i \(0.201528\pi\)
\(692\) −9.60878 + 12.0490i −0.365271 + 0.458036i
\(693\) −1.56101 1.95744i −0.0592978 0.0743571i
\(694\) 2.92843 1.41026i 0.111162 0.0535327i
\(695\) −30.5394 −1.15842
\(696\) 15.2768 6.44834i 0.579067 0.244424i
\(697\) 8.55063 0.323878
\(698\) −24.4363 + 11.7679i −0.924926 + 0.445421i
\(699\) −0.174718 0.219090i −0.00660844 0.00828673i
\(700\) −12.9698 + 16.2636i −0.490211 + 0.614705i
\(701\) −22.7891 + 10.9746i −0.860732 + 0.414507i −0.811550 0.584283i \(-0.801376\pi\)
−0.0491820 + 0.998790i \(0.515661\pi\)
\(702\) 2.87057 + 1.38239i 0.108343 + 0.0521750i
\(703\) 1.19251 + 1.49537i 0.0449765 + 0.0563988i
\(704\) 1.05943 4.64166i 0.0399287 0.174939i
\(705\) −3.22049 + 14.1099i −0.121291 + 0.531409i
\(706\) 11.6284 14.5816i 0.437642 0.548786i
\(707\) 12.7372 + 55.8051i 0.479030 + 2.09877i
\(708\) −9.52166 −0.357846
\(709\) −0.443854 1.94465i −0.0166693 0.0730329i 0.965909 0.258881i \(-0.0833538\pi\)
−0.982578 + 0.185848i \(0.940497\pi\)
\(710\) −8.54635 4.11571i −0.320739 0.154460i
\(711\) −1.86329 0.897311i −0.0698786 0.0336518i
\(712\) −4.66401 20.4344i −0.174791 0.765811i
\(713\) 8.46302 0.316943
\(714\) −3.47772 15.2369i −0.130150 0.570225i
\(715\) 3.28984 4.12533i 0.123033 0.154279i
\(716\) 2.19624 9.62234i 0.0820772 0.359604i
\(717\) 1.43279 6.27747i 0.0535086 0.234436i
\(718\) −6.21880 7.79813i −0.232084 0.291024i
\(719\) −5.69960 2.74478i −0.212559 0.102363i 0.324575 0.945860i \(-0.394779\pi\)
−0.537134 + 0.843497i \(0.680493\pi\)
\(720\) −6.89908 + 3.32242i −0.257114 + 0.123819i
\(721\) 5.68269 7.12586i 0.211634 0.265381i
\(722\) −13.6195 17.0783i −0.506866 0.635590i
\(723\) −13.8975 + 6.69269i −0.516854 + 0.248904i
\(724\) −1.92830 −0.0716646
\(725\) −24.5718 + 27.8701i −0.912574 + 1.03507i
\(726\) 12.3437 0.458117
\(727\) −16.3885 + 7.89230i −0.607817 + 0.292709i −0.712363 0.701811i \(-0.752375\pi\)
0.104547 + 0.994520i \(0.466661\pi\)
\(728\) −23.9373 30.0164i −0.887175 1.11248i
\(729\) 0.623490 0.781831i 0.0230922 0.0289567i
\(730\) −3.27608 + 1.57768i −0.121253 + 0.0583925i
\(731\) −30.2921 14.5879i −1.12040 0.539554i
\(732\) −3.00908 3.77327i −0.111219 0.139464i
\(733\) 8.06036 35.3148i 0.297716 1.30438i −0.575802 0.817589i \(-0.695310\pi\)
0.873518 0.486791i \(-0.161833\pi\)
\(734\) −3.45403 + 15.1331i −0.127490 + 0.558572i
\(735\) 28.8379 36.1615i 1.06370 1.33384i
\(736\) −0.742460 3.25293i −0.0273674 0.119905i
\(737\) 6.80886 0.250808
\(738\) 0.732910 + 3.21109i 0.0269788 + 0.118202i
\(739\) 3.75343 + 1.80755i 0.138072 + 0.0664920i 0.501644 0.865074i \(-0.332729\pi\)
−0.363572 + 0.931566i \(0.618443\pi\)
\(740\) 14.2606 + 6.86754i 0.524230 + 0.252456i
\(741\) −0.170855 0.748566i −0.00627653 0.0274993i
\(742\) −10.8412 −0.397995
\(743\) −5.47368 23.9818i −0.200810 0.879806i −0.970445 0.241322i \(-0.922419\pi\)
0.769635 0.638484i \(-0.220438\pi\)
\(744\) 17.5104 21.9574i 0.641963 0.804996i
\(745\) 6.11783 26.8040i 0.224140 0.982022i
\(746\) 0.820264 3.59381i 0.0300320 0.131579i
\(747\) −6.83994 8.57702i −0.250260 0.313817i
\(748\) 0.998697 + 0.480947i 0.0365160 + 0.0175852i
\(749\) 2.32831 1.12126i 0.0850747 0.0409698i
\(750\) 4.71629 5.91404i 0.172215 0.215950i
\(751\) 16.3234 + 20.4689i 0.595651 + 0.746922i 0.984693 0.174297i \(-0.0557654\pi\)
−0.389042 + 0.921220i \(0.627194\pi\)
\(752\) 8.39095 4.04087i 0.305987 0.147355i
\(753\) 3.29145 0.119947
\(754\) −10.0223 13.9261i −0.364991 0.507160i
\(755\) 0.364005 0.0132475
\(756\) −2.71638 + 1.30814i −0.0987939 + 0.0475766i
\(757\) −32.5871 40.8630i −1.18440 1.48519i −0.836767 0.547559i \(-0.815557\pi\)
−0.347632 0.937631i \(-0.613014\pi\)
\(758\) −11.8772 + 14.8936i −0.431400 + 0.540959i
\(759\) −0.463320 + 0.223123i −0.0168174 + 0.00809885i
\(760\) 2.66235 + 1.28212i 0.0965735 + 0.0465074i
\(761\) 3.05680 + 3.83310i 0.110809 + 0.138950i 0.834143 0.551548i \(-0.185963\pi\)
−0.723334 + 0.690498i \(0.757391\pi\)
\(762\) −2.36045 + 10.3418i −0.0855100 + 0.374644i
\(763\) −19.5706 + 85.7442i −0.708502 + 3.10415i
\(764\) 1.94064 2.43348i 0.0702099 0.0880404i
\(765\) −2.30042 10.0788i −0.0831717 <