Properties

Label 87.2.g.b.49.1
Level $87$
Weight $2$
Character 87.49
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 49.1
Root \(1.29273 - 1.62103i\) of defining polynomial
Character \(\chi\) \(=\) 87.49
Dual form 87.2.g.b.16.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.86804 + 0.899602i) q^{2} +(-0.623490 - 0.781831i) q^{3} +(1.43332 - 1.79733i) q^{4} +(-1.70773 + 0.822397i) q^{5} +(1.86804 + 0.899602i) q^{6} +(-2.93833 - 3.68455i) q^{7} +(-0.137887 + 0.604122i) q^{8} +(-0.222521 + 0.974928i) q^{9} +O(q^{10})\) \(q+(-1.86804 + 0.899602i) q^{2} +(-0.623490 - 0.781831i) q^{3} +(1.43332 - 1.79733i) q^{4} +(-1.70773 + 0.822397i) q^{5} +(1.86804 + 0.899602i) q^{6} +(-2.93833 - 3.68455i) q^{7} +(-0.137887 + 0.604122i) q^{8} +(-0.222521 + 0.974928i) q^{9} +(2.45027 - 3.07255i) q^{10} +(-0.832232 - 3.64624i) q^{11} -2.29887 q^{12} +(0.250393 + 1.09704i) q^{13} +(8.80354 + 4.23956i) q^{14} +(1.70773 + 0.822397i) q^{15} +(0.737200 + 3.22989i) q^{16} -5.60261 q^{17} +(-0.461368 - 2.02139i) q^{18} +(-1.20592 + 1.51218i) q^{19} +(-0.969600 + 4.24810i) q^{20} +(-1.04868 + 4.59455i) q^{21} +(4.83481 + 6.06266i) q^{22} +(3.89751 + 1.87694i) q^{23} +(0.558293 - 0.268860i) q^{24} +(-0.877459 + 1.10030i) q^{25} +(-1.45465 - 1.82407i) q^{26} +(0.900969 - 0.433884i) q^{27} -10.8339 q^{28} +(3.82459 - 3.79111i) q^{29} -3.92993 q^{30} +(-0.874966 + 0.421361i) q^{31} +(-5.05543 - 6.33931i) q^{32} +(-2.33186 + 2.92406i) q^{33} +(10.4659 - 5.04011i) q^{34} +(8.04802 + 3.87572i) q^{35} +(1.43332 + 1.79733i) q^{36} +(2.21633 - 9.71037i) q^{37} +(0.892354 - 3.90966i) q^{38} +(0.701586 - 0.879761i) q^{39} +(-0.261356 - 1.14507i) q^{40} +1.59051 q^{41} +(-2.17430 - 9.52621i) q^{42} +(-4.08593 - 1.96768i) q^{43} +(-7.74634 - 3.73044i) q^{44} +(-0.421773 - 1.84791i) q^{45} -8.96921 q^{46} +(-1.30426 - 5.71432i) q^{47} +(2.06559 - 2.59017i) q^{48} +(-3.38446 + 14.8283i) q^{49} +(0.649300 - 2.84477i) q^{50} +(3.49317 + 4.38029i) q^{51} +(2.33064 + 1.12238i) q^{52} +(-4.64798 + 2.23835i) q^{53} +(-1.29273 + 1.62103i) q^{54} +(4.41989 + 5.54236i) q^{55} +(2.63107 - 1.26706i) q^{56} +1.93415 q^{57} +(-3.73401 + 10.5226i) q^{58} +5.71853 q^{59} +(3.92583 - 1.89058i) q^{60} +(-6.51069 - 8.16415i) q^{61} +(1.25542 - 1.57424i) q^{62} +(4.24601 - 2.04477i) q^{63} +(9.17690 + 4.41936i) q^{64} +(-1.32981 - 1.66753i) q^{65} +(1.72552 - 7.56002i) q^{66} +(0.883099 - 3.86911i) q^{67} +(-8.03032 + 10.0697i) q^{68} +(-0.962605 - 4.21745i) q^{69} -18.5206 q^{70} +(0.0665482 + 0.291567i) q^{71} +(-0.558293 - 0.268860i) q^{72} +(13.6108 + 6.55462i) q^{73} +(4.59527 + 20.1332i) q^{74} +1.40734 q^{75} +(0.989404 + 4.33486i) q^{76} +(-10.9894 + 13.7803i) q^{77} +(-0.519158 + 2.27458i) q^{78} +(3.07354 - 13.4661i) q^{79} +(-3.91519 - 4.90949i) q^{80} +(-0.900969 - 0.433884i) q^{81} +(-2.97115 + 1.43083i) q^{82} +(1.81951 - 2.28159i) q^{83} +(6.75482 + 8.47027i) q^{84} +(9.56772 - 4.60757i) q^{85} +9.40282 q^{86} +(-5.34860 - 0.626466i) q^{87} +2.31753 q^{88} +(-6.56353 + 3.16083i) q^{89} +(2.45027 + 3.07255i) q^{90} +(3.30637 - 4.14606i) q^{91} +(8.95985 - 4.31484i) q^{92} +(0.874966 + 0.421361i) q^{93} +(7.57701 + 9.50127i) q^{94} +(0.815772 - 3.57413i) q^{95} +(-1.80426 + 7.90500i) q^{96} +(-7.99029 + 10.0195i) q^{97} +(-7.01725 - 30.7446i) q^{98} +3.74001 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.86804 + 0.899602i −1.32091 + 0.636115i −0.955571 0.294762i \(-0.904760\pi\)
−0.365335 + 0.930876i \(0.619045\pi\)
\(3\) −0.623490 0.781831i −0.359972 0.451391i
\(4\) 1.43332 1.79733i 0.716660 0.898663i
\(5\) −1.70773 + 0.822397i −0.763718 + 0.367787i −0.774845 0.632151i \(-0.782172\pi\)
0.0111272 + 0.999938i \(0.496458\pi\)
\(6\) 1.86804 + 0.899602i 0.762625 + 0.367261i
\(7\) −2.93833 3.68455i −1.11058 1.39263i −0.910830 0.412781i \(-0.864558\pi\)
−0.199753 0.979846i \(-0.564014\pi\)
\(8\) −0.137887 + 0.604122i −0.0487504 + 0.213590i
\(9\) −0.222521 + 0.974928i −0.0741736 + 0.324976i
\(10\) 2.45027 3.07255i 0.774845 0.971624i
\(11\) −0.832232 3.64624i −0.250927 1.09938i −0.930649 0.365914i \(-0.880757\pi\)
0.679722 0.733470i \(-0.262101\pi\)
\(12\) −2.29887 −0.663625
\(13\) 0.250393 + 1.09704i 0.0694465 + 0.304265i 0.997708 0.0676624i \(-0.0215541\pi\)
−0.928262 + 0.371928i \(0.878697\pi\)
\(14\) 8.80354 + 4.23956i 2.35285 + 1.13307i
\(15\) 1.70773 + 0.822397i 0.440933 + 0.212342i
\(16\) 0.737200 + 3.22989i 0.184300 + 0.807472i
\(17\) −5.60261 −1.35883 −0.679416 0.733753i \(-0.737767\pi\)
−0.679416 + 0.733753i \(0.737767\pi\)
\(18\) −0.461368 2.02139i −0.108746 0.476445i
\(19\) −1.20592 + 1.51218i −0.276657 + 0.346917i −0.900675 0.434493i \(-0.856928\pi\)
0.624018 + 0.781410i \(0.285499\pi\)
\(20\) −0.969600 + 4.24810i −0.216809 + 0.949903i
\(21\) −1.04868 + 4.59455i −0.228840 + 1.00261i
\(22\) 4.83481 + 6.06266i 1.03079 + 1.29256i
\(23\) 3.89751 + 1.87694i 0.812687 + 0.391369i 0.793593 0.608448i \(-0.208208\pi\)
0.0190933 + 0.999818i \(0.493922\pi\)
\(24\) 0.558293 0.268860i 0.113961 0.0548808i
\(25\) −0.877459 + 1.10030i −0.175492 + 0.220060i
\(26\) −1.45465 1.82407i −0.285280 0.357730i
\(27\) 0.900969 0.433884i 0.173392 0.0835010i
\(28\) −10.8339 −2.04741
\(29\) 3.82459 3.79111i 0.710208 0.703991i
\(30\) −3.92993 −0.717505
\(31\) −0.874966 + 0.421361i −0.157148 + 0.0756787i −0.510805 0.859697i \(-0.670653\pi\)
0.353656 + 0.935375i \(0.384938\pi\)
\(32\) −5.05543 6.33931i −0.893683 1.12064i
\(33\) −2.33186 + 2.92406i −0.405925 + 0.509014i
\(34\) 10.4659 5.04011i 1.79489 0.864373i
\(35\) 8.04802 + 3.87572i 1.36036 + 0.655116i
\(36\) 1.43332 + 1.79733i 0.238887 + 0.299554i
\(37\) 2.21633 9.71037i 0.364362 1.59637i −0.377624 0.925959i \(-0.623259\pi\)
0.741986 0.670416i \(-0.233884\pi\)
\(38\) 0.892354 3.90966i 0.144759 0.634230i
\(39\) 0.701586 0.879761i 0.112344 0.140874i
\(40\) −0.261356 1.14507i −0.0413239 0.181052i
\(41\) 1.59051 0.248397 0.124198 0.992257i \(-0.460364\pi\)
0.124198 + 0.992257i \(0.460364\pi\)
\(42\) −2.17430 9.52621i −0.335501 1.46993i
\(43\) −4.08593 1.96768i −0.623098 0.300068i 0.0955686 0.995423i \(-0.469533\pi\)
−0.718667 + 0.695355i \(0.755247\pi\)
\(44\) −7.74634 3.73044i −1.16780 0.562385i
\(45\) −0.421773 1.84791i −0.0628743 0.275470i
\(46\) −8.96921 −1.32244
\(47\) −1.30426 5.71432i −0.190245 0.833519i −0.976483 0.215595i \(-0.930831\pi\)
0.786238 0.617924i \(-0.212026\pi\)
\(48\) 2.06559 2.59017i 0.298142 0.373859i
\(49\) −3.38446 + 14.8283i −0.483495 + 2.11833i
\(50\) 0.649300 2.84477i 0.0918249 0.402311i
\(51\) 3.49317 + 4.38029i 0.489141 + 0.613364i
\(52\) 2.33064 + 1.12238i 0.323201 + 0.155646i
\(53\) −4.64798 + 2.23835i −0.638449 + 0.307461i −0.724961 0.688790i \(-0.758142\pi\)
0.0865120 + 0.996251i \(0.472428\pi\)
\(54\) −1.29273 + 1.62103i −0.175918 + 0.220594i
\(55\) 4.41989 + 5.54236i 0.595977 + 0.747332i
\(56\) 2.63107 1.26706i 0.351592 0.169318i
\(57\) 1.93415 0.256184
\(58\) −3.73401 + 10.5226i −0.490299 + 1.38168i
\(59\) 5.71853 0.744490 0.372245 0.928135i \(-0.378588\pi\)
0.372245 + 0.928135i \(0.378588\pi\)
\(60\) 3.92583 1.89058i 0.506823 0.244073i
\(61\) −6.51069 8.16415i −0.833608 1.04531i −0.998260 0.0589600i \(-0.981222\pi\)
0.164652 0.986352i \(-0.447350\pi\)
\(62\) 1.25542 1.57424i 0.159438 0.199929i
\(63\) 4.24601 2.04477i 0.534946 0.257617i
\(64\) 9.17690 + 4.41936i 1.14711 + 0.552420i
\(65\) −1.32981 1.66753i −0.164942 0.206831i
\(66\) 1.72552 7.56002i 0.212397 0.930574i
\(67\) 0.883099 3.86911i 0.107888 0.472687i −0.891903 0.452227i \(-0.850630\pi\)
0.999791 0.0204600i \(-0.00651307\pi\)
\(68\) −8.03032 + 10.0697i −0.973820 + 1.22113i
\(69\) −0.962605 4.21745i −0.115884 0.507721i
\(70\) −18.5206 −2.21364
\(71\) 0.0665482 + 0.291567i 0.00789782 + 0.0346026i 0.978723 0.205185i \(-0.0657795\pi\)
−0.970825 + 0.239787i \(0.922922\pi\)
\(72\) −0.558293 0.268860i −0.0657955 0.0316854i
\(73\) 13.6108 + 6.55462i 1.59302 + 0.767160i 0.999296 0.0375058i \(-0.0119413\pi\)
0.593728 + 0.804666i \(0.297656\pi\)
\(74\) 4.59527 + 20.1332i 0.534189 + 2.34044i
\(75\) 1.40734 0.162505
\(76\) 0.989404 + 4.33486i 0.113492 + 0.497243i
\(77\) −10.9894 + 13.7803i −1.25236 + 1.57041i
\(78\) −0.519158 + 2.27458i −0.0587830 + 0.257545i
\(79\) 3.07354 13.4661i 0.345801 1.51505i −0.440809 0.897601i \(-0.645308\pi\)
0.786609 0.617451i \(-0.211835\pi\)
\(80\) −3.91519 4.90949i −0.437731 0.548897i
\(81\) −0.900969 0.433884i −0.100108 0.0482093i
\(82\) −2.97115 + 1.43083i −0.328108 + 0.158009i
\(83\) 1.81951 2.28159i 0.199717 0.250437i −0.671880 0.740660i \(-0.734513\pi\)
0.871597 + 0.490223i \(0.163085\pi\)
\(84\) 6.75482 + 8.47027i 0.737011 + 0.924183i
\(85\) 9.56772 4.60757i 1.03776 0.499761i
\(86\) 9.40282 1.01393
\(87\) −5.34860 0.626466i −0.573430 0.0671642i
\(88\) 2.31753 0.247050
\(89\) −6.56353 + 3.16083i −0.695732 + 0.335047i −0.748105 0.663581i \(-0.769036\pi\)
0.0523724 + 0.998628i \(0.483322\pi\)
\(90\) 2.45027 + 3.07255i 0.258282 + 0.323875i
\(91\) 3.30637 4.14606i 0.346602 0.434625i
\(92\) 8.95985 4.31484i 0.934129 0.449853i
\(93\) 0.874966 + 0.421361i 0.0907297 + 0.0436931i
\(94\) 7.57701 + 9.50127i 0.781509 + 0.979981i
\(95\) 0.815772 3.57413i 0.0836964 0.366698i
\(96\) −1.80426 + 7.90500i −0.184147 + 0.806800i
\(97\) −7.99029 + 10.0195i −0.811291 + 1.01733i 0.188090 + 0.982152i \(0.439770\pi\)
−0.999381 + 0.0351751i \(0.988801\pi\)
\(98\) −7.01725 30.7446i −0.708849 3.10567i
\(99\) 3.74001 0.375886
\(100\) 0.719916 + 3.15416i 0.0719916 + 0.315416i
\(101\) 8.51665 + 4.10140i 0.847438 + 0.408105i 0.806626 0.591062i \(-0.201291\pi\)
0.0408123 + 0.999167i \(0.487005\pi\)
\(102\) −10.4659 5.04011i −1.03628 0.499046i
\(103\) −1.23571 5.41401i −0.121758 0.533458i −0.998611 0.0526978i \(-0.983218\pi\)
0.876852 0.480760i \(-0.159639\pi\)
\(104\) −0.697275 −0.0683734
\(105\) −1.98770 8.70867i −0.193979 0.849879i
\(106\) 6.66900 8.36266i 0.647750 0.812253i
\(107\) −1.40124 + 6.13923i −0.135463 + 0.593502i 0.860936 + 0.508713i \(0.169879\pi\)
−0.996399 + 0.0847887i \(0.972978\pi\)
\(108\) 0.511546 2.24123i 0.0492235 0.215662i
\(109\) −10.2240 12.8205i −0.979284 1.22798i −0.973661 0.227999i \(-0.926782\pi\)
−0.00562210 0.999984i \(-0.501790\pi\)
\(110\) −13.2424 6.37723i −1.26262 0.608045i
\(111\) −8.97373 + 4.32152i −0.851749 + 0.410181i
\(112\) 9.73453 12.2067i 0.919826 1.15343i
\(113\) 1.71259 + 2.14752i 0.161107 + 0.202022i 0.855832 0.517253i \(-0.173046\pi\)
−0.694725 + 0.719275i \(0.744474\pi\)
\(114\) −3.61307 + 1.73996i −0.338395 + 0.162962i
\(115\) −8.19947 −0.764604
\(116\) −1.33200 12.3079i −0.123673 1.14276i
\(117\) −1.12526 −0.104030
\(118\) −10.6825 + 5.14440i −0.983400 + 0.473581i
\(119\) 16.4623 + 20.6431i 1.50910 + 1.89235i
\(120\) −0.732302 + 0.918278i −0.0668497 + 0.0838269i
\(121\) −2.69183 + 1.29632i −0.244712 + 0.117847i
\(122\) 19.5067 + 9.39394i 1.76606 + 0.850488i
\(123\) −0.991669 1.24351i −0.0894158 0.112124i
\(124\) −0.496782 + 2.17654i −0.0446123 + 0.195459i
\(125\) 2.70244 11.8402i 0.241714 1.05902i
\(126\) −6.09224 + 7.63943i −0.542740 + 0.680574i
\(127\) 2.76187 + 12.1005i 0.245076 + 1.07375i 0.936326 + 0.351132i \(0.114203\pi\)
−0.691250 + 0.722616i \(0.742940\pi\)
\(128\) −4.90192 −0.433273
\(129\) 1.00914 + 4.42134i 0.0888499 + 0.389277i
\(130\) 3.98425 + 1.91871i 0.349442 + 0.168282i
\(131\) −17.0367 8.20444i −1.48850 0.716825i −0.499720 0.866187i \(-0.666564\pi\)
−0.988783 + 0.149362i \(0.952278\pi\)
\(132\) 1.91319 + 8.38222i 0.166522 + 0.729579i
\(133\) 9.11507 0.790377
\(134\) 1.83099 + 8.02209i 0.158173 + 0.693003i
\(135\) −1.18178 + 1.48191i −0.101712 + 0.127542i
\(136\) 0.772527 3.38466i 0.0662436 0.290232i
\(137\) −1.96363 + 8.60324i −0.167764 + 0.735024i 0.819123 + 0.573617i \(0.194460\pi\)
−0.986888 + 0.161407i \(0.948397\pi\)
\(138\) 5.59221 + 7.01241i 0.476041 + 0.596936i
\(139\) −9.32088 4.48870i −0.790587 0.380727i −0.00539998 0.999985i \(-0.501719\pi\)
−0.785187 + 0.619259i \(0.787433\pi\)
\(140\) 18.5013 8.90976i 1.56365 0.753012i
\(141\) −3.65444 + 4.58253i −0.307760 + 0.385918i
\(142\) −0.386609 0.484792i −0.0324435 0.0406829i
\(143\) 3.79170 1.82599i 0.317078 0.152697i
\(144\) −3.31295 −0.276079
\(145\) −3.41355 + 9.61951i −0.283480 + 0.798857i
\(146\) −31.3221 −2.59224
\(147\) 13.7034 6.59921i 1.13024 0.544294i
\(148\) −14.2760 17.9015i −1.17348 1.47150i
\(149\) 7.54443 9.46042i 0.618064 0.775028i −0.370007 0.929029i \(-0.620645\pi\)
0.988071 + 0.154001i \(0.0492160\pi\)
\(150\) −2.62896 + 1.26604i −0.214654 + 0.103372i
\(151\) −8.59578 4.13951i −0.699514 0.336868i 0.0500991 0.998744i \(-0.484046\pi\)
−0.749613 + 0.661876i \(0.769761\pi\)
\(152\) −0.747259 0.937033i −0.0606107 0.0760034i
\(153\) 1.24670 5.46214i 0.100790 0.441588i
\(154\) 8.13190 35.6282i 0.655287 2.87100i
\(155\) 1.14767 1.43914i 0.0921835 0.115594i
\(156\) −0.575620 2.52196i −0.0460865 0.201918i
\(157\) 0.889508 0.0709905 0.0354952 0.999370i \(-0.488699\pi\)
0.0354952 + 0.999370i \(0.488699\pi\)
\(158\) 6.37260 + 27.9202i 0.506977 + 2.22121i
\(159\) 4.64798 + 2.23835i 0.368609 + 0.177513i
\(160\) 13.8467 + 6.66823i 1.09468 + 0.527170i
\(161\) −4.53648 19.8756i −0.357525 1.56642i
\(162\) 2.07337 0.162899
\(163\) −1.71620 7.51914i −0.134423 0.588945i −0.996604 0.0823446i \(-0.973759\pi\)
0.862181 0.506600i \(-0.169098\pi\)
\(164\) 2.27971 2.85867i 0.178016 0.223225i
\(165\) 1.57744 6.91121i 0.122803 0.538037i
\(166\) −1.34639 + 5.89894i −0.104500 + 0.457846i
\(167\) 5.23031 + 6.55860i 0.404734 + 0.507520i 0.941871 0.335975i \(-0.109066\pi\)
−0.537137 + 0.843495i \(0.680494\pi\)
\(168\) −2.63107 1.26706i −0.202992 0.0977557i
\(169\) 10.5718 5.09110i 0.813214 0.391623i
\(170\) −13.7279 + 17.2143i −1.05288 + 1.32027i
\(171\) −1.20592 1.51218i −0.0922191 0.115639i
\(172\) −9.39300 + 4.52343i −0.716210 + 0.344908i
\(173\) −3.52185 −0.267761 −0.133881 0.990997i \(-0.542744\pi\)
−0.133881 + 0.990997i \(0.542744\pi\)
\(174\) 10.5550 3.64135i 0.800171 0.276050i
\(175\) 6.63236 0.501360
\(176\) 11.1634 5.37603i 0.841475 0.405233i
\(177\) −3.56545 4.47093i −0.267995 0.336056i
\(178\) 9.41746 11.8091i 0.705868 0.885131i
\(179\) −6.42875 + 3.09592i −0.480507 + 0.231400i −0.658427 0.752645i \(-0.728778\pi\)
0.177919 + 0.984045i \(0.443063\pi\)
\(180\) −3.92583 1.89058i −0.292614 0.140916i
\(181\) 13.1435 + 16.4814i 0.976949 + 1.22505i 0.974345 + 0.225058i \(0.0722573\pi\)
0.00260345 + 0.999997i \(0.499171\pi\)
\(182\) −2.44664 + 10.7194i −0.181357 + 0.794577i
\(183\) −2.32364 + 10.1805i −0.171768 + 0.752566i
\(184\) −1.67132 + 2.09577i −0.123211 + 0.154502i
\(185\) 4.20090 + 18.4053i 0.308856 + 1.35319i
\(186\) −2.01353 −0.147639
\(187\) 4.66267 + 20.4285i 0.340968 + 1.49388i
\(188\) −12.1399 5.84627i −0.885393 0.426383i
\(189\) −4.24601 2.04477i −0.308851 0.148735i
\(190\) 1.69140 + 7.41049i 0.122707 + 0.537614i
\(191\) −13.8150 −0.999620 −0.499810 0.866135i \(-0.666597\pi\)
−0.499810 + 0.866135i \(0.666597\pi\)
\(192\) −2.26651 9.93021i −0.163571 0.716651i
\(193\) 2.63922 3.30948i 0.189975 0.238222i −0.677717 0.735322i \(-0.737031\pi\)
0.867693 + 0.497101i \(0.165602\pi\)
\(194\) 5.91263 25.9049i 0.424502 1.85987i
\(195\) −0.474603 + 2.07937i −0.0339870 + 0.148907i
\(196\) 21.8003 + 27.3367i 1.55716 + 1.95262i
\(197\) −4.15777 2.00228i −0.296229 0.142656i 0.279866 0.960039i \(-0.409710\pi\)
−0.576095 + 0.817383i \(0.695424\pi\)
\(198\) −6.98651 + 3.36452i −0.496509 + 0.239106i
\(199\) −2.38547 + 2.99128i −0.169101 + 0.212046i −0.859160 0.511707i \(-0.829013\pi\)
0.690059 + 0.723753i \(0.257585\pi\)
\(200\) −0.543725 0.681810i −0.0384472 0.0482112i
\(201\) −3.57559 + 1.72191i −0.252203 + 0.121455i
\(202\) −19.5991 −1.37899
\(203\) −25.2064 2.95235i −1.76914 0.207214i
\(204\) 12.8796 0.901755
\(205\) −2.71616 + 1.30803i −0.189705 + 0.0913571i
\(206\) 7.17881 + 9.00194i 0.500171 + 0.627195i
\(207\) −2.69716 + 3.38213i −0.187466 + 0.235074i
\(208\) −3.35874 + 1.61748i −0.232886 + 0.112152i
\(209\) 6.51737 + 3.13860i 0.450816 + 0.217102i
\(210\) 11.5474 + 14.4800i 0.796848 + 0.999216i
\(211\) 2.22081 9.73000i 0.152887 0.669841i −0.839151 0.543899i \(-0.816948\pi\)
0.992038 0.125942i \(-0.0401953\pi\)
\(212\) −2.63900 + 11.5622i −0.181247 + 0.794095i
\(213\) 0.186464 0.233818i 0.0127763 0.0160210i
\(214\) −2.90529 12.7289i −0.198601 0.870130i
\(215\) 8.59586 0.586233
\(216\) 0.137887 + 0.604122i 0.00938202 + 0.0411053i
\(217\) 4.12346 + 1.98575i 0.279919 + 0.134802i
\(218\) 30.6323 + 14.7517i 2.07468 + 0.999113i
\(219\) −3.36159 14.7281i −0.227155 0.995232i
\(220\) 16.2965 1.09871
\(221\) −1.40285 6.14630i −0.0943662 0.413445i
\(222\) 12.8757 16.1456i 0.864158 1.08362i
\(223\) −1.71179 + 7.49983i −0.114630 + 0.502226i 0.884718 + 0.466126i \(0.154351\pi\)
−0.999348 + 0.0360999i \(0.988507\pi\)
\(224\) −8.50297 + 37.2540i −0.568129 + 2.48913i
\(225\) −0.877459 1.10030i −0.0584973 0.0733533i
\(226\) −5.13110 2.47101i −0.341316 0.164369i
\(227\) −5.94778 + 2.86430i −0.394768 + 0.190110i −0.620727 0.784027i \(-0.713163\pi\)
0.225959 + 0.974137i \(0.427448\pi\)
\(228\) 2.77225 3.47629i 0.183597 0.230223i
\(229\) −1.45190 1.82062i −0.0959441 0.120310i 0.731542 0.681797i \(-0.238801\pi\)
−0.827486 + 0.561487i \(0.810230\pi\)
\(230\) 15.3170 7.37626i 1.00997 0.486376i
\(231\) 17.6256 1.15968
\(232\) 1.76293 + 2.83327i 0.115742 + 0.186013i
\(233\) 1.74843 0.114544 0.0572719 0.998359i \(-0.481760\pi\)
0.0572719 + 0.998359i \(0.481760\pi\)
\(234\) 2.10203 1.01228i 0.137414 0.0661750i
\(235\) 6.92675 + 8.68587i 0.451851 + 0.566604i
\(236\) 8.19648 10.2781i 0.533546 0.669045i
\(237\) −12.4445 + 5.99297i −0.808359 + 0.389285i
\(238\) −49.3228 23.7526i −3.19712 1.53965i
\(239\) −14.2277 17.8409i −0.920312 1.15403i −0.987708 0.156308i \(-0.950041\pi\)
0.0673967 0.997726i \(-0.478531\pi\)
\(240\) −1.39731 + 6.12203i −0.0901962 + 0.395175i
\(241\) −2.48695 + 10.8960i −0.160199 + 0.701876i 0.829476 + 0.558542i \(0.188639\pi\)
−0.989674 + 0.143333i \(0.954218\pi\)
\(242\) 3.86229 4.84315i 0.248277 0.311330i
\(243\) 0.222521 + 0.974928i 0.0142747 + 0.0625417i
\(244\) −24.0055 −1.53680
\(245\) −6.41502 28.1060i −0.409841 1.79563i
\(246\) 2.97115 + 1.43083i 0.189433 + 0.0912263i
\(247\) −1.96088 0.944309i −0.124768 0.0600850i
\(248\) −0.133907 0.586687i −0.00850313 0.0372546i
\(249\) −2.91826 −0.184937
\(250\) 5.60317 + 24.5491i 0.354375 + 1.55262i
\(251\) 12.9264 16.2091i 0.815904 1.02311i −0.183293 0.983058i \(-0.558676\pi\)
0.999198 0.0400532i \(-0.0127527\pi\)
\(252\) 2.41077 10.5623i 0.151864 0.665360i
\(253\) 3.60016 15.7733i 0.226340 0.991660i
\(254\) −16.0449 20.1197i −1.00675 1.26242i
\(255\) −9.56772 4.60757i −0.599154 0.288537i
\(256\) −9.19680 + 4.42894i −0.574800 + 0.276809i
\(257\) 1.47517 1.84981i 0.0920186 0.115388i −0.733691 0.679484i \(-0.762204\pi\)
0.825709 + 0.564096i \(0.190775\pi\)
\(258\) −5.86256 7.35142i −0.364987 0.457679i
\(259\) −42.2906 + 20.3661i −2.62781 + 1.26549i
\(260\) −4.90313 −0.304079
\(261\) 2.84501 + 4.57230i 0.176102 + 0.283018i
\(262\) 39.2060 2.42215
\(263\) 22.0382 10.6131i 1.35894 0.654429i 0.394537 0.918880i \(-0.370905\pi\)
0.964399 + 0.264451i \(0.0851908\pi\)
\(264\) −1.44496 1.81192i −0.0889310 0.111516i
\(265\) 6.09666 7.64497i 0.374515 0.469627i
\(266\) −17.0273 + 8.19994i −1.04401 + 0.502770i
\(267\) 6.56353 + 3.16083i 0.401681 + 0.193440i
\(268\) −5.68828 7.13288i −0.347467 0.435710i
\(269\) −1.44384 + 6.32587i −0.0880324 + 0.385695i −0.999680 0.0252765i \(-0.991953\pi\)
0.911648 + 0.410972i \(0.134811\pi\)
\(270\) 0.874493 3.83140i 0.0532199 0.233172i
\(271\) −0.298700 + 0.374558i −0.0181447 + 0.0227528i −0.790821 0.612047i \(-0.790346\pi\)
0.772676 + 0.634800i \(0.218918\pi\)
\(272\) −4.13024 18.0958i −0.250433 1.09722i
\(273\) −5.30301 −0.320953
\(274\) −4.07134 17.8377i −0.245959 1.07761i
\(275\) 4.74221 + 2.28373i 0.285966 + 0.137714i
\(276\) −8.95985 4.31484i −0.539319 0.259723i
\(277\) −0.926181 4.05787i −0.0556488 0.243813i 0.939452 0.342681i \(-0.111335\pi\)
−0.995101 + 0.0988677i \(0.968478\pi\)
\(278\) 21.4498 1.28648
\(279\) −0.216099 0.946790i −0.0129375 0.0566828i
\(280\) −3.45113 + 4.32758i −0.206244 + 0.258622i
\(281\) 2.07349 9.08457i 0.123694 0.541940i −0.874667 0.484723i \(-0.838920\pi\)
0.998362 0.0572168i \(-0.0182226\pi\)
\(282\) 2.70420 11.8479i 0.161033 0.705532i
\(283\) 6.10026 + 7.64949i 0.362623 + 0.454715i 0.929355 0.369187i \(-0.120364\pi\)
−0.566732 + 0.823902i \(0.691793\pi\)
\(284\) 0.619425 + 0.298300i 0.0367561 + 0.0177008i
\(285\) −3.30299 + 1.59064i −0.195652 + 0.0942212i
\(286\) −5.44040 + 6.82205i −0.321698 + 0.403396i
\(287\) −4.67345 5.86032i −0.275865 0.345924i
\(288\) 7.30531 3.51805i 0.430470 0.207303i
\(289\) 14.3892 0.846424
\(290\) −2.27707 21.0405i −0.133714 1.23554i
\(291\) 12.8154 0.751254
\(292\) 31.2894 15.0682i 1.83107 0.881799i
\(293\) −7.13649 8.94887i −0.416918 0.522799i 0.528379 0.849008i \(-0.322800\pi\)
−0.945297 + 0.326210i \(0.894228\pi\)
\(294\) −19.6619 + 24.6552i −1.14670 + 1.43792i
\(295\) −9.76569 + 4.70291i −0.568580 + 0.273814i
\(296\) 5.56065 + 2.67787i 0.323206 + 0.155648i
\(297\) −2.33186 2.92406i −0.135308 0.169671i
\(298\) −5.58271 + 24.4594i −0.323398 + 1.41690i
\(299\) −1.08318 + 4.74571i −0.0626418 + 0.274452i
\(300\) 2.01716 2.52944i 0.116461 0.146037i
\(301\) 4.75579 + 20.8365i 0.274119 + 1.20099i
\(302\) 19.7812 1.13828
\(303\) −2.10344 9.21577i −0.120839 0.529432i
\(304\) −5.77316 2.78021i −0.331114 0.159456i
\(305\) 17.8326 + 8.58775i 1.02109 + 0.491733i
\(306\) 2.58487 + 11.3250i 0.147767 + 0.647409i
\(307\) −20.1309 −1.14893 −0.574465 0.818529i \(-0.694790\pi\)
−0.574465 + 0.818529i \(0.694790\pi\)
\(308\) 9.01630 + 39.5030i 0.513751 + 2.25089i
\(309\) −3.46239 + 4.34170i −0.196968 + 0.246990i
\(310\) −0.849253 + 3.72082i −0.0482344 + 0.211329i
\(311\) −0.395288 + 1.73187i −0.0224147 + 0.0982054i −0.984898 0.173136i \(-0.944610\pi\)
0.962483 + 0.271341i \(0.0874672\pi\)
\(312\) 0.434744 + 0.545151i 0.0246125 + 0.0308631i
\(313\) 13.4354 + 6.47017i 0.759416 + 0.365716i 0.773177 0.634190i \(-0.218666\pi\)
−0.0137612 + 0.999905i \(0.504380\pi\)
\(314\) −1.66164 + 0.800203i −0.0937717 + 0.0451581i
\(315\) −5.56940 + 6.98381i −0.313800 + 0.393493i
\(316\) −19.7976 24.8253i −1.11370 1.39653i
\(317\) 10.2900 4.95542i 0.577946 0.278324i −0.121988 0.992532i \(-0.538927\pi\)
0.699934 + 0.714208i \(0.253213\pi\)
\(318\) −10.6962 −0.599815
\(319\) −17.0063 10.7903i −0.952168 0.604141i
\(320\) −19.3061 −1.07924
\(321\) 5.67350 2.73221i 0.316664 0.152497i
\(322\) 26.3545 + 33.0475i 1.46868 + 1.84166i
\(323\) 6.75630 8.47213i 0.375931 0.471402i
\(324\) −2.07121 + 0.997440i −0.115067 + 0.0554133i
\(325\) −1.42679 0.687104i −0.0791438 0.0381137i
\(326\) 9.97016 + 12.5022i 0.552196 + 0.692432i
\(327\) −3.64891 + 15.9869i −0.201785 + 0.884079i
\(328\) −0.219311 + 0.960865i −0.0121094 + 0.0530549i
\(329\) −17.2223 + 21.5961i −0.949498 + 1.19063i
\(330\) 3.27061 + 14.3295i 0.180041 + 0.788813i
\(331\) 9.83216 0.540424 0.270212 0.962801i \(-0.412906\pi\)
0.270212 + 0.962801i \(0.412906\pi\)
\(332\) −1.49282 6.54049i −0.0819294 0.358956i
\(333\) 8.97373 + 4.32152i 0.491757 + 0.236818i
\(334\) −15.6706 7.54655i −0.857456 0.412929i
\(335\) 1.67385 + 7.33363i 0.0914524 + 0.400679i
\(336\) −15.6130 −0.851757
\(337\) 3.33880 + 14.6283i 0.181876 + 0.796852i 0.980737 + 0.195335i \(0.0625795\pi\)
−0.798860 + 0.601517i \(0.794563\pi\)
\(338\) −15.1686 + 19.0208i −0.825062 + 1.03459i
\(339\) 0.611216 2.67791i 0.0331967 0.145444i
\(340\) 5.43229 23.8004i 0.294607 1.29076i
\(341\) 2.26456 + 2.83967i 0.122633 + 0.153777i
\(342\) 3.61307 + 1.73996i 0.195372 + 0.0940864i
\(343\) 34.8582 16.7868i 1.88216 0.906403i
\(344\) 1.75212 2.19708i 0.0944678 0.118459i
\(345\) 5.11228 + 6.41060i 0.275236 + 0.345135i
\(346\) 6.57897 3.16826i 0.353687 0.170327i
\(347\) 33.4677 1.79664 0.898320 0.439341i \(-0.144788\pi\)
0.898320 + 0.439341i \(0.144788\pi\)
\(348\) −8.79222 + 8.71525i −0.471312 + 0.467187i
\(349\) 27.7844 1.48727 0.743633 0.668588i \(-0.233101\pi\)
0.743633 + 0.668588i \(0.233101\pi\)
\(350\) −12.3895 + 5.96649i −0.662249 + 0.318922i
\(351\) 0.701586 + 0.879761i 0.0374479 + 0.0469582i
\(352\) −18.9074 + 23.7091i −1.00777 + 1.26370i
\(353\) −12.3781 + 5.96096i −0.658817 + 0.317270i −0.733253 0.679956i \(-0.761999\pi\)
0.0744354 + 0.997226i \(0.476285\pi\)
\(354\) 10.6825 + 5.14440i 0.567766 + 0.273422i
\(355\) −0.353430 0.443187i −0.0187581 0.0235219i
\(356\) −3.72659 + 16.3273i −0.197509 + 0.865343i
\(357\) 5.87532 25.7415i 0.310955 1.36238i
\(358\) 9.22408 11.5666i 0.487508 0.611315i
\(359\) 5.47410 + 23.9836i 0.288912 + 1.26581i 0.886021 + 0.463646i \(0.153459\pi\)
−0.597109 + 0.802160i \(0.703684\pi\)
\(360\) 1.17452 0.0619027
\(361\) 3.39546 + 14.8765i 0.178709 + 0.782974i
\(362\) −39.3793 18.9641i −2.06973 0.996730i
\(363\) 2.69183 + 1.29632i 0.141285 + 0.0680390i
\(364\) −2.71273 11.8852i −0.142186 0.622956i
\(365\) −28.6340 −1.49877
\(366\) −4.81776 21.1080i −0.251828 1.10333i
\(367\) −2.76423 + 3.46624i −0.144292 + 0.180936i −0.848726 0.528834i \(-0.822630\pi\)
0.704434 + 0.709770i \(0.251201\pi\)
\(368\) −3.18906 + 13.9722i −0.166241 + 0.728351i
\(369\) −0.353923 + 1.55064i −0.0184245 + 0.0807229i
\(370\) −24.4049 30.6028i −1.26875 1.59097i
\(371\) 21.9046 + 10.5487i 1.13723 + 0.547661i
\(372\) 2.01143 0.968653i 0.104288 0.0502223i
\(373\) 15.1984 19.0582i 0.786944 0.986797i −0.213008 0.977050i \(-0.568326\pi\)
0.999953 0.00974631i \(-0.00310239\pi\)
\(374\) −27.0875 33.9667i −1.40066 1.75638i
\(375\) −10.9420 + 5.26938i −0.565041 + 0.272109i
\(376\) 3.63199 0.187305
\(377\) 5.11666 + 3.24647i 0.263522 + 0.167202i
\(378\) 9.77119 0.502576
\(379\) −12.1680 + 5.85978i −0.625027 + 0.300997i −0.719460 0.694534i \(-0.755610\pi\)
0.0944331 + 0.995531i \(0.469896\pi\)
\(380\) −5.25461 6.58908i −0.269556 0.338012i
\(381\) 7.73857 9.70387i 0.396459 0.497144i
\(382\) 25.8070 12.4280i 1.32040 0.635873i
\(383\) −22.2743 10.7267i −1.13816 0.548111i −0.232707 0.972547i \(-0.574758\pi\)
−0.905458 + 0.424436i \(0.860472\pi\)
\(384\) 3.05630 + 3.83248i 0.155966 + 0.195575i
\(385\) 7.43401 32.5705i 0.378872 1.65995i
\(386\) −1.95296 + 8.55650i −0.0994033 + 0.435514i
\(387\) 2.82755 3.54564i 0.143732 0.180235i
\(388\) 6.55568 + 28.7223i 0.332814 + 1.45815i
\(389\) 30.2883 1.53568 0.767839 0.640643i \(-0.221332\pi\)
0.767839 + 0.640643i \(0.221332\pi\)
\(390\) −0.984028 4.31131i −0.0498282 0.218312i
\(391\) −21.8362 10.5158i −1.10430 0.531805i
\(392\) −8.49144 4.08926i −0.428882 0.206539i
\(393\) 4.20771 + 18.4352i 0.212251 + 0.929933i
\(394\) 9.56814 0.482036
\(395\) 5.82570 + 25.5240i 0.293123 + 1.28425i
\(396\) 5.36063 6.72202i 0.269382 0.337794i
\(397\) 3.02597 13.2577i 0.151869 0.665383i −0.840472 0.541855i \(-0.817722\pi\)
0.992341 0.123528i \(-0.0394208\pi\)
\(398\) 1.76519 7.73381i 0.0884810 0.387661i
\(399\) −5.68316 7.12645i −0.284514 0.356769i
\(400\) −4.20070 2.02295i −0.210035 0.101148i
\(401\) 13.4305 6.46779i 0.670687 0.322986i −0.0673661 0.997728i \(-0.521460\pi\)
0.738053 + 0.674742i \(0.235745\pi\)
\(402\) 5.13032 6.43322i 0.255877 0.320860i
\(403\) −0.681337 0.854370i −0.0339398 0.0425592i
\(404\) 19.5786 9.42857i 0.974073 0.469089i
\(405\) 1.89543 0.0941848
\(406\) 49.7426 17.1606i 2.46868 0.851667i
\(407\) −37.2509 −1.84646
\(408\) −3.12790 + 1.50632i −0.154854 + 0.0745737i
\(409\) −12.8458 16.1081i −0.635182 0.796494i 0.355209 0.934787i \(-0.384410\pi\)
−0.990391 + 0.138293i \(0.955838\pi\)
\(410\) 3.89720 4.88693i 0.192469 0.241348i
\(411\) 7.95059 3.82880i 0.392174 0.188861i
\(412\) −11.5019 5.53902i −0.566658 0.272888i
\(413\) −16.8029 21.0702i −0.826818 1.03680i
\(414\) 1.99584 8.74433i 0.0980900 0.429761i
\(415\) −1.23085 + 5.39269i −0.0604198 + 0.264717i
\(416\) 5.68866 7.13335i 0.278909 0.349741i
\(417\) 2.30207 + 10.0860i 0.112733 + 0.493914i
\(418\) −14.9982 −0.733587
\(419\) 1.19222 + 5.22348i 0.0582440 + 0.255184i 0.995665 0.0930153i \(-0.0296505\pi\)
−0.937421 + 0.348199i \(0.886793\pi\)
\(420\) −18.5013 8.90976i −0.902771 0.434752i
\(421\) −1.72756 0.831947i −0.0841959 0.0405466i 0.391312 0.920258i \(-0.372021\pi\)
−0.475508 + 0.879712i \(0.657736\pi\)
\(422\) 4.60456 + 20.1739i 0.224146 + 0.982049i
\(423\) 5.86127 0.284985
\(424\) −0.711341 3.11659i −0.0345458 0.151355i
\(425\) 4.91606 6.16454i 0.238464 0.299024i
\(426\) −0.137979 + 0.604526i −0.00668511 + 0.0292894i
\(427\) −10.9506 + 47.9779i −0.529938 + 2.32181i
\(428\) 9.02577 + 11.3180i 0.436277 + 0.547074i
\(429\) −3.79170 1.82599i −0.183065 0.0881596i
\(430\) −16.0574 + 7.73285i −0.774358 + 0.372911i
\(431\) −12.6219 + 15.8273i −0.607975 + 0.762377i −0.986597 0.163175i \(-0.947827\pi\)
0.378622 + 0.925551i \(0.376398\pi\)
\(432\) 2.06559 + 2.59017i 0.0993807 + 0.124620i
\(433\) 16.3972 7.89648i 0.788000 0.379481i 0.00380279 0.999993i \(-0.498790\pi\)
0.784197 + 0.620512i \(0.213075\pi\)
\(434\) −9.48918 −0.455495
\(435\) 9.64915 3.32884i 0.462641 0.159606i
\(436\) −37.6969 −1.80536
\(437\) −7.53835 + 3.63028i −0.360608 + 0.173660i
\(438\) 19.5290 + 24.4886i 0.933132 + 1.17011i
\(439\) −0.244431 + 0.306507i −0.0116661 + 0.0146288i −0.787630 0.616148i \(-0.788692\pi\)
0.775964 + 0.630777i \(0.217264\pi\)
\(440\) −3.95771 + 1.90593i −0.188676 + 0.0908618i
\(441\) −13.7034 6.59921i −0.652543 0.314248i
\(442\) 8.14982 + 10.2195i 0.387647 + 0.486094i
\(443\) −1.21378 + 5.31793i −0.0576685 + 0.252662i −0.995543 0.0943137i \(-0.969934\pi\)
0.937874 + 0.346976i \(0.112791\pi\)
\(444\) −5.09504 + 22.3228i −0.241800 + 1.05939i
\(445\) 8.60925 10.7957i 0.408117 0.511763i
\(446\) −3.54917 15.5499i −0.168058 0.736310i
\(447\) −12.1003 −0.572326
\(448\) −10.6814 46.7982i −0.504648 2.21101i
\(449\) −2.50192 1.20486i −0.118073 0.0568608i 0.373915 0.927463i \(-0.378015\pi\)
−0.491988 + 0.870602i \(0.663729\pi\)
\(450\) 2.62896 + 1.26604i 0.123930 + 0.0596818i
\(451\) −1.32368 5.79940i −0.0623295 0.273083i
\(452\) 6.31448 0.297008
\(453\) 2.12298 + 9.30139i 0.0997464 + 0.437017i
\(454\) 8.53397 10.7013i 0.400519 0.502235i
\(455\) −2.23667 + 9.79948i −0.104857 + 0.459407i
\(456\) −0.266694 + 1.16846i −0.0124891 + 0.0547182i
\(457\) −22.7119 28.4798i −1.06242 1.33223i −0.940539 0.339686i \(-0.889679\pi\)
−0.121880 0.992545i \(-0.538892\pi\)
\(458\) 4.35004 + 2.09487i 0.203264 + 0.0978868i
\(459\) −5.04777 + 2.43088i −0.235610 + 0.113464i
\(460\) −11.7525 + 14.7371i −0.547961 + 0.687121i
\(461\) 15.8091 + 19.8240i 0.736304 + 0.923296i 0.999137 0.0415457i \(-0.0132282\pi\)
−0.262833 + 0.964841i \(0.584657\pi\)
\(462\) −32.9254 + 15.8560i −1.53183 + 0.737689i
\(463\) 28.4073 1.32020 0.660099 0.751179i \(-0.270514\pi\)
0.660099 + 0.751179i \(0.270514\pi\)
\(464\) 15.0643 + 9.55818i 0.699345 + 0.443727i
\(465\) −1.84073 −0.0853617
\(466\) −3.26615 + 1.57289i −0.151301 + 0.0728629i
\(467\) −8.27602 10.3778i −0.382968 0.480227i 0.552563 0.833471i \(-0.313650\pi\)
−0.935531 + 0.353244i \(0.885079\pi\)
\(468\) −1.61285 + 2.02245i −0.0745541 + 0.0934879i
\(469\) −16.8507 + 8.11489i −0.778095 + 0.374711i
\(470\) −20.7533 9.99425i −0.957277 0.461001i
\(471\) −0.554599 0.695445i −0.0255546 0.0320444i
\(472\) −0.788511 + 3.45469i −0.0362942 + 0.159015i
\(473\) −3.77420 + 16.5359i −0.173538 + 0.760320i
\(474\) 17.8556 22.3902i 0.820136 1.02842i
\(475\) −0.605700 2.65375i −0.0277914 0.121762i
\(476\) 60.6980 2.78209
\(477\) −1.14796 5.02952i −0.0525613 0.230286i
\(478\) 42.6276 + 20.5284i 1.94974 + 0.938947i
\(479\) −23.6592 11.3937i −1.08101 0.520589i −0.193374 0.981125i \(-0.561943\pi\)
−0.887641 + 0.460536i \(0.847657\pi\)
\(480\) −3.41986 14.9834i −0.156095 0.683895i
\(481\) 11.2077 0.511025
\(482\) −5.15637 22.5915i −0.234866 1.02902i
\(483\) −12.7109 + 15.9390i −0.578367 + 0.725250i
\(484\) −1.52835 + 6.69613i −0.0694704 + 0.304370i
\(485\) 5.40521 23.6818i 0.245438 1.07533i
\(486\) −1.29273 1.62103i −0.0586392 0.0735312i
\(487\) −8.31764 4.00556i −0.376908 0.181509i 0.235832 0.971794i \(-0.424219\pi\)
−0.612740 + 0.790284i \(0.709933\pi\)
\(488\) 5.82988 2.80752i 0.263906 0.127091i
\(489\) −4.80867 + 6.02988i −0.217456 + 0.272681i
\(490\) 37.2678 + 46.7323i 1.68359 + 2.11115i
\(491\) 10.9181 5.25786i 0.492725 0.237284i −0.170985 0.985274i \(-0.554695\pi\)
0.663710 + 0.747990i \(0.268981\pi\)
\(492\) −3.65638 −0.164842
\(493\) −21.4277 + 21.2401i −0.965054 + 0.956606i
\(494\) 4.51251 0.203027
\(495\) −6.38692 + 3.07578i −0.287071 + 0.138246i
\(496\) −2.00597 2.51541i −0.0900709 0.112945i
\(497\) 0.878751 1.10192i 0.0394174 0.0494278i
\(498\) 5.45144 2.62527i 0.244285 0.117641i
\(499\) 26.6604 + 12.8390i 1.19348 + 0.574750i 0.921811 0.387640i \(-0.126710\pi\)
0.271671 + 0.962390i \(0.412424\pi\)
\(500\) −17.4072 21.8279i −0.778473 0.976175i
\(501\) 1.86668 8.17845i 0.0833970 0.365386i
\(502\) −9.56521 + 41.9079i −0.426916 + 1.87044i
\(503\) −5.59719 + 7.01866i −0.249567 + 0.312947i −0.890797 0.454402i \(-0.849853\pi\)
0.641230 + 0.767349i \(0.278424\pi\)
\(504\) 0.649822 + 2.84705i 0.0289454 + 0.126818i
\(505\) −17.9171 −0.797300
\(506\) 7.46446 + 32.7039i 0.331836 + 1.45387i
\(507\) −10.5718 5.09110i −0.469510 0.226104i
\(508\) 25.7072 + 12.3799i 1.14057 + 0.549271i
\(509\) −6.60071 28.9196i −0.292572 1.28184i −0.880933 0.473241i \(-0.843084\pi\)
0.588361 0.808598i \(-0.299773\pi\)
\(510\) 22.0179 0.974968
\(511\) −15.8422 69.4092i −0.700818 3.07048i
\(512\) 19.3083 24.2119i 0.853315 1.07002i
\(513\) −0.430388 + 1.88565i −0.0190021 + 0.0832536i
\(514\) −1.09159 + 4.78258i −0.0481481 + 0.210951i
\(515\) 6.56272 + 8.22939i 0.289188 + 0.362630i
\(516\) 9.39300 + 4.52343i 0.413504 + 0.199133i
\(517\) −19.7503 + 9.51127i −0.868619 + 0.418305i
\(518\) 60.6793 76.0894i 2.66609 3.34318i
\(519\) 2.19584 + 2.75349i 0.0963866 + 0.120865i
\(520\) 1.19075 0.573437i 0.0522180 0.0251469i
\(521\) −23.8067 −1.04299 −0.521496 0.853254i \(-0.674626\pi\)
−0.521496 + 0.853254i \(0.674626\pi\)
\(522\) −9.42784 5.98188i −0.412646 0.261820i
\(523\) 9.45221 0.413316 0.206658 0.978413i \(-0.433741\pi\)
0.206658 + 0.978413i \(0.433741\pi\)
\(524\) −39.1651 + 18.8609i −1.71093 + 0.823942i
\(525\) −4.13521 5.18539i −0.180475 0.226309i
\(526\) −31.6208 + 39.6513i −1.37873 + 1.72888i
\(527\) 4.90209 2.36072i 0.213538 0.102835i
\(528\) −11.1634 5.37603i −0.485826 0.233962i
\(529\) −2.67260 3.35133i −0.116200 0.145710i
\(530\) −4.51139 + 19.7657i −0.195962 + 0.858567i
\(531\) −1.27249 + 5.57516i −0.0552215 + 0.241941i
\(532\) 13.0648 16.3828i 0.566431 0.710282i
\(533\) 0.398254 + 1.74486i 0.0172503 + 0.0755784i
\(534\) −15.1044 −0.653633
\(535\) −2.65596 11.6365i −0.114827 0.503090i
\(536\) 2.21565 + 1.06700i 0.0957014 + 0.0460874i
\(537\) 6.42875 + 3.09592i 0.277421 + 0.133599i
\(538\) −2.99361 13.1159i −0.129064 0.565466i
\(539\) 56.8843 2.45018
\(540\) 0.969600 + 4.24810i 0.0417250 + 0.182809i
\(541\) −14.3377 + 17.9789i −0.616426 + 0.772973i −0.987837 0.155495i \(-0.950303\pi\)
0.371411 + 0.928469i \(0.378874\pi\)
\(542\) 0.221031 0.968400i 0.00949410 0.0415964i
\(543\) 4.69086 20.5520i 0.201304 0.881971i
\(544\) 28.3236 + 35.5167i 1.21436 + 1.52277i
\(545\) 28.0034 + 13.4857i 1.19953 + 0.577665i
\(546\) 9.90624 4.77059i 0.423948 0.204163i
\(547\) 2.80622 3.51888i 0.119985 0.150457i −0.718211 0.695825i \(-0.755039\pi\)
0.838196 + 0.545369i \(0.183610\pi\)
\(548\) 12.6483 + 15.8605i 0.540309 + 0.677526i
\(549\) 9.40822 4.53076i 0.401533 0.193368i
\(550\) −10.9131 −0.465336
\(551\) 1.12068 + 10.3552i 0.0477425 + 0.441148i
\(552\) 2.68059 0.114093
\(553\) −58.6474 + 28.2431i −2.49394 + 1.20102i
\(554\) 5.38061 + 6.74707i 0.228600 + 0.286656i
\(555\) 11.7707 14.7599i 0.499637 0.626525i
\(556\) −21.4275 + 10.3189i −0.908726 + 0.437620i
\(557\) 12.4667 + 6.00364i 0.528231 + 0.254382i 0.678938 0.734196i \(-0.262441\pi\)
−0.150707 + 0.988578i \(0.548155\pi\)
\(558\) 1.25542 + 1.57424i 0.0531460 + 0.0666429i
\(559\) 1.13554 4.97514i 0.0480283 0.210426i
\(560\) −6.58514 + 28.8514i −0.278273 + 1.21919i
\(561\) 13.0645 16.3824i 0.551584 0.691664i
\(562\) 4.29912 + 18.8357i 0.181348 + 0.794536i
\(563\) −29.6777 −1.25077 −0.625384 0.780317i \(-0.715058\pi\)
−0.625384 + 0.780317i \(0.715058\pi\)
\(564\) 2.99831 + 13.1364i 0.126252 + 0.553144i
\(565\) −4.69075 2.25895i −0.197341 0.0950346i
\(566\) −18.2770 8.80176i −0.768241 0.369966i
\(567\) 1.04868 + 4.59455i 0.0440403 + 0.192953i
\(568\) −0.185318 −0.00777578
\(569\) −2.34470 10.2728i −0.0982950 0.430658i 0.901704 0.432355i \(-0.142317\pi\)
−0.999999 + 0.00169638i \(0.999460\pi\)
\(570\) 4.73919 5.94276i 0.198503 0.248915i
\(571\) 7.76939 34.0399i 0.325139 1.42453i −0.503137 0.864207i \(-0.667821\pi\)
0.828276 0.560320i \(-0.189322\pi\)
\(572\) 2.15283 9.43215i 0.0900142 0.394378i
\(573\) 8.61352 + 10.8010i 0.359835 + 0.451219i
\(574\) 14.0022 + 6.74308i 0.584439 + 0.281451i
\(575\) −5.48510 + 2.64149i −0.228745 + 0.110158i
\(576\) −6.35061 + 7.96341i −0.264609 + 0.331809i
\(577\) −5.20425 6.52592i −0.216656 0.271678i 0.661613 0.749846i \(-0.269872\pi\)
−0.878268 + 0.478168i \(0.841301\pi\)
\(578\) −26.8796 + 12.9446i −1.11805 + 0.538422i
\(579\) −4.23298 −0.175917
\(580\) 12.3967 + 19.9231i 0.514744 + 0.827261i
\(581\) −13.7529 −0.570568
\(582\) −23.9398 + 11.5288i −0.992335 + 0.477883i
\(583\) 12.0298 + 15.0848i 0.498222 + 0.624750i
\(584\) −5.83655 + 7.31880i −0.241518 + 0.302854i
\(585\) 1.92163 0.925408i 0.0794496 0.0382609i
\(586\) 21.3817 + 10.2969i 0.883269 + 0.425360i
\(587\) −10.5208 13.1927i −0.434240 0.544520i 0.515775 0.856724i \(-0.327504\pi\)
−0.950015 + 0.312204i \(0.898933\pi\)
\(588\) 7.78042 34.0883i 0.320859 1.40578i
\(589\) 0.417967 1.83123i 0.0172220 0.0754546i
\(590\) 14.0120 17.5705i 0.576864 0.723364i
\(591\) 1.02688 + 4.49907i 0.0422404 + 0.185067i
\(592\) 32.9973 1.35618
\(593\) 6.25458 + 27.4031i 0.256845 + 1.12531i 0.924603 + 0.380932i \(0.124397\pi\)
−0.667758 + 0.744378i \(0.732746\pi\)
\(594\) 6.98651 + 3.36452i 0.286660 + 0.138048i
\(595\) −45.0899 21.7141i −1.84850 0.890193i
\(596\) −6.18987 27.1196i −0.253547 1.11086i
\(597\) 3.82599 0.156587
\(598\) −2.24583 9.83962i −0.0918387 0.402372i
\(599\) −11.2525 + 14.1101i −0.459763 + 0.576525i −0.956631 0.291301i \(-0.905912\pi\)
0.496868 + 0.867826i \(0.334483\pi\)
\(600\) −0.194053 + 0.850203i −0.00792219 + 0.0347094i
\(601\) 3.54163 15.5169i 0.144466 0.632947i −0.849900 0.526944i \(-0.823338\pi\)
0.994366 0.106003i \(-0.0338053\pi\)
\(602\) −27.6285 34.6451i −1.12606 1.41203i
\(603\) 3.57559 + 1.72191i 0.145609 + 0.0701218i
\(604\) −19.7605 + 9.51617i −0.804045 + 0.387208i
\(605\) 3.53082 4.42751i 0.143548 0.180004i
\(606\) 12.2198 + 15.3232i 0.496397 + 0.622462i
\(607\) 31.9807 15.4011i 1.29806 0.625112i 0.348091 0.937461i \(-0.386830\pi\)
0.949967 + 0.312349i \(0.101116\pi\)
\(608\) 15.6826 0.636014
\(609\) 13.4077 + 21.5479i 0.543307 + 0.873166i
\(610\) −41.0377 −1.66157
\(611\) 5.94228 2.86165i 0.240399 0.115770i
\(612\) −8.03032 10.0697i −0.324607 0.407044i
\(613\) −17.6983 + 22.1929i −0.714826 + 0.896364i −0.998033 0.0626951i \(-0.980030\pi\)
0.283206 + 0.959059i \(0.408602\pi\)
\(614\) 37.6053 18.1098i 1.51763 0.730851i
\(615\) 2.71616 + 1.30803i 0.109526 + 0.0527450i
\(616\) −6.80967 8.53905i −0.274369 0.344048i
\(617\) −6.85060 + 30.0144i −0.275795 + 1.20833i 0.627260 + 0.778810i \(0.284176\pi\)
−0.903055 + 0.429525i \(0.858681\pi\)
\(618\) 2.56209 11.2252i 0.103062 0.451545i
\(619\) 1.19253 1.49539i 0.0479319 0.0601047i −0.757288 0.653081i \(-0.773476\pi\)
0.805220 + 0.592977i \(0.202047\pi\)
\(620\) −0.941616 4.12549i −0.0378162 0.165684i
\(621\) 4.32591 0.173593
\(622\) −0.819579 3.59081i −0.0328621 0.143978i
\(623\) 30.9320 + 14.8961i 1.23926 + 0.596798i
\(624\) 3.35874 + 1.61748i 0.134457 + 0.0647511i
\(625\) 3.55649 + 15.5820i 0.142260 + 0.623280i
\(626\) −30.9186 −1.23575
\(627\) −1.60966 7.05237i −0.0642835 0.281645i
\(628\) 1.27495 1.59874i 0.0508760 0.0637965i
\(629\) −12.4172 + 54.4034i −0.495107 + 2.16920i
\(630\) 4.12123 18.0563i 0.164194 0.719380i
\(631\) 3.99885 + 5.01440i 0.159192 + 0.199620i 0.855030 0.518578i \(-0.173539\pi\)
−0.695839 + 0.718198i \(0.744967\pi\)
\(632\) 7.71136 + 3.71359i 0.306741 + 0.147719i
\(633\) −8.99187 + 4.33026i −0.357395 + 0.172112i
\(634\) −14.7643 + 18.5139i −0.586366 + 0.735279i
\(635\) −14.6679 18.3930i −0.582080 0.729905i
\(636\) 10.6851 5.14566i 0.423691 0.204039i
\(637\) −17.1147 −0.678111
\(638\) 41.4754 + 4.85789i 1.64203 + 0.192326i
\(639\) −0.299065 −0.0118308
\(640\) 8.37114 4.03133i 0.330898 0.159352i
\(641\) −17.9604 22.5217i −0.709395 0.889553i 0.288291 0.957543i \(-0.406913\pi\)
−0.997686 + 0.0679897i \(0.978341\pi\)
\(642\) −8.14044 + 10.2078i −0.321277 + 0.402869i
\(643\) −2.76235 + 1.33028i −0.108936 + 0.0524610i −0.487558 0.873090i \(-0.662112\pi\)
0.378622 + 0.925551i \(0.376398\pi\)
\(644\) −42.2252 20.3346i −1.66390 0.801294i
\(645\) −5.35943 6.72051i −0.211027 0.264620i
\(646\) −4.99951 + 21.9043i −0.196703 + 0.861812i
\(647\) 10.1603 44.5151i 0.399442 1.75007i −0.230162 0.973152i \(-0.573926\pi\)
0.629604 0.776917i \(-0.283217\pi\)
\(648\) 0.386351 0.484469i 0.0151773 0.0190317i
\(649\) −4.75914 20.8512i −0.186813 0.818480i
\(650\) 3.28342 0.128786
\(651\) −1.01841 4.46195i −0.0399146 0.174877i
\(652\) −15.9742 7.69277i −0.625598 0.301272i
\(653\) 11.5433 + 5.55897i 0.451725 + 0.217539i 0.645891 0.763429i \(-0.276486\pi\)
−0.194166 + 0.980969i \(0.562200\pi\)
\(654\) −7.56554 33.1468i −0.295836 1.29614i
\(655\) 35.8413 1.40044
\(656\) 1.17253 + 5.13718i 0.0457795 + 0.200573i
\(657\) −9.41897 + 11.8110i −0.367469 + 0.460792i
\(658\) 12.7441 55.8357i 0.496818 2.17670i
\(659\) −5.61559 + 24.6035i −0.218752 + 0.958416i 0.739649 + 0.672993i \(0.234991\pi\)
−0.958401 + 0.285424i \(0.907866\pi\)
\(660\) −10.1607 12.7411i −0.395506 0.495948i
\(661\) 14.6652 + 7.06237i 0.570409 + 0.274694i 0.696776 0.717289i \(-0.254617\pi\)
−0.126367 + 0.991984i \(0.540332\pi\)
\(662\) −18.3669 + 8.84503i −0.713849 + 0.343772i
\(663\) −3.93071 + 4.92895i −0.152656 + 0.191425i
\(664\) 1.12747 + 1.41381i 0.0437544 + 0.0548663i
\(665\) −15.5660 + 7.49621i −0.603625 + 0.290691i
\(666\) −20.6510 −0.800208
\(667\) 22.0221 7.59736i 0.852698 0.294171i
\(668\) 19.2847 0.746146
\(669\) 6.93088 3.33774i 0.267963 0.129044i
\(670\) −9.72418 12.1937i −0.375678 0.471085i
\(671\) −24.3501 + 30.5340i −0.940024 + 1.17875i
\(672\) 34.4278 16.5796i 1.32808 0.639571i
\(673\) 38.3263 + 18.4570i 1.47737 + 0.711465i 0.987100 0.160105i \(-0.0511833\pi\)
0.490272 + 0.871570i \(0.336898\pi\)
\(674\) −19.3966 24.3226i −0.747130 0.936872i
\(675\) −0.313162 + 1.37205i −0.0120536 + 0.0528102i
\(676\) 6.00237 26.2981i 0.230861 1.01147i
\(677\) 12.9894 16.2882i 0.499224 0.626007i −0.466830 0.884347i \(-0.654604\pi\)
0.966054 + 0.258340i \(0.0831755\pi\)
\(678\) 1.26728 + 5.55231i 0.0486695 + 0.213235i
\(679\) 60.3954 2.31776
\(680\) 1.46427 + 6.41540i 0.0561523 + 0.246019i
\(681\) 5.94778 + 2.86430i 0.227919 + 0.109760i
\(682\) −6.78486 3.26742i −0.259806 0.125116i
\(683\) −7.62083 33.3891i −0.291603 1.27760i −0.882294 0.470699i \(-0.844002\pi\)
0.590691 0.806898i \(-0.298855\pi\)
\(684\) −4.44634 −0.170010
\(685\) −3.72193 16.3069i −0.142208 0.623053i
\(686\) −50.0151 + 62.7169i −1.90959 + 2.39454i
\(687\) −0.518176 + 2.27028i −0.0197697 + 0.0866165i
\(688\) 3.34323 14.6477i 0.127460 0.558437i
\(689\) −3.61939 4.53857i −0.137888 0.172906i
\(690\) −15.3170 7.37626i −0.583106 0.280809i
\(691\) 8.21851 3.95783i 0.312647 0.150563i −0.270979 0.962585i \(-0.587348\pi\)
0.583626 + 0.812022i \(0.301633\pi\)
\(692\) −5.04794 + 6.32991i −0.191894 + 0.240627i
\(693\) −10.9894 13.7803i −0.417452 0.523469i
\(694\) −62.5191 + 30.1076i −2.37319 + 1.14287i
\(695\) 19.6090 0.743812
\(696\) 1.11596 3.14483i 0.0423005 0.119204i
\(697\) −8.91103 −0.337529
\(698\) −51.9025 + 24.9949i −1.96454 + 0.946072i
\(699\) −1.09013 1.36698i −0.0412325 0.0517040i
\(700\) 9.50629 11.9205i 0.359304 0.450553i
\(701\) 38.5938 18.5858i 1.45767 0.701976i 0.473760 0.880654i \(-0.342897\pi\)
0.983907 + 0.178679i \(0.0571822\pi\)
\(702\) −2.10203 1.01228i −0.0793359 0.0382061i
\(703\) 12.0111 + 15.0614i 0.453006 + 0.568052i
\(704\) 8.47677 37.1391i 0.319480 1.39973i
\(705\) 2.47213 10.8311i 0.0931057 0.407923i
\(706\) 17.7602 22.2706i 0.668416 0.838167i
\(707\) −9.91290 43.4312i −0.372813 1.63340i
\(708\) −13.1461 −0.494062
\(709\) −2.44899 10.7297i −0.0919738 0.402964i 0.907894 0.419199i \(-0.137689\pi\)
−0.999868 + 0.0162353i \(0.994832\pi\)
\(710\) 1.05891 + 0.509946i 0.0397403 + 0.0191379i
\(711\) 12.4445 + 5.99297i 0.466706 + 0.224754i
\(712\) −1.00450 4.40101i −0.0376453 0.164935i
\(713\) −4.20106 −0.157331
\(714\) 12.1817 + 53.3716i 0.455889 + 1.99738i
\(715\) −4.97350 + 6.23658i −0.185998 + 0.233235i
\(716\) −3.65007 + 15.9920i −0.136409 + 0.597649i
\(717\) −5.07780 + 22.2473i −0.189634 + 0.830840i
\(718\) −31.8015 39.8779i −1.18682 1.48823i
\(719\) −16.3737 7.88517i −0.610637 0.294067i 0.102892 0.994692i \(-0.467190\pi\)
−0.713530 + 0.700625i \(0.752905\pi\)
\(720\) 5.65761 2.72456i 0.210847 0.101538i
\(721\) −16.3172 + 20.4612i −0.607685 + 0.762013i
\(722\) −19.7258 24.7354i −0.734118 0.920555i
\(723\) 10.0695 4.84919i 0.374487 0.180343i
\(724\) 48.4613 1.80105
\(725\) 0.815434 + 7.53474i 0.0302845 + 0.279833i
\(726\) −6.19463 −0.229904
\(727\) 37.1991 17.9141i 1.37964 0.664399i 0.410716 0.911763i \(-0.365279\pi\)
0.968922 + 0.247365i \(0.0795645\pi\)
\(728\) 2.04882 + 2.56914i 0.0759344 + 0.0952187i
\(729\) 0.623490 0.781831i 0.0230922 0.0289567i
\(730\) 53.4896 25.7592i 1.97974 0.953391i
\(731\) 22.8919 + 11.0241i 0.846686 + 0.407742i
\(732\) 14.9672 + 18.7683i 0.553204 + 0.693695i
\(733\) −1.01201 + 4.43390i −0.0373794 + 0.163770i −0.990173 0.139850i \(-0.955338\pi\)
0.952793 + 0.303619i \(0.0981952\pi\)
\(734\) 2.04547 8.96178i 0.0754996 0.330785i
\(735\) −17.9745 + 22.5393i −0.662999 + 0.831375i
\(736\) −7.80508 34.1963i −0.287699 1.26049i
\(737\) −14.8427 −0.546736
\(738\) −0.733813 3.21504i −0.0270120 0.118347i
\(739\) −42.6604 20.5442i −1.56929 0.755729i −0.571399 0.820672i \(-0.693599\pi\)
−0.997889 + 0.0649431i \(0.979313\pi\)
\(740\) 39.1016 + 18.8304i 1.43740 + 0.692218i
\(741\) 0.484297 + 2.12184i 0.0177911 + 0.0779479i
\(742\) −50.4083 −1.85055
\(743\) 3.01788 + 13.2222i 0.110715 + 0.485076i 0.999635 + 0.0270128i \(0.00859948\pi\)
−0.888920 + 0.458063i \(0.848543\pi\)
\(744\) −0.375200 + 0.470486i −0.0137555 + 0.0172489i
\(745\) −5.10360 + 22.3603i −0.186981 + 0.819219i
\(746\) −11.2465 + 49.2741i −0.411763 + 1.80405i
\(747\) 1.81951 + 2.28159i 0.0665723 + 0.0834790i
\(748\) 43.3997 + 20.9002i 1.58685 + 0.764187i
\(749\) 26.7376 12.8761i 0.976970 0.470484i
\(750\) 15.6997 19.6868i 0.573273 0.718862i
\(751\) 17.8218 + 22.3478i 0.650326 + 0.815483i 0.992252 0.124244i \(-0.0396506\pi\)
−0.341926 + 0.939727i \(0.611079\pi\)
\(752\) 17.4951 8.42519i 0.637980 0.307235i
\(753\) −20.7323 −0.755526
\(754\) −12.4787 1.46159i −0.454447 0.0532280i
\(755\) 18.0835 0.658128
\(756\) −9.76099 + 4.70065i −0.355004 + 0.170961i
\(757\) 4.64105 + 5.81969i 0.168682 + 0.211520i 0.858986 0.511999i \(-0.171095\pi\)
−0.690304 + 0.723519i \(0.742523\pi\)
\(758\) 17.4588 21.8927i 0.634132 0.795177i
\(759\) −14.5767 + 7.01979i −0.529102 + 0.254802i
\(760\) 2.04673 + 0.985652i 0.0742426 + 0.0357534i
\(761\) 27.5300 + 34.5215i 0.997960 + 1.25140i 0.967764 + 0.251858i \(0.0810417\pi\)
0.0301959 + 0.999544i \(0.490387\pi\)
\(762\) −5.72637 + 25.0889i −0.207444 + 0.908874i
\(763\) −17.1963 + 75.3417i −0.622546 + 2.72755i
\(764\) −19.8013 + 24.8301i −0.716387 + 0.898321i
\(765\) 2.36303 + 10.3531i 0.0854356 + 0.374318i