Properties

Label 87.2.g.b.25.2
Level $87$
Weight $2$
Character 87.25
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 25.2
Root \(0.824998 + 0.397298i\) of defining polynomial
Character \(\chi\) \(=\) 87.25
Dual form 87.2.g.b.7.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.203758 - 0.892721i) q^{2} +(0.900969 - 0.433884i) q^{3} +(1.04650 + 0.503970i) q^{4} +(-0.0634200 + 0.277861i) q^{5} +(-0.203758 - 0.892721i) q^{6} +(-4.54015 + 2.18642i) q^{7} +(1.80497 - 2.26336i) q^{8} +(0.623490 - 0.781831i) q^{9} +O(q^{10})\) \(q+(0.203758 - 0.892721i) q^{2} +(0.900969 - 0.433884i) q^{3} +(1.04650 + 0.503970i) q^{4} +(-0.0634200 + 0.277861i) q^{5} +(-0.203758 - 0.892721i) q^{6} +(-4.54015 + 2.18642i) q^{7} +(1.80497 - 2.26336i) q^{8} +(0.623490 - 0.781831i) q^{9} +(0.235130 + 0.113233i) q^{10} +(-2.60766 - 3.26990i) q^{11} +1.16153 q^{12} +(1.41861 + 1.77888i) q^{13} +(1.02677 + 4.49858i) q^{14} +(0.0634200 + 0.277861i) q^{15} +(-0.204365 - 0.256265i) q^{16} -3.40834 q^{17} +(-0.570916 - 0.715906i) q^{18} +(-0.768127 - 0.369911i) q^{19} +(-0.206403 + 0.258821i) q^{20} +(-3.14188 + 3.93979i) q^{21} +(-3.45044 + 1.66164i) q^{22} +(1.61144 + 7.06017i) q^{23} +(0.644186 - 2.82237i) q^{24} +(4.43166 + 2.13417i) q^{25} +(1.87710 - 0.903962i) q^{26} +(0.222521 - 0.974928i) q^{27} -5.85318 q^{28} +(2.41553 - 4.81302i) q^{29} +0.260975 q^{30} +(0.728037 - 3.18974i) q^{31} +(4.94610 - 2.38192i) q^{32} +(-3.76817 - 1.81466i) q^{33} +(-0.694475 + 3.04269i) q^{34} +(-0.319585 - 1.40019i) q^{35} +(1.04650 - 0.503970i) q^{36} +(0.237365 - 0.297647i) q^{37} +(-0.486739 + 0.610351i) q^{38} +(2.04995 + 0.987204i) q^{39} +(0.514429 + 0.645074i) q^{40} -5.56008 q^{41} +(2.87695 + 3.60758i) q^{42} +(-1.75856 - 7.70474i) q^{43} +(-1.08099 - 4.73615i) q^{44} +(0.177699 + 0.222827i) q^{45} +6.63110 q^{46} +(4.07504 + 5.10993i) q^{47} +(-0.295316 - 0.142216i) q^{48} +(11.4681 - 14.3805i) q^{49} +(2.80821 - 3.52138i) q^{50} +(-3.07081 + 1.47882i) q^{51} +(0.588079 + 2.57654i) q^{52} +(-0.643658 + 2.82005i) q^{53} +(-0.824998 - 0.397298i) q^{54} +(1.07396 - 0.517190i) q^{55} +(-3.24617 + 14.2224i) q^{56} -0.852557 q^{57} +(-3.80450 - 3.13709i) q^{58} -4.68212 q^{59} +(-0.0736644 + 0.322745i) q^{60} +(6.25207 - 3.01084i) q^{61} +(-2.69920 - 1.29987i) q^{62} +(-1.12132 + 4.91284i) q^{63} +(-1.26445 - 5.53994i) q^{64} +(-0.584250 + 0.281360i) q^{65} +(-2.38778 + 2.99418i) q^{66} +(-1.77109 + 2.22087i) q^{67} +(-3.56684 - 1.71770i) q^{68} +(4.51515 + 5.66182i) q^{69} -1.31510 q^{70} +(-7.16657 - 8.98660i) q^{71} +(-0.644186 - 2.82237i) q^{72} +(2.51970 + 11.0395i) q^{73} +(-0.217350 - 0.272549i) q^{74} +4.91877 q^{75} +(-0.617425 - 0.774227i) q^{76} +(18.9885 + 9.14439i) q^{77} +(1.29899 - 1.62888i) q^{78} +(-4.22068 + 5.29256i) q^{79} +(0.0841670 - 0.0405327i) q^{80} +(-0.222521 - 0.974928i) q^{81} +(-1.13291 + 4.96360i) q^{82} +(-5.65795 - 2.72473i) q^{83} +(-5.27353 + 2.53960i) q^{84} +(0.216157 - 0.947045i) q^{85} -7.23650 q^{86} +(0.0880280 - 5.38445i) q^{87} -12.1077 q^{88} +(-1.26972 + 5.56302i) q^{89} +(0.235130 - 0.113233i) q^{90} +(-10.3301 - 4.97470i) q^{91} +(-1.87174 + 8.20062i) q^{92} +(-0.728037 - 3.18974i) q^{93} +(5.39206 - 2.59668i) q^{94} +(0.151498 - 0.189973i) q^{95} +(3.42281 - 4.29207i) q^{96} +(-0.453007 - 0.218157i) q^{97} +(-10.5011 - 13.1679i) q^{98} -4.18236 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.203758 0.892721i 0.144078 0.631249i −0.850385 0.526162i \(-0.823631\pi\)
0.994463 0.105087i \(-0.0335122\pi\)
\(3\) 0.900969 0.433884i 0.520175 0.250503i
\(4\) 1.04650 + 0.503970i 0.523252 + 0.251985i
\(5\) −0.0634200 + 0.277861i −0.0283623 + 0.124263i −0.987127 0.159937i \(-0.948871\pi\)
0.958765 + 0.284200i \(0.0917281\pi\)
\(6\) −0.203758 0.892721i −0.0831837 0.364452i
\(7\) −4.54015 + 2.18642i −1.71601 + 0.826389i −0.725624 + 0.688092i \(0.758449\pi\)
−0.990391 + 0.138298i \(0.955837\pi\)
\(8\) 1.80497 2.26336i 0.638153 0.800219i
\(9\) 0.623490 0.781831i 0.207830 0.260610i
\(10\) 0.235130 + 0.113233i 0.0743547 + 0.0358073i
\(11\) −2.60766 3.26990i −0.786238 0.985912i −0.999959 0.00901707i \(-0.997130\pi\)
0.213721 0.976895i \(-0.431442\pi\)
\(12\) 1.16153 0.335306
\(13\) 1.41861 + 1.77888i 0.393452 + 0.493373i 0.938620 0.344954i \(-0.112106\pi\)
−0.545168 + 0.838327i \(0.683534\pi\)
\(14\) 1.02677 + 4.49858i 0.274416 + 1.20230i
\(15\) 0.0634200 + 0.277861i 0.0163750 + 0.0717435i
\(16\) −0.204365 0.256265i −0.0510912 0.0640663i
\(17\) −3.40834 −0.826644 −0.413322 0.910585i \(-0.635632\pi\)
−0.413322 + 0.910585i \(0.635632\pi\)
\(18\) −0.570916 0.715906i −0.134566 0.168741i
\(19\) −0.768127 0.369911i −0.176221 0.0848633i 0.343694 0.939082i \(-0.388322\pi\)
−0.519914 + 0.854218i \(0.674036\pi\)
\(20\) −0.206403 + 0.258821i −0.0461531 + 0.0578742i
\(21\) −3.14188 + 3.93979i −0.685614 + 0.859733i
\(22\) −3.45044 + 1.66164i −0.735636 + 0.354263i
\(23\) 1.61144 + 7.06017i 0.336008 + 1.47215i 0.807285 + 0.590162i \(0.200936\pi\)
−0.471277 + 0.881985i \(0.656207\pi\)
\(24\) 0.644186 2.82237i 0.131494 0.576113i
\(25\) 4.43166 + 2.13417i 0.886332 + 0.426835i
\(26\) 1.87710 0.903962i 0.368129 0.177281i
\(27\) 0.222521 0.974928i 0.0428242 0.187625i
\(28\) −5.85318 −1.10615
\(29\) 2.41553 4.81302i 0.448553 0.893756i
\(30\) 0.260975 0.0476473
\(31\) 0.728037 3.18974i 0.130759 0.572894i −0.866518 0.499146i \(-0.833647\pi\)
0.997277 0.0737475i \(-0.0234959\pi\)
\(32\) 4.94610 2.38192i 0.874355 0.421067i
\(33\) −3.76817 1.81466i −0.655955 0.315891i
\(34\) −0.694475 + 3.04269i −0.119101 + 0.521818i
\(35\) −0.319585 1.40019i −0.0540197 0.236676i
\(36\) 1.04650 0.503970i 0.174417 0.0839950i
\(37\) 0.237365 0.297647i 0.0390226 0.0489328i −0.761937 0.647651i \(-0.775752\pi\)
0.800960 + 0.598718i \(0.204323\pi\)
\(38\) −0.486739 + 0.610351i −0.0789594 + 0.0990120i
\(39\) 2.04995 + 0.987204i 0.328255 + 0.158079i
\(40\) 0.514429 + 0.645074i 0.0813384 + 0.101995i
\(41\) −5.56008 −0.868339 −0.434169 0.900831i \(-0.642958\pi\)
−0.434169 + 0.900831i \(0.642958\pi\)
\(42\) 2.87695 + 3.60758i 0.443923 + 0.556662i
\(43\) −1.75856 7.70474i −0.268177 1.17496i −0.912131 0.409898i \(-0.865564\pi\)
0.643954 0.765064i \(-0.277293\pi\)
\(44\) −1.08099 4.73615i −0.162966 0.714001i
\(45\) 0.177699 + 0.222827i 0.0264898 + 0.0332172i
\(46\) 6.63110 0.977702
\(47\) 4.07504 + 5.10993i 0.594405 + 0.745360i 0.984494 0.175417i \(-0.0561273\pi\)
−0.390089 + 0.920777i \(0.627556\pi\)
\(48\) −0.295316 0.142216i −0.0426251 0.0205272i
\(49\) 11.4681 14.3805i 1.63830 2.05436i
\(50\) 2.80821 3.52138i 0.397140 0.497998i
\(51\) −3.07081 + 1.47882i −0.429999 + 0.207077i
\(52\) 0.588079 + 2.57654i 0.0815520 + 0.357302i
\(53\) −0.643658 + 2.82005i −0.0884132 + 0.387363i −0.999702 0.0244039i \(-0.992231\pi\)
0.911289 + 0.411767i \(0.135088\pi\)
\(54\) −0.824998 0.397298i −0.112268 0.0540654i
\(55\) 1.07396 0.517190i 0.144812 0.0697379i
\(56\) −3.24617 + 14.2224i −0.433788 + 1.90055i
\(57\) −0.852557 −0.112924
\(58\) −3.80450 3.13709i −0.499556 0.411920i
\(59\) −4.68212 −0.609560 −0.304780 0.952423i \(-0.598583\pi\)
−0.304780 + 0.952423i \(0.598583\pi\)
\(60\) −0.0736644 + 0.322745i −0.00951004 + 0.0416662i
\(61\) 6.25207 3.01084i 0.800495 0.385498i 0.0115280 0.999934i \(-0.496330\pi\)
0.788967 + 0.614435i \(0.210616\pi\)
\(62\) −2.69920 1.29987i −0.342799 0.165083i
\(63\) −1.12132 + 4.91284i −0.141274 + 0.618960i
\(64\) −1.26445 5.53994i −0.158057 0.692492i
\(65\) −0.584250 + 0.281360i −0.0724673 + 0.0348984i
\(66\) −2.38778 + 2.99418i −0.293915 + 0.368558i
\(67\) −1.77109 + 2.22087i −0.216373 + 0.271323i −0.878158 0.478370i \(-0.841228\pi\)
0.661785 + 0.749693i \(0.269799\pi\)
\(68\) −3.56684 1.71770i −0.432543 0.208302i
\(69\) 4.51515 + 5.66182i 0.543560 + 0.681602i
\(70\) −1.31510 −0.157184
\(71\) −7.16657 8.98660i −0.850516 1.06651i −0.997008 0.0773013i \(-0.975370\pi\)
0.146492 0.989212i \(-0.453202\pi\)
\(72\) −0.644186 2.82237i −0.0759181 0.332619i
\(73\) 2.51970 + 11.0395i 0.294908 + 1.29208i 0.877603 + 0.479387i \(0.159141\pi\)
−0.582695 + 0.812691i \(0.698002\pi\)
\(74\) −0.217350 0.272549i −0.0252665 0.0316832i
\(75\) 4.91877 0.567971
\(76\) −0.617425 0.774227i −0.0708235 0.0888099i
\(77\) 18.9885 + 9.14439i 2.16394 + 1.04210i
\(78\) 1.29899 1.62888i 0.147082 0.184435i
\(79\) −4.22068 + 5.29256i −0.474863 + 0.595460i −0.960354 0.278782i \(-0.910069\pi\)
0.485491 + 0.874241i \(0.338641\pi\)
\(80\) 0.0841670 0.0405327i 0.00941016 0.00453169i
\(81\) −0.222521 0.974928i −0.0247245 0.108325i
\(82\) −1.13291 + 4.96360i −0.125109 + 0.548138i
\(83\) −5.65795 2.72473i −0.621041 0.299078i 0.0967793 0.995306i \(-0.469146\pi\)
−0.717821 + 0.696228i \(0.754860\pi\)
\(84\) −5.27353 + 2.53960i −0.575389 + 0.277093i
\(85\) 0.216157 0.947045i 0.0234455 0.102721i
\(86\) −7.23650 −0.780332
\(87\) 0.0880280 5.38445i 0.00943759 0.577273i
\(88\) −12.1077 −1.29069
\(89\) −1.26972 + 5.56302i −0.134590 + 0.589679i 0.861981 + 0.506941i \(0.169224\pi\)
−0.996571 + 0.0827384i \(0.973633\pi\)
\(90\) 0.235130 0.113233i 0.0247849 0.0119358i
\(91\) −10.3301 4.97470i −1.08289 0.521491i
\(92\) −1.87174 + 8.20062i −0.195142 + 0.854974i
\(93\) −0.728037 3.18974i −0.0754939 0.330760i
\(94\) 5.39206 2.59668i 0.556149 0.267827i
\(95\) 0.151498 0.189973i 0.0155434 0.0194908i
\(96\) 3.42281 4.29207i 0.349339 0.438057i
\(97\) −0.453007 0.218157i −0.0459959 0.0221505i 0.410744 0.911751i \(-0.365269\pi\)
−0.456740 + 0.889600i \(0.650983\pi\)
\(98\) −10.5011 13.1679i −1.06077 1.33016i
\(99\) −4.18236 −0.420343
\(100\) 3.56219 + 4.46685i 0.356219 + 0.446685i
\(101\) 1.00310 + 4.39485i 0.0998117 + 0.437304i 0.999998 + 0.00179942i \(0.000572775\pi\)
−0.900187 + 0.435504i \(0.856570\pi\)
\(102\) 0.694475 + 3.04269i 0.0687633 + 0.301272i
\(103\) 5.06515 + 6.35150i 0.499085 + 0.625832i 0.966023 0.258458i \(-0.0832143\pi\)
−0.466938 + 0.884290i \(0.654643\pi\)
\(104\) 6.58680 0.645889
\(105\) −0.895458 1.12287i −0.0873877 0.109581i
\(106\) 2.38636 + 1.14921i 0.231784 + 0.111621i
\(107\) 5.93513 7.44241i 0.573770 0.719485i −0.407266 0.913310i \(-0.633518\pi\)
0.981036 + 0.193824i \(0.0620892\pi\)
\(108\) 0.724204 0.908123i 0.0696866 0.0873842i
\(109\) 6.69547 3.22437i 0.641309 0.308838i −0.0848202 0.996396i \(-0.527032\pi\)
0.726129 + 0.687558i \(0.241317\pi\)
\(110\) −0.242879 1.06412i −0.0231576 0.101460i
\(111\) 0.0847148 0.371160i 0.00804077 0.0352289i
\(112\) 1.48815 + 0.716655i 0.140617 + 0.0677175i
\(113\) −3.81835 + 1.83882i −0.359200 + 0.172981i −0.604776 0.796396i \(-0.706737\pi\)
0.245576 + 0.969377i \(0.421023\pi\)
\(114\) −0.173715 + 0.761095i −0.0162699 + 0.0712831i
\(115\) −2.06394 −0.192464
\(116\) 4.95349 3.81950i 0.459920 0.354631i
\(117\) 2.27527 0.210349
\(118\) −0.954018 + 4.17983i −0.0878245 + 0.384784i
\(119\) 15.4744 7.45206i 1.41853 0.683129i
\(120\) 0.743372 + 0.357989i 0.0678602 + 0.0326798i
\(121\) −1.44463 + 6.32935i −0.131330 + 0.575396i
\(122\) −1.41393 6.19483i −0.128011 0.560854i
\(123\) −5.00946 + 2.41243i −0.451688 + 0.217521i
\(124\) 2.36943 2.97117i 0.212781 0.266819i
\(125\) −1.76256 + 2.21017i −0.157648 + 0.197684i
\(126\) 4.15732 + 2.00206i 0.370363 + 0.178357i
\(127\) −10.5989 13.2906i −0.940501 1.17935i −0.983615 0.180281i \(-0.942299\pi\)
0.0431137 0.999070i \(-0.486272\pi\)
\(128\) 5.77626 0.510554
\(129\) −4.92737 6.17872i −0.433831 0.544006i
\(130\) 0.132130 + 0.578901i 0.0115886 + 0.0507730i
\(131\) 2.82494 + 12.3769i 0.246816 + 1.08137i 0.934668 + 0.355521i \(0.115697\pi\)
−0.687852 + 0.725851i \(0.741446\pi\)
\(132\) −3.02888 3.79810i −0.263630 0.330582i
\(133\) 4.29619 0.372527
\(134\) 1.62175 + 2.03361i 0.140098 + 0.175677i
\(135\) 0.256782 + 0.123660i 0.0221003 + 0.0106429i
\(136\) −6.15195 + 7.71430i −0.527525 + 0.661496i
\(137\) 6.07484 7.61760i 0.519008 0.650816i −0.451390 0.892327i \(-0.649072\pi\)
0.970398 + 0.241511i \(0.0776430\pi\)
\(138\) 5.97441 2.87713i 0.508576 0.244917i
\(139\) 2.77783 + 12.1705i 0.235612 + 1.03228i 0.944898 + 0.327364i \(0.106160\pi\)
−0.709286 + 0.704921i \(0.750983\pi\)
\(140\) 0.371209 1.62637i 0.0313729 0.137453i
\(141\) 5.88860 + 2.83580i 0.495909 + 0.238817i
\(142\) −9.48277 + 4.56666i −0.795776 + 0.383226i
\(143\) 2.11751 9.27742i 0.177075 0.775817i
\(144\) −0.327776 −0.0273146
\(145\) 1.18416 + 0.976425i 0.0983391 + 0.0810877i
\(146\) 10.3686 0.858113
\(147\) 4.09291 17.9322i 0.337578 1.47902i
\(148\) 0.398409 0.191864i 0.0327490 0.0157711i
\(149\) 20.3625 + 9.80607i 1.66816 + 0.803345i 0.998137 + 0.0610063i \(0.0194310\pi\)
0.670025 + 0.742338i \(0.266283\pi\)
\(150\) 1.00224 4.39109i 0.0818323 0.358531i
\(151\) 1.47657 + 6.46927i 0.120161 + 0.526462i 0.998800 + 0.0489743i \(0.0155952\pi\)
−0.878639 + 0.477487i \(0.841548\pi\)
\(152\) −2.22369 + 1.07087i −0.180365 + 0.0868592i
\(153\) −2.12506 + 2.66475i −0.171801 + 0.215432i
\(154\) 12.0324 15.0882i 0.969602 1.21584i
\(155\) 0.840133 + 0.404587i 0.0674811 + 0.0324972i
\(156\) 1.64776 + 2.06623i 0.131927 + 0.165431i
\(157\) −13.3793 −1.06778 −0.533890 0.845554i \(-0.679270\pi\)
−0.533890 + 0.845554i \(0.679270\pi\)
\(158\) 3.86478 + 4.84628i 0.307466 + 0.385550i
\(159\) 0.643658 + 2.82005i 0.0510454 + 0.223644i
\(160\) 0.348161 + 1.52539i 0.0275245 + 0.120593i
\(161\) −22.7527 28.5309i −1.79316 2.24855i
\(162\) −0.915678 −0.0719425
\(163\) 6.33230 + 7.94046i 0.495984 + 0.621944i 0.965318 0.261076i \(-0.0840774\pi\)
−0.469334 + 0.883021i \(0.655506\pi\)
\(164\) −5.81865 2.80212i −0.454360 0.218808i
\(165\) 0.743201 0.931944i 0.0578581 0.0725518i
\(166\) −3.58527 + 4.49579i −0.278271 + 0.348941i
\(167\) −22.1004 + 10.6430i −1.71018 + 0.823579i −0.718398 + 0.695632i \(0.755124\pi\)
−0.991781 + 0.127947i \(0.959161\pi\)
\(168\) 3.24617 + 14.2224i 0.250448 + 1.09728i
\(169\) 1.74081 7.62699i 0.133908 0.586691i
\(170\) −0.801403 0.385935i −0.0614648 0.0295999i
\(171\) −0.768127 + 0.369911i −0.0587402 + 0.0282878i
\(172\) 2.04262 8.94931i 0.155748 0.682379i
\(173\) −22.0884 −1.67935 −0.839674 0.543091i \(-0.817254\pi\)
−0.839674 + 0.543091i \(0.817254\pi\)
\(174\) −4.78887 1.17571i −0.363043 0.0891301i
\(175\) −24.7866 −1.87369
\(176\) −0.305048 + 1.33650i −0.0229939 + 0.100743i
\(177\) −4.21845 + 2.03150i −0.317078 + 0.152697i
\(178\) 4.70751 + 2.26702i 0.352843 + 0.169920i
\(179\) −0.163565 + 0.716626i −0.0122254 + 0.0535631i −0.980673 0.195655i \(-0.937317\pi\)
0.968447 + 0.249219i \(0.0801737\pi\)
\(180\) 0.0736644 + 0.322745i 0.00549062 + 0.0240560i
\(181\) −12.3221 + 5.93399i −0.915892 + 0.441070i −0.831603 0.555371i \(-0.812576\pi\)
−0.0842890 + 0.996441i \(0.526862\pi\)
\(182\) −6.54585 + 8.20824i −0.485211 + 0.608435i
\(183\) 4.32656 5.42534i 0.319829 0.401053i
\(184\) 18.8883 + 9.09613i 1.39246 + 0.670576i
\(185\) 0.0676508 + 0.0848314i 0.00497379 + 0.00623693i
\(186\) −2.99589 −0.219669
\(187\) 8.88778 + 11.1449i 0.649939 + 0.814998i
\(188\) 1.68929 + 7.40127i 0.123204 + 0.539793i
\(189\) 1.12132 + 4.91284i 0.0815643 + 0.357357i
\(190\) −0.138724 0.173954i −0.0100641 0.0126200i
\(191\) 1.16101 0.0840075 0.0420038 0.999117i \(-0.486626\pi\)
0.0420038 + 0.999117i \(0.486626\pi\)
\(192\) −3.54292 4.44268i −0.255688 0.320623i
\(193\) −18.5608 8.93843i −1.33604 0.643402i −0.376878 0.926263i \(-0.623002\pi\)
−0.959161 + 0.282861i \(0.908717\pi\)
\(194\) −0.287057 + 0.359958i −0.0206095 + 0.0258434i
\(195\) −0.404314 + 0.506993i −0.0289535 + 0.0363065i
\(196\) 19.2488 9.26971i 1.37491 0.662122i
\(197\) −1.14781 5.02887i −0.0817778 0.358292i 0.917438 0.397878i \(-0.130253\pi\)
−0.999216 + 0.0395860i \(0.987396\pi\)
\(198\) −0.852187 + 3.73368i −0.0605623 + 0.265341i
\(199\) 2.52796 + 1.21740i 0.179203 + 0.0862995i 0.521334 0.853353i \(-0.325435\pi\)
−0.342131 + 0.939652i \(0.611149\pi\)
\(200\) 12.8294 6.17832i 0.907177 0.436874i
\(201\) −0.632094 + 2.76938i −0.0445845 + 0.195337i
\(202\) 4.12776 0.290428
\(203\) −0.443589 + 27.1332i −0.0311339 + 1.90438i
\(204\) −3.95890 −0.277178
\(205\) 0.352620 1.54493i 0.0246281 0.107903i
\(206\) 6.70218 3.22760i 0.466963 0.224878i
\(207\) 6.52458 + 3.14207i 0.453489 + 0.218389i
\(208\) 0.165951 0.727081i 0.0115067 0.0504140i
\(209\) 0.793443 + 3.47630i 0.0548836 + 0.240461i
\(210\) −1.18486 + 0.570600i −0.0817634 + 0.0393752i
\(211\) −3.02315 + 3.79091i −0.208122 + 0.260977i −0.874926 0.484256i \(-0.839090\pi\)
0.666804 + 0.745233i \(0.267662\pi\)
\(212\) −2.09481 + 2.62681i −0.143872 + 0.180410i
\(213\) −10.3560 4.98719i −0.709581 0.341716i
\(214\) −5.43467 6.81486i −0.371506 0.465854i
\(215\) 2.25238 0.153611
\(216\) −1.80497 2.26336i −0.122813 0.154002i
\(217\) 3.66871 + 16.0737i 0.249048 + 1.09115i
\(218\) −1.51421 6.63417i −0.102555 0.449323i
\(219\) 7.06004 + 8.85301i 0.477073 + 0.598231i
\(220\) 1.38455 0.0933463
\(221\) −4.83510 6.06303i −0.325244 0.407843i
\(222\) −0.314081 0.151253i −0.0210797 0.0101515i
\(223\) 6.48155 8.12761i 0.434037 0.544265i −0.515924 0.856634i \(-0.672551\pi\)
0.949961 + 0.312370i \(0.101123\pi\)
\(224\) −17.2482 + 21.6285i −1.15244 + 1.44512i
\(225\) 4.43166 2.13417i 0.295444 0.142278i
\(226\) 0.863534 + 3.78339i 0.0574414 + 0.251667i
\(227\) 6.22713 27.2828i 0.413309 1.81083i −0.154886 0.987932i \(-0.549501\pi\)
0.568195 0.822894i \(-0.307642\pi\)
\(228\) −0.892205 0.429663i −0.0590877 0.0284552i
\(229\) 3.14998 1.51695i 0.208156 0.100243i −0.326901 0.945059i \(-0.606004\pi\)
0.535057 + 0.844816i \(0.320290\pi\)
\(230\) −0.420544 + 1.84253i −0.0277299 + 0.121493i
\(231\) 21.0757 1.38668
\(232\) −6.53364 14.1546i −0.428955 0.929294i
\(233\) −3.35269 −0.219642 −0.109821 0.993951i \(-0.535028\pi\)
−0.109821 + 0.993951i \(0.535028\pi\)
\(234\) 0.463604 2.03118i 0.0303068 0.132783i
\(235\) −1.67829 + 0.808222i −0.109480 + 0.0527226i
\(236\) −4.89986 2.35965i −0.318954 0.153600i
\(237\) −1.50634 + 6.59971i −0.0978474 + 0.428698i
\(238\) −3.49959 15.3327i −0.226845 0.993871i
\(239\) 16.5718 7.98057i 1.07194 0.516220i 0.187210 0.982320i \(-0.440056\pi\)
0.884732 + 0.466100i \(0.154341\pi\)
\(240\) 0.0582454 0.0730374i 0.00375972 0.00471454i
\(241\) 3.50723 4.39793i 0.225921 0.283295i −0.655933 0.754819i \(-0.727724\pi\)
0.881853 + 0.471524i \(0.156296\pi\)
\(242\) 5.35599 + 2.57931i 0.344296 + 0.165804i
\(243\) −0.623490 0.781831i −0.0399969 0.0501545i
\(244\) 8.06019 0.516001
\(245\) 3.26848 + 4.09855i 0.208816 + 0.261847i
\(246\) 1.13291 + 4.96360i 0.0722316 + 0.316468i
\(247\) −0.431646 1.89117i −0.0274650 0.120332i
\(248\) −5.90545 7.40519i −0.374996 0.470230i
\(249\) −6.27986 −0.397970
\(250\) 1.61393 + 2.02381i 0.102074 + 0.127997i
\(251\) 24.1560 + 11.6329i 1.52472 + 0.734264i 0.993592 0.113030i \(-0.0360555\pi\)
0.531124 + 0.847294i \(0.321770\pi\)
\(252\) −3.64940 + 4.57620i −0.229890 + 0.288273i
\(253\) 18.8840 23.6797i 1.18722 1.48873i
\(254\) −14.0244 + 6.75380i −0.879970 + 0.423771i
\(255\) −0.216157 0.947045i −0.0135363 0.0593063i
\(256\) 3.70587 16.2365i 0.231617 1.01478i
\(257\) 3.33896 + 1.60796i 0.208279 + 0.100302i 0.535115 0.844779i \(-0.320268\pi\)
−0.326836 + 0.945081i \(0.605983\pi\)
\(258\) −6.51986 + 3.13980i −0.405909 + 0.195475i
\(259\) −0.426893 + 1.87034i −0.0265259 + 0.116217i
\(260\) −0.753218 −0.0467126
\(261\) −2.25691 4.88941i −0.139699 0.302647i
\(262\) 11.6247 0.718176
\(263\) −3.92794 + 17.2094i −0.242207 + 1.06118i 0.696796 + 0.717270i \(0.254608\pi\)
−0.939003 + 0.343910i \(0.888249\pi\)
\(264\) −10.9087 + 5.25334i −0.671382 + 0.323321i
\(265\) −0.742761 0.357695i −0.0456275 0.0219730i
\(266\) 0.875382 3.83530i 0.0536731 0.235157i
\(267\) 1.26972 + 5.56302i 0.0777058 + 0.340451i
\(268\) −2.97271 + 1.43158i −0.181587 + 0.0874477i
\(269\) −8.93835 + 11.2083i −0.544981 + 0.683385i −0.975702 0.219100i \(-0.929688\pi\)
0.430721 + 0.902485i \(0.358259\pi\)
\(270\) 0.162715 0.204038i 0.00990253 0.0124174i
\(271\) −27.2004 13.0990i −1.65231 0.795709i −0.999263 0.0383890i \(-0.987777\pi\)
−0.653044 0.757320i \(-0.726508\pi\)
\(272\) 0.696544 + 0.873439i 0.0422342 + 0.0529600i
\(273\) −11.4655 −0.693925
\(274\) −5.56260 6.97528i −0.336049 0.421392i
\(275\) −4.57771 20.0563i −0.276047 1.20944i
\(276\) 1.87174 + 8.20062i 0.112665 + 0.493619i
\(277\) 5.26579 + 6.60309i 0.316391 + 0.396741i 0.914442 0.404716i \(-0.132630\pi\)
−0.598052 + 0.801457i \(0.704058\pi\)
\(278\) 11.4308 0.685575
\(279\) −2.03991 2.55797i −0.122126 0.153142i
\(280\) −3.74599 1.80397i −0.223866 0.107808i
\(281\) −7.90311 + 9.91018i −0.471460 + 0.591192i −0.959528 0.281614i \(-0.909130\pi\)
0.488068 + 0.872806i \(0.337702\pi\)
\(282\) 3.73142 4.67906i 0.222203 0.278634i
\(283\) 22.2025 10.6921i 1.31980 0.635582i 0.364495 0.931205i \(-0.381242\pi\)
0.955305 + 0.295623i \(0.0955273\pi\)
\(284\) −2.97088 13.0163i −0.176289 0.772373i
\(285\) 0.0540692 0.236893i 0.00320278 0.0140323i
\(286\) −7.85069 3.78069i −0.464221 0.223557i
\(287\) 25.2436 12.1567i 1.49008 0.717586i
\(288\) 1.22159 5.35212i 0.0719827 0.315377i
\(289\) −5.38323 −0.316661
\(290\) 1.11296 0.858169i 0.0653551 0.0503934i
\(291\) −0.502800 −0.0294746
\(292\) −2.92671 + 12.8228i −0.171273 + 0.750396i
\(293\) 4.15097 1.99900i 0.242502 0.116783i −0.308686 0.951164i \(-0.599889\pi\)
0.551188 + 0.834381i \(0.314175\pi\)
\(294\) −15.1745 7.30765i −0.884995 0.426191i
\(295\) 0.296940 1.30098i 0.0172885 0.0757460i
\(296\) −0.245245 1.07449i −0.0142546 0.0624533i
\(297\) −3.76817 + 1.81466i −0.218652 + 0.105297i
\(298\) 12.9031 16.1800i 0.747457 0.937281i
\(299\) −10.2732 + 12.8822i −0.594114 + 0.744996i
\(300\) 5.14752 + 2.47891i 0.297192 + 0.143120i
\(301\) 24.8299 + 31.1357i 1.43117 + 1.79463i
\(302\) 6.07611 0.349641
\(303\) 2.81061 + 3.52439i 0.161465 + 0.202471i
\(304\) 0.0621829 + 0.272441i 0.00356643 + 0.0156256i
\(305\) 0.440089 + 1.92815i 0.0251994 + 0.110406i
\(306\) 1.94588 + 2.44005i 0.111238 + 0.139488i
\(307\) 2.80588 0.160140 0.0800700 0.996789i \(-0.474486\pi\)
0.0800700 + 0.996789i \(0.474486\pi\)
\(308\) 15.2631 + 19.1393i 0.869695 + 1.09056i
\(309\) 7.31936 + 3.52482i 0.416384 + 0.200520i
\(310\) 0.532366 0.667566i 0.0302364 0.0379152i
\(311\) 9.80146 12.2906i 0.555790 0.696939i −0.421983 0.906604i \(-0.638666\pi\)
0.977773 + 0.209665i \(0.0672373\pi\)
\(312\) 5.93450 2.85790i 0.335975 0.161797i
\(313\) −4.05540 17.7679i −0.229225 1.00430i −0.950274 0.311415i \(-0.899197\pi\)
0.721049 0.692884i \(-0.243660\pi\)
\(314\) −2.72612 + 11.9439i −0.153844 + 0.674035i
\(315\) −1.29397 0.623145i −0.0729072 0.0351102i
\(316\) −7.08425 + 3.41160i −0.398520 + 0.191917i
\(317\) −0.418332 + 1.83283i −0.0234959 + 0.102942i −0.985316 0.170740i \(-0.945384\pi\)
0.961820 + 0.273682i \(0.0882415\pi\)
\(318\) 2.64866 0.148530
\(319\) −22.0370 + 4.65217i −1.23383 + 0.260471i
\(320\) 1.61952 0.0905342
\(321\) 2.11822 9.28054i 0.118228 0.517989i
\(322\) −30.1062 + 14.4984i −1.67775 + 0.807963i
\(323\) 2.61804 + 1.26078i 0.145672 + 0.0701517i
\(324\) 0.258465 1.13241i 0.0143592 0.0629117i
\(325\) 2.49035 + 10.9110i 0.138140 + 0.605231i
\(326\) 8.37886 4.03505i 0.464062 0.223481i
\(327\) 4.63341 5.81011i 0.256228 0.321300i
\(328\) −10.0358 + 12.5845i −0.554133 + 0.694861i
\(329\) −29.6737 14.2901i −1.63597 0.787839i
\(330\) −0.680533 0.853361i −0.0374621 0.0469760i
\(331\) 6.14086 0.337532 0.168766 0.985656i \(-0.446022\pi\)
0.168766 + 0.985656i \(0.446022\pi\)
\(332\) −4.54790 5.70288i −0.249598 0.312986i
\(333\) −0.0847148 0.371160i −0.00464234 0.0203394i
\(334\) 4.99809 + 21.8981i 0.273483 + 1.19821i
\(335\) −0.504772 0.632965i −0.0275787 0.0345825i
\(336\) 1.65172 0.0901088
\(337\) −4.52153 5.66982i −0.246304 0.308855i 0.643277 0.765634i \(-0.277575\pi\)
−0.889580 + 0.456779i \(0.849003\pi\)
\(338\) −6.45407 3.10811i −0.351055 0.169059i
\(339\) −2.64238 + 3.31344i −0.143514 + 0.179961i
\(340\) 0.703492 0.882151i 0.0381522 0.0478413i
\(341\) −12.3286 + 5.93714i −0.667631 + 0.321514i
\(342\) 0.173715 + 0.761095i 0.00939343 + 0.0411553i
\(343\) −12.7757 + 55.9738i −0.689821 + 3.02230i
\(344\) −20.6128 9.92658i −1.11137 0.535205i
\(345\) −1.85955 + 0.895512i −0.100115 + 0.0482127i
\(346\) −4.50068 + 19.7187i −0.241958 + 1.06009i
\(347\) −1.50956 −0.0810374 −0.0405187 0.999179i \(-0.512901\pi\)
−0.0405187 + 0.999179i \(0.512901\pi\)
\(348\) 2.80572 5.59049i 0.150402 0.299681i
\(349\) 14.5718 0.780011 0.390006 0.920813i \(-0.372473\pi\)
0.390006 + 0.920813i \(0.372473\pi\)
\(350\) −5.05046 + 22.1275i −0.269958 + 1.18276i
\(351\) 2.04995 0.987204i 0.109418 0.0526931i
\(352\) −20.6864 9.96203i −1.10259 0.530978i
\(353\) 4.85202 21.2581i 0.258247 1.13145i −0.664877 0.746953i \(-0.731516\pi\)
0.923124 0.384501i \(-0.125627\pi\)
\(354\) 0.954018 + 4.17983i 0.0507055 + 0.222155i
\(355\) 2.95153 1.42138i 0.156651 0.0754392i
\(356\) −4.13237 + 5.18183i −0.219015 + 0.274636i
\(357\) 10.7086 13.4281i 0.566759 0.710693i
\(358\) 0.606419 + 0.292036i 0.0320502 + 0.0154346i
\(359\) 5.27111 + 6.60976i 0.278198 + 0.348850i 0.901225 0.433351i \(-0.142669\pi\)
−0.623027 + 0.782200i \(0.714097\pi\)
\(360\) 0.825080 0.0434855
\(361\) −11.3931 14.2865i −0.599638 0.751922i
\(362\) 2.78668 + 12.2093i 0.146465 + 0.641704i
\(363\) 1.44463 + 6.32935i 0.0758236 + 0.332205i
\(364\) −8.30338 10.4121i −0.435215 0.545743i
\(365\) −3.22725 −0.168922
\(366\) −3.96174 4.96787i −0.207084 0.259675i
\(367\) 6.20750 + 2.98937i 0.324029 + 0.156044i 0.588825 0.808260i \(-0.299591\pi\)
−0.264797 + 0.964304i \(0.585305\pi\)
\(368\) 1.47995 1.85580i 0.0771480 0.0967405i
\(369\) −3.46665 + 4.34705i −0.180467 + 0.226298i
\(370\) 0.0895151 0.0431082i 0.00465367 0.00224109i
\(371\) −3.24351 14.2107i −0.168395 0.737785i
\(372\) 0.845639 3.70499i 0.0438443 0.192095i
\(373\) 17.3533 + 8.35690i 0.898519 + 0.432704i 0.825354 0.564616i \(-0.190976\pi\)
0.0731653 + 0.997320i \(0.476690\pi\)
\(374\) 11.7603 5.66344i 0.608108 0.292850i
\(375\) −0.629049 + 2.75604i −0.0324839 + 0.142321i
\(376\) 18.9209 0.975773
\(377\) 11.9885 2.53086i 0.617439 0.130346i
\(378\) 4.61427 0.237333
\(379\) 7.78248 34.0973i 0.399759 1.75146i −0.228585 0.973524i \(-0.573410\pi\)
0.628344 0.777936i \(-0.283733\pi\)
\(380\) 0.254285 0.122457i 0.0130445 0.00628192i
\(381\) −15.3159 7.37574i −0.784656 0.377870i
\(382\) 0.236564 1.03645i 0.0121037 0.0530296i
\(383\) 4.55743 + 19.9674i 0.232874 + 1.02029i 0.947243 + 0.320517i \(0.103857\pi\)
−0.714369 + 0.699769i \(0.753286\pi\)
\(384\) 5.20423 2.50623i 0.265577 0.127895i
\(385\) −3.74512 + 4.69624i −0.190869 + 0.239342i
\(386\) −11.7614 + 14.7484i −0.598641 + 0.750672i
\(387\) −7.12025 3.42893i −0.361943 0.174302i
\(388\) −0.364130 0.456604i −0.0184859 0.0231806i
\(389\) −7.13745 −0.361883 −0.180942 0.983494i \(-0.557914\pi\)
−0.180942 + 0.983494i \(0.557914\pi\)
\(390\) 0.370221 + 0.464243i 0.0187469 + 0.0235079i
\(391\) −5.49232 24.0634i −0.277759 1.21694i
\(392\) −11.8488 51.9128i −0.598453 2.62199i
\(393\) 7.91531 + 9.92548i 0.399274 + 0.500674i
\(394\) −4.72325 −0.237954
\(395\) −1.20292 1.50842i −0.0605256 0.0758967i
\(396\) −4.37686 2.10778i −0.219945 0.105920i
\(397\) −16.4091 + 20.5763i −0.823548 + 1.03270i 0.175290 + 0.984517i \(0.443914\pi\)
−0.998839 + 0.0481802i \(0.984658\pi\)
\(398\) 1.60189 2.00871i 0.0802957 0.100688i
\(399\) 3.87074 1.86405i 0.193779 0.0933191i
\(400\) −0.358760 1.57183i −0.0179380 0.0785915i
\(401\) 1.12506 4.92921i 0.0561828 0.246153i −0.939037 0.343817i \(-0.888280\pi\)
0.995219 + 0.0976641i \(0.0311371\pi\)
\(402\) 2.34349 + 1.12857i 0.116883 + 0.0562878i
\(403\) 6.70696 3.22990i 0.334098 0.160893i
\(404\) −1.16513 + 5.10476i −0.0579673 + 0.253971i
\(405\) 0.285007 0.0141621
\(406\) 24.1320 + 5.92460i 1.19765 + 0.294033i
\(407\) −1.59224 −0.0789246
\(408\) −2.19561 + 9.61958i −0.108699 + 0.476240i
\(409\) −5.81490 + 2.80031i −0.287529 + 0.138466i −0.572089 0.820192i \(-0.693867\pi\)
0.284560 + 0.958658i \(0.408152\pi\)
\(410\) −1.30734 0.629583i −0.0645651 0.0310929i
\(411\) 2.16808 9.49900i 0.106944 0.468551i
\(412\) 2.09974 + 9.19957i 0.103447 + 0.453230i
\(413\) 21.2575 10.2371i 1.04601 0.503734i
\(414\) 4.13442 5.18440i 0.203196 0.254799i
\(415\) 1.11592 1.39932i 0.0547785 0.0686901i
\(416\) 11.2537 + 5.41951i 0.551760 + 0.265713i
\(417\) 7.78330 + 9.75995i 0.381150 + 0.477947i
\(418\) 3.26503 0.159698
\(419\) 0.767911 + 0.962930i 0.0375149 + 0.0470422i 0.800235 0.599686i \(-0.204708\pi\)
−0.762720 + 0.646729i \(0.776137\pi\)
\(420\) −0.371209 1.62637i −0.0181131 0.0793588i
\(421\) −1.96888 8.62624i −0.0959574 0.420417i 0.904018 0.427495i \(-0.140604\pi\)
−0.999975 + 0.00707841i \(0.997747\pi\)
\(422\) 2.76823 + 3.47125i 0.134755 + 0.168978i
\(423\) 6.53585 0.317784
\(424\) 5.22100 + 6.54693i 0.253554 + 0.317947i
\(425\) −15.1046 7.27399i −0.732681 0.352840i
\(426\) −6.56228 + 8.22884i −0.317943 + 0.398688i
\(427\) −21.8024 + 27.3393i −1.05509 + 1.32304i
\(428\) 9.96189 4.79739i 0.481526 0.231891i
\(429\) −2.11751 9.27742i −0.102234 0.447918i
\(430\) 0.458939 2.01074i 0.0221320 0.0969667i
\(431\) 8.89025 + 4.28132i 0.428228 + 0.206224i 0.635568 0.772045i \(-0.280766\pi\)
−0.207339 + 0.978269i \(0.566480\pi\)
\(432\) −0.295316 + 0.142216i −0.0142084 + 0.00684239i
\(433\) 7.36319 32.2602i 0.353852 1.55033i −0.414348 0.910119i \(-0.635990\pi\)
0.768200 0.640210i \(-0.221153\pi\)
\(434\) 15.0968 0.724671
\(435\) 1.49055 + 0.365941i 0.0714662 + 0.0175455i
\(436\) 8.63182 0.413389
\(437\) 1.37384 6.01920i 0.0657198 0.287937i
\(438\) 9.34180 4.49877i 0.446368 0.214960i
\(439\) 9.70775 + 4.67500i 0.463326 + 0.223126i 0.650958 0.759113i \(-0.274367\pi\)
−0.187633 + 0.982239i \(0.560082\pi\)
\(440\) 0.767871 3.36426i 0.0366068 0.160385i
\(441\) −4.09291 17.9322i −0.194901 0.853915i
\(442\) −6.39778 + 3.08101i −0.304311 + 0.146549i
\(443\) 21.2232 26.6130i 1.00834 1.26442i 0.0442056 0.999022i \(-0.485924\pi\)
0.964138 0.265401i \(-0.0855042\pi\)
\(444\) 0.275708 0.345727i 0.0130845 0.0164075i
\(445\) −1.46522 0.705614i −0.0694582 0.0334493i
\(446\) −5.93502 7.44227i −0.281031 0.352402i
\(447\) 22.6007 1.06898
\(448\) 17.8534 + 22.3875i 0.843495 + 1.05771i
\(449\) 4.86933 + 21.3339i 0.229798 + 1.00681i 0.949805 + 0.312843i \(0.101282\pi\)
−0.720007 + 0.693967i \(0.755861\pi\)
\(450\) −1.00224 4.39109i −0.0472459 0.206998i
\(451\) 14.4988 + 18.1809i 0.682721 + 0.856106i
\(452\) −4.92263 −0.231541
\(453\) 4.13725 + 5.18795i 0.194385 + 0.243751i
\(454\) −23.0871 11.1182i −1.08353 0.521802i
\(455\) 2.03741 2.55483i 0.0955153 0.119772i
\(456\) −1.53884 + 1.92964i −0.0720628 + 0.0903639i
\(457\) −26.2149 + 12.6244i −1.22628 + 0.590546i −0.931054 0.364881i \(-0.881110\pi\)
−0.295227 + 0.955427i \(0.595395\pi\)
\(458\) −0.712379 3.12114i −0.0332873 0.145841i
\(459\) −0.758427 + 3.32288i −0.0354003 + 0.155099i
\(460\) −2.15993 1.04017i −0.100707 0.0484980i
\(461\) −16.8951 + 8.13623i −0.786882 + 0.378942i −0.783769 0.621053i \(-0.786705\pi\)
−0.00311295 + 0.999995i \(0.500991\pi\)
\(462\) 4.29433 18.8147i 0.199790 0.875338i
\(463\) 22.8658 1.06266 0.531332 0.847164i \(-0.321692\pi\)
0.531332 + 0.847164i \(0.321692\pi\)
\(464\) −1.72706 + 0.364595i −0.0801768 + 0.0169259i
\(465\) 0.932477 0.0432426
\(466\) −0.683136 + 2.99301i −0.0316456 + 0.138649i
\(467\) −17.6886 + 8.51838i −0.818530 + 0.394183i −0.795801 0.605558i \(-0.792950\pi\)
−0.0227293 + 0.999742i \(0.507236\pi\)
\(468\) 2.38109 + 1.14667i 0.110066 + 0.0530048i
\(469\) 3.18524 13.9554i 0.147081 0.644402i
\(470\) 0.379552 + 1.66293i 0.0175074 + 0.0767051i
\(471\) −12.0543 + 5.80504i −0.555432 + 0.267482i
\(472\) −8.45109 + 10.5973i −0.388993 + 0.487782i
\(473\) −20.6080 + 25.8416i −0.947558 + 1.18820i
\(474\) 5.58477 + 2.68948i 0.256517 + 0.123532i
\(475\) −2.61463 3.27864i −0.119967 0.150434i
\(476\) 19.9496 0.914389
\(477\) 1.80349 + 2.26150i 0.0825761 + 0.103547i
\(478\) −3.74778 16.4201i −0.171420 0.751038i
\(479\) −5.01171 21.9577i −0.228991 1.00327i −0.950465 0.310833i \(-0.899392\pi\)
0.721474 0.692442i \(-0.243465\pi\)
\(480\) 0.975524 + 1.22327i 0.0445264 + 0.0558343i
\(481\) 0.866207 0.0394957
\(482\) −3.21150 4.02709i −0.146280 0.183429i
\(483\) −32.8785 15.8335i −1.49603 0.720448i
\(484\) −4.70162 + 5.89565i −0.213710 + 0.267984i
\(485\) 0.0893470 0.112038i 0.00405704 0.00508737i
\(486\) −0.824998 + 0.397298i −0.0374227 + 0.0180218i
\(487\) −0.382806 1.67718i −0.0173466 0.0760003i 0.965514 0.260352i \(-0.0838386\pi\)
−0.982860 + 0.184352i \(0.940981\pi\)
\(488\) 4.47018 19.5852i 0.202356 0.886578i
\(489\) 9.15044 + 4.40662i 0.413797 + 0.199274i
\(490\) 4.32484 2.08273i 0.195376 0.0940882i
\(491\) −6.55025 + 28.6985i −0.295609 + 1.29515i 0.580985 + 0.813914i \(0.302668\pi\)
−0.876593 + 0.481232i \(0.840190\pi\)
\(492\) −6.45822 −0.291159
\(493\) −8.23296 + 16.4044i −0.370794 + 0.738818i
\(494\) −1.77623 −0.0799165
\(495\) 0.265245 1.16212i 0.0119219 0.0522332i
\(496\) −0.966204 + 0.465299i −0.0433838 + 0.0208926i
\(497\) 52.1858 + 25.1313i 2.34085 + 1.12730i
\(498\) −1.27957 + 5.60616i −0.0573388 + 0.251218i
\(499\) 3.09035 + 13.5397i 0.138343 + 0.606121i 0.995799 + 0.0915640i \(0.0291866\pi\)
−0.857456 + 0.514557i \(0.827956\pi\)
\(500\) −2.95838 + 1.42468i −0.132303 + 0.0637138i
\(501\) −15.2939 + 19.1780i −0.683283 + 0.856810i
\(502\) 15.3069 19.1943i 0.683182 0.856683i
\(503\) 23.8857 + 11.5027i 1.06501 + 0.512881i 0.882495 0.470322i \(-0.155862\pi\)
0.182514 + 0.983203i \(0.441576\pi\)
\(504\) 9.09558 + 11.4055i 0.405149 + 0.508041i
\(505\) −1.28477 −0.0571717
\(506\) −17.2916 21.6830i −0.768707 0.963928i
\(507\) −1.74081 7.62699i −0.0773121 0.338726i
\(508\) −4.39374 19.2502i −0.194941 0.854091i
\(509\) −3.59869 4.51261i −0.159509 0.200018i 0.695654 0.718377i \(-0.255115\pi\)
−0.855163 + 0.518359i \(0.826543\pi\)
\(510\) −0.889490 −0.0393873
\(511\) −35.5768 44.6119i −1.57383 1.97352i
\(512\) −3.33106 1.60415i −0.147213 0.0708942i
\(513\) −0.531561 + 0.666556i −0.0234690 + 0.0294292i
\(514\) 2.11580 2.65313i 0.0933239 0.117024i
\(515\) −2.08607 + 1.00460i −0.0919232 + 0.0442679i
\(516\) −2.04262 8.94931i −0.0899214 0.393972i
\(517\) 6.08267 26.6499i 0.267515 1.17206i
\(518\) 1.58271 + 0.762193i 0.0695403 + 0.0334888i
\(519\) −19.9009 + 9.58379i −0.873554 + 0.420682i
\(520\) −0.417735 + 1.83022i −0.0183189 + 0.0802603i
\(521\) 23.7796 1.04180 0.520901 0.853617i \(-0.325596\pi\)
0.520901 + 0.853617i \(0.325596\pi\)
\(522\) −4.82474 + 1.01854i −0.211173 + 0.0445802i
\(523\) 24.9044 1.08899 0.544497 0.838763i \(-0.316720\pi\)
0.544497 + 0.838763i \(0.316720\pi\)
\(524\) −3.28126 + 14.3761i −0.143343 + 0.628025i
\(525\) −22.3319 + 10.7545i −0.974646 + 0.469365i
\(526\) 14.5629 + 7.01311i 0.634971 + 0.305786i
\(527\) −2.48140 + 10.8717i −0.108091 + 0.473579i
\(528\) 0.305048 + 1.33650i 0.0132755 + 0.0581639i
\(529\) −26.5270 + 12.7747i −1.15335 + 0.555422i
\(530\) −0.470665 + 0.590195i −0.0204444 + 0.0256364i
\(531\) −2.91925 + 3.66063i −0.126685 + 0.158858i
\(532\) 4.49599 + 2.16515i 0.194926 + 0.0938713i
\(533\) −7.88759 9.89072i −0.341649 0.428415i
\(534\) 5.22494 0.226105
\(535\) 1.69155 + 2.12114i 0.0731322 + 0.0917048i
\(536\) 1.82988 + 8.01722i 0.0790387 + 0.346291i
\(537\) 0.163565 + 0.716626i 0.00705836 + 0.0309247i
\(538\) 8.18466 + 10.2632i 0.352866 + 0.442480i
\(539\) −76.9277 −3.31351
\(540\) 0.206403 + 0.258821i 0.00888218 + 0.0111379i
\(541\) 18.8102 + 9.05851i 0.808713 + 0.389456i 0.792089 0.610406i \(-0.208994\pi\)
0.0166244 + 0.999862i \(0.494708\pi\)
\(542\) −17.2361 + 21.6133i −0.740352 + 0.928372i
\(543\) −8.52713 + 10.6927i −0.365934 + 0.458867i
\(544\) −16.8580 + 8.11838i −0.722780 + 0.348073i
\(545\) 0.471300 + 2.06490i 0.0201883 + 0.0884506i
\(546\) −2.33619 + 10.2355i −0.0999796 + 0.438039i
\(547\) −0.170736 0.0822219i −0.00730012 0.00351555i 0.430230 0.902719i \(-0.358432\pi\)
−0.437530 + 0.899204i \(0.644147\pi\)
\(548\) 10.1964 4.91032i 0.435568 0.209759i
\(549\) 1.54413 6.76529i 0.0659020 0.288735i
\(550\) −18.8374 −0.803229
\(551\) −3.63583 + 2.80348i −0.154891 + 0.119432i
\(552\) 20.9644 0.892306
\(553\) 7.59073 33.2572i 0.322791 1.41424i
\(554\) 6.96766 3.35545i 0.296027 0.142559i
\(555\) 0.0977583 + 0.0470779i 0.00414961 + 0.00199835i
\(556\) −3.22654 + 14.1364i −0.136836 + 0.599516i
\(557\) 5.48081 + 24.0130i 0.232229 + 1.01746i 0.947786 + 0.318908i \(0.103316\pi\)
−0.715556 + 0.698555i \(0.753827\pi\)
\(558\) −2.69920 + 1.29987i −0.114266 + 0.0550278i
\(559\) 11.2111 14.0583i 0.474179 0.594602i
\(560\) −0.293509 + 0.368049i −0.0124030 + 0.0155529i
\(561\) 12.8432 + 6.18497i 0.542241 + 0.261129i
\(562\) 7.23671 + 9.07454i 0.305262 + 0.382786i
\(563\) −24.8717 −1.04822 −0.524109 0.851651i \(-0.675602\pi\)
−0.524109 + 0.851651i \(0.675602\pi\)
\(564\) 4.73329 + 5.93535i 0.199307 + 0.249924i
\(565\) −0.268777 1.17759i −0.0113075 0.0495415i
\(566\) −5.02117 21.9992i −0.211056 0.924695i
\(567\) 3.14188 + 3.93979i 0.131947 + 0.165456i
\(568\) −33.2754 −1.39620
\(569\) −8.90531 11.1669i −0.373330 0.468141i 0.559305 0.828962i \(-0.311068\pi\)
−0.932635 + 0.360821i \(0.882497\pi\)
\(570\) −0.200462 0.0965373i −0.00839642 0.00404350i
\(571\) 6.56913 8.23743i 0.274909 0.344726i −0.625141 0.780512i \(-0.714958\pi\)
0.900050 + 0.435787i \(0.143530\pi\)
\(572\) 6.89153 8.64171i 0.288149 0.361328i
\(573\) 1.04603 0.503742i 0.0436986 0.0210441i
\(574\) −5.70894 25.0125i −0.238286 1.04400i
\(575\) −7.92629 + 34.7274i −0.330549 + 1.44823i
\(576\) −5.11967 2.46550i −0.213320 0.102729i
\(577\) −7.60750 + 3.66358i −0.316704 + 0.152517i −0.585482 0.810686i \(-0.699095\pi\)
0.268778 + 0.963202i \(0.413380\pi\)
\(578\) −1.09687 + 4.80572i −0.0456239 + 0.199892i
\(579\) −20.6010 −0.856148
\(580\) 0.747140 + 1.61862i 0.0310233 + 0.0672093i
\(581\) 31.6454 1.31287
\(582\) −0.102449 + 0.448860i −0.00424666 + 0.0186058i
\(583\) 10.8997 5.24903i 0.451420 0.217392i
\(584\) 29.5344 + 14.2230i 1.22214 + 0.588553i
\(585\) −0.144298 + 0.632210i −0.00596598 + 0.0261387i
\(586\) −0.938757 4.11296i −0.0387797 0.169905i
\(587\) −8.42975 + 4.05955i −0.347933 + 0.167556i −0.599685 0.800236i \(-0.704708\pi\)
0.251752 + 0.967792i \(0.418993\pi\)
\(588\) 13.3206 16.7034i 0.549330 0.688839i
\(589\) −1.73914 + 2.18082i −0.0716602 + 0.0898590i
\(590\) −1.10091 0.530169i −0.0453237 0.0218267i
\(591\) −3.21608 4.03284i −0.132292 0.165889i
\(592\) −0.124786 −0.00512866
\(593\) −3.16050 3.96314i −0.129786 0.162747i 0.712692 0.701477i \(-0.247476\pi\)
−0.842478 + 0.538730i \(0.818904\pi\)
\(594\) 0.852187 + 3.73368i 0.0349657 + 0.153195i
\(595\) 1.08925 + 4.77234i 0.0446551 + 0.195647i
\(596\) 16.3675 + 20.5242i 0.670439 + 0.840704i
\(597\) 2.80583 0.114835
\(598\) 9.40694 + 11.7959i 0.384679 + 0.482372i
\(599\) −20.9430 10.0856i −0.855707 0.412087i −0.0460140 0.998941i \(-0.514652\pi\)
−0.809693 + 0.586854i \(0.800366\pi\)
\(600\) 8.87824 11.1330i 0.362452 0.454501i
\(601\) −3.78317 + 4.74395i −0.154319 + 0.193510i −0.852981 0.521942i \(-0.825208\pi\)
0.698662 + 0.715452i \(0.253779\pi\)
\(602\) 32.8548 15.8220i 1.33906 0.644858i
\(603\) 0.632094 + 2.76938i 0.0257409 + 0.112778i
\(604\) −1.71508 + 7.51427i −0.0697857 + 0.305751i
\(605\) −1.66706 0.802815i −0.0677758 0.0326391i
\(606\) 3.71898 1.79097i 0.151073 0.0727531i
\(607\) 8.74796 38.3273i 0.355069 1.55566i −0.410230 0.911982i \(-0.634552\pi\)
0.765299 0.643675i \(-0.222591\pi\)
\(608\) −4.68033 −0.189813
\(609\) 11.3730 + 24.6386i 0.460857 + 0.998408i
\(610\) 1.81097 0.0733242
\(611\) −3.30907 + 14.4980i −0.133871 + 0.586526i
\(612\) −3.56684 + 1.71770i −0.144181 + 0.0694340i
\(613\) −22.2460 10.7131i −0.898506 0.432698i −0.0731567 0.997320i \(-0.523307\pi\)
−0.825349 + 0.564623i \(0.809022\pi\)
\(614\) 0.571719 2.50487i 0.0230727 0.101088i
\(615\) −0.352620 1.54493i −0.0142190 0.0622976i
\(616\) 54.9708 26.4725i 2.21484 1.06661i
\(617\) 11.8195 14.8212i 0.475837 0.596680i −0.484753 0.874651i \(-0.661090\pi\)
0.960590 + 0.277971i \(0.0896618\pi\)
\(618\) 4.63805 5.81594i 0.186570 0.233951i
\(619\) 25.7787 + 12.4143i 1.03613 + 0.498975i 0.873046 0.487637i \(-0.162141\pi\)
0.163085 + 0.986612i \(0.447855\pi\)
\(620\) 0.675303 + 0.846804i 0.0271208 + 0.0340085i
\(621\) 7.24173 0.290601
\(622\) −8.97499 11.2543i −0.359864 0.451256i
\(623\) −6.39837 28.0331i −0.256345 1.12312i
\(624\) −0.165951 0.727081i −0.00664338 0.0291065i
\(625\) 14.8317 + 18.5983i 0.593267 + 0.743933i
\(626\) −16.6881 −0.666989
\(627\) 2.22318 + 2.78778i 0.0887852 + 0.111333i
\(628\) −14.0015 6.74275i −0.558719 0.269065i
\(629\) −0.809022 + 1.01448i −0.0322578 + 0.0404500i
\(630\) −0.819951 + 1.02819i −0.0326676 + 0.0409639i
\(631\) −18.9321 + 9.11724i −0.753676 + 0.362951i −0.770947 0.636899i \(-0.780217\pi\)
0.0172705 + 0.999851i \(0.494502\pi\)
\(632\) 4.36078 + 19.1058i 0.173463 + 0.759989i
\(633\) −1.07895 + 4.72718i −0.0428844 + 0.187889i
\(634\) 1.55097 + 0.746907i 0.0615968 + 0.0296635i
\(635\) 4.36513 2.10214i 0.173225 0.0834207i
\(636\) −0.747629 + 3.27558i −0.0296454 + 0.129885i
\(637\) 41.8500 1.65816
\(638\) −0.337120 + 20.6208i −0.0133467 + 0.816385i
\(639\) −11.4943 −0.454707
\(640\) −0.366331 + 1.60500i −0.0144805 + 0.0634432i
\(641\) −5.46803 + 2.63327i −0.215974 + 0.104008i −0.538743 0.842470i \(-0.681101\pi\)
0.322769 + 0.946478i \(0.395386\pi\)
\(642\) −7.85332 3.78196i −0.309946 0.149262i
\(643\) 10.0678 44.1097i 0.397033 1.73952i −0.241943 0.970291i \(-0.577785\pi\)
0.638976 0.769226i \(-0.279358\pi\)
\(644\) −9.43203 41.3244i −0.371674 1.62841i
\(645\) 2.02932 0.977270i 0.0799045 0.0384800i
\(646\) 1.65897 2.08028i 0.0652713 0.0818476i
\(647\) −7.22803 + 9.06366i −0.284163 + 0.356329i −0.903342 0.428921i \(-0.858894\pi\)
0.619179 + 0.785250i \(0.287465\pi\)
\(648\) −2.60826 1.25607i −0.102462 0.0493431i
\(649\) 12.2094 + 15.3101i 0.479260 + 0.600973i
\(650\) 10.2479 0.401954
\(651\) 10.2795 + 12.8901i 0.402886 + 0.505202i
\(652\) 2.62503 + 11.5010i 0.102804 + 0.450415i
\(653\) −2.81311 12.3250i −0.110086 0.482316i −0.999673 0.0255523i \(-0.991866\pi\)
0.889588 0.456764i \(-0.150992\pi\)
\(654\) −4.24271 5.32019i −0.165903 0.208036i
\(655\) −3.61821 −0.141375
\(656\) 1.13628 + 1.42486i 0.0443645 + 0.0556313i
\(657\) 10.2021 + 4.91305i 0.398020 + 0.191676i
\(658\) −18.8033 + 23.5786i −0.733030 + 0.919190i
\(659\) 28.8673 36.1984i 1.12451 1.41009i 0.224360 0.974506i \(-0.427971\pi\)
0.900148 0.435583i \(-0.143458\pi\)
\(660\) 1.24744 0.600733i 0.0485564 0.0233835i
\(661\) 0.706721 + 3.09635i 0.0274882 + 0.120434i 0.986811 0.161879i \(-0.0517555\pi\)
−0.959322 + 0.282313i \(0.908898\pi\)
\(662\) 1.25125 5.48207i 0.0486311 0.213067i
\(663\) −6.98693 3.36473i −0.271350 0.130675i
\(664\) −16.3795 + 7.88794i −0.635647 + 0.306112i
\(665\) −0.272465 + 1.19375i −0.0105657 + 0.0462915i
\(666\) −0.348603 −0.0135081
\(667\) 37.8732 + 9.29819i 1.46646 + 0.360027i
\(668\) −28.4919 −1.10239
\(669\) 2.31324 10.1350i 0.0894350 0.391840i
\(670\) −0.667912 + 0.321649i −0.0258037 + 0.0124264i
\(671\) −26.1484 12.5924i −1.00945 0.486124i
\(672\) −6.15580 + 26.9703i −0.237465 + 1.04040i
\(673\) −2.51910 11.0369i −0.0971043 0.425442i 0.902886 0.429880i \(-0.141444\pi\)
−0.999990 + 0.00443874i \(0.998587\pi\)
\(674\) −5.98287 + 2.88120i −0.230451 + 0.110980i
\(675\) 3.06680 3.84565i 0.118041 0.148019i
\(676\) 5.66554 7.10436i 0.217905 0.273245i
\(677\) −4.00868 1.93048i −0.154066 0.0741943i 0.355262 0.934767i \(-0.384392\pi\)
−0.509328 + 0.860573i \(0.670106\pi\)
\(678\) 2.41957 + 3.03404i 0.0929229 + 0.116522i
\(679\) 2.53370 0.0972345
\(680\) −1.75335 2.19863i −0.0672379 0.0843136i
\(681\) −6.22713 27.2828i −0.238624 1.04548i
\(682\) 2.78816 + 12.2157i 0.106764 + 0.467764i
\(683\) 15.5911 + 19.5506i 0.596577 + 0.748084i 0.984840 0.173465i \(-0.0554962\pi\)
−0.388263 + 0.921549i \(0.626925\pi\)
\(684\) −0.990273 −0.0378640
\(685\) 1.73137 + 2.17107i 0.0661523 + 0.0829523i
\(686\) 47.3659 + 22.8102i 1.80844 + 0.870897i
\(687\) 2.17985 2.73345i 0.0831665 0.104287i
\(688\) −1.61507 + 2.02523i −0.0615740 + 0.0772114i
\(689\) −5.92963 + 2.85556i −0.225901 + 0.108788i
\(690\) 0.420544 + 1.84253i 0.0160099 + 0.0701438i
\(691\) 2.00976 8.80534i 0.0764549 0.334971i −0.922206 0.386698i \(-0.873616\pi\)
0.998661 + 0.0517274i \(0.0164727\pi\)
\(692\) −23.1156 11.1319i −0.878723 0.423171i
\(693\) 18.9885 9.14439i 0.721314 0.347367i
\(694\) −0.307584 + 1.34761i −0.0116757 + 0.0511548i
\(695\) −3.55787 −0.134958
\(696\) −12.0281 9.91800i −0.455922 0.375941i
\(697\) 18.9506 0.717807
\(698\) 2.96912 13.0086i 0.112383 0.492381i
\(699\) −3.02067 + 1.45468i −0.114252 + 0.0550209i
\(700\) −25.9393 12.4917i −0.980413 0.472142i
\(701\) 5.98486 26.2214i 0.226045 0.990368i −0.726785 0.686865i \(-0.758986\pi\)
0.952830 0.303504i \(-0.0981564\pi\)
\(702\) −0.463604 2.03118i −0.0174976 0.0766621i
\(703\) −0.292430 + 0.140827i −0.0110292 + 0.00531138i
\(704\) −14.8178 + 18.5809i −0.558466 + 0.700294i
\(705\) −1.16141 + 1.45637i −0.0437414 + 0.0548499i
\(706\) −17.9889 8.66300i −0.677021 0.326036i
\(707\) −14.1632 17.7601i −0.532661 0.667936i
\(708\) −5.43844 −0.204389
\(709\) −22.0688 27.6734i −0.828811 1.03930i −0.998551 0.0538071i \(-0.982864\pi\)
0.169740 0.985489i \(-0.445707\pi\)
\(710\) −0.667500 2.92451i −0.0250508 0.109755i
\(711\) 1.50634 + 6.59971i 0.0564922 + 0.247509i
\(712\) 10.2993 + 12.9149i 0.385983 + 0.484008i
\(713\) 23.6933 0.887320
\(714\) −9.80563 12.2959i −0.366966 0.460161i
\(715\) 2.44354 + 1.17675i 0.0913834 + 0.0440079i
\(716\) −0.532330 + 0.667521i −0.0198941 + 0.0249464i
\(717\) 11.4681 14.3805i 0.428282 0.537049i
\(718\) 6.97470 3.35884i 0.260293 0.125351i
\(719\) −2.35378 10.3126i −0.0877813 0.384595i 0.911884 0.410447i \(-0.134627\pi\)
−0.999666 + 0.0258519i \(0.991770\pi\)
\(720\) 0.0207875 0.0910761i 0.000774706 0.00339421i
\(721\) −36.8836 17.7622i −1.37362 0.661499i
\(722\) −15.0753 + 7.25988i −0.561045 + 0.270185i
\(723\) 1.25172 5.48413i 0.0465518 0.203957i
\(724\) −15.8857 −0.590386
\(725\) 20.9767 16.1745i 0.779053 0.600706i
\(726\) 5.94470 0.220628
\(727\) −10.2003 + 44.6903i −0.378307 + 1.65747i 0.324346 + 0.945938i \(0.394856\pi\)
−0.702653 + 0.711532i \(0.748001\pi\)
\(728\) −29.9050 + 14.4015i −1.10835 + 0.533755i
\(729\) −0.900969 0.433884i −0.0333692 0.0160698i
\(730\) −0.657578 + 2.88104i −0.0243380 + 0.106632i
\(731\) 5.99376 + 26.2604i 0.221687 + 0.971275i
\(732\) 7.26198 3.49719i 0.268411 0.129260i
\(733\) −32.3666 + 40.5865i −1.19549 + 1.49910i −0.375396 + 0.926864i \(0.622493\pi\)
−0.820093 + 0.572231i \(0.806078\pi\)
\(734\) 3.93350 4.93245i 0.145188 0.182060i
\(735\) 4.72310 + 2.27452i 0.174214 + 0.0838970i
\(736\) 24.7871 + 31.0820i 0.913663 + 1.14570i
\(737\) 11.8804 0.437621
\(738\) 3.17434 + 3.98050i 0.116849 + 0.146524i
\(739\) 3.60556 + 15.7970i 0.132633 + 0.581102i 0.996942 + 0.0781419i \(0.0248987\pi\)
−0.864309 + 0.502960i \(0.832244\pi\)
\(740\) 0.0280444 + 0.122871i 0.00103093 + 0.00451681i
\(741\) −1.20945 1.51660i −0.0444301 0.0557136i
\(742\) −13.3471 −0.489988
\(743\) 22.5216 + 28.2412i 0.826238 + 1.03607i 0.998696 + 0.0510523i \(0.0162575\pi\)
−0.172458 + 0.985017i \(0.555171\pi\)
\(744\) −8.53362 4.10957i −0.312858 0.150664i
\(745\) −4.01612 + 5.03605i −0.147139 + 0.184507i
\(746\) 10.9962 13.7889i 0.402601 0.504846i
\(747\) −5.65795 + 2.72473i −0.207014 + 0.0996926i
\(748\) 3.68440 + 16.1424i 0.134715 + 0.590224i
\(749\) −10.6741 + 46.7663i −0.390023 + 1.70880i
\(750\) 2.33220 + 1.12313i 0.0851600 + 0.0410109i
\(751\) −37.5435 + 18.0800i −1.36998 + 0.659748i −0.966838 0.255389i \(-0.917797\pi\)
−0.403143 + 0.915137i \(0.632082\pi\)
\(752\) 0.476705 2.08858i 0.0173836 0.0761627i
\(753\) 26.8112 0.977054
\(754\) 0.183399 11.2181i 0.00667900 0.408538i
\(755\) −1.89120 −0.0688279
\(756\) −1.30245 + 5.70643i −0.0473698 + 0.207541i
\(757\) −7.04277 + 3.39162i −0.255974 + 0.123271i −0.557471 0.830197i \(-0.688228\pi\)
0.301497 + 0.953467i \(0.402514\pi\)
\(758\) −28.8536 13.8952i −1.04801 0.504695i
\(759\) 6.73961 29.5282i 0.244632 1.07180i
\(760\) −0.156527 0.685792i −0.00567785 0.0248763i
\(761\) 19.4919 9.38680i 0.706580 0.340271i −0.0458451 0.998949i \(-0.514598\pi\)
0.752426 + 0.658677i \(0.228884\pi\)
\(762\) −9.70520 + 12.1699i −0.351582 + 0.440870i
\(763\) −23.3486 + 29.2782i −0.845275 + 1.05994i
\(764\) 1.21500 + 0.585113i 0.0439571 + 0.0211686i
\(765\) −0.605658 0.759471i