Properties

Label 87.2.g.b.16.3
Level $87$
Weight $2$
Character 87.16
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 16.3
Root \(-1.23500 - 1.54863i\) of defining polynomial
Character \(\chi\) \(=\) 87.16
Dual form 87.2.g.b.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.78462 + 0.859427i) q^{2} +(-0.623490 + 0.781831i) q^{3} +(1.19927 + 1.50384i) q^{4} +(-1.09830 - 0.528911i) q^{5} +(-1.78462 + 0.859427i) q^{6} +(0.245180 - 0.307445i) q^{7} +(-0.0337262 - 0.147764i) q^{8} +(-0.222521 - 0.974928i) q^{9} +O(q^{10})\) \(q+(1.78462 + 0.859427i) q^{2} +(-0.623490 + 0.781831i) q^{3} +(1.19927 + 1.50384i) q^{4} +(-1.09830 - 0.528911i) q^{5} +(-1.78462 + 0.859427i) q^{6} +(0.245180 - 0.307445i) q^{7} +(-0.0337262 - 0.147764i) q^{8} +(-0.222521 - 0.974928i) q^{9} +(-1.50548 - 1.88781i) q^{10} +(0.554919 - 2.43126i) q^{11} -1.92348 q^{12} +(-0.735270 + 3.22143i) q^{13} +(0.701779 - 0.337959i) q^{14} +(1.09830 - 0.528911i) q^{15} +(0.922834 - 4.04320i) q^{16} -4.30028 q^{17} +(0.440765 - 1.93112i) q^{18} +(3.34887 + 4.19936i) q^{19} +(-0.521757 - 2.28597i) q^{20} +(0.0875036 + 0.383378i) q^{21} +(3.07981 - 3.86196i) q^{22} +(-2.70461 + 1.30247i) q^{23} +(0.136554 + 0.0657611i) q^{24} +(-2.19094 - 2.74736i) q^{25} +(-4.08076 + 5.11712i) q^{26} +(0.900969 + 0.433884i) q^{27} +0.756386 q^{28} +(-1.86053 + 5.05355i) q^{29} +2.41460 q^{30} +(9.01303 + 4.34044i) q^{31} +(4.93275 - 6.18547i) q^{32} +(1.55485 + 1.94972i) q^{33} +(-7.67437 - 3.69578i) q^{34} +(-0.431891 + 0.207988i) q^{35} +(1.19927 - 1.50384i) q^{36} +(-0.812038 - 3.55777i) q^{37} +(2.36742 + 10.3724i) q^{38} +(-2.06018 - 2.58339i) q^{39} +(-0.0411127 + 0.180127i) q^{40} -7.82011 q^{41} +(-0.173325 + 0.759387i) q^{42} +(-2.11613 + 1.01908i) q^{43} +(4.32172 - 2.08123i) q^{44} +(-0.271257 + 1.18845i) q^{45} -5.94608 q^{46} +(1.90056 - 8.32691i) q^{47} +(2.58572 + 3.24240i) q^{48} +(1.52324 + 6.67374i) q^{49} +(-1.54885 - 6.78594i) q^{50} +(2.68118 - 3.36210i) q^{51} +(-5.72630 + 2.75764i) q^{52} +(9.83963 + 4.73852i) q^{53} +(1.23500 + 1.54863i) q^{54} +(-1.89539 + 2.37674i) q^{55} +(-0.0536983 - 0.0258597i) q^{56} -5.37118 q^{57} +(-7.66351 + 7.41968i) q^{58} +10.2851 q^{59} +(2.11255 + 1.01735i) q^{60} +(2.32106 - 2.91052i) q^{61} +(12.3545 + 15.4921i) q^{62} +(-0.354295 - 0.170619i) q^{63} +(6.64609 - 3.20059i) q^{64} +(2.51140 - 3.14919i) q^{65} +(1.09917 + 4.81578i) q^{66} +(-1.14527 - 5.01776i) q^{67} +(-5.15721 - 6.46693i) q^{68} +(0.667984 - 2.92663i) q^{69} -0.949512 q^{70} +(1.80048 - 7.88840i) q^{71} +(-0.136554 + 0.0657611i) q^{72} +(-7.88943 + 3.79935i) q^{73} +(1.60847 - 7.04716i) q^{74} +3.51400 q^{75} +(-2.29895 + 10.0723i) q^{76} +(-0.611425 - 0.766702i) q^{77} +(-1.45641 - 6.38094i) q^{78} +(-1.62424 - 7.11624i) q^{79} +(-3.15204 + 3.95253i) q^{80} +(-0.900969 + 0.433884i) q^{81} +(-13.9559 - 6.72082i) q^{82} +(-2.33795 - 2.93170i) q^{83} +(-0.471599 + 0.591366i) q^{84} +(4.72298 + 2.27447i) q^{85} -4.65232 q^{86} +(-2.79100 - 4.60546i) q^{87} -0.377968 q^{88} +(-9.38092 - 4.51762i) q^{89} +(-1.50548 + 1.88781i) q^{90} +(0.810141 + 1.01588i) q^{91} +(-5.20227 - 2.50528i) q^{92} +(-9.01303 + 4.34044i) q^{93} +(10.5482 - 13.2270i) q^{94} +(-1.45697 - 6.38339i) q^{95} +(1.76048 + 7.71316i) q^{96} +(-10.1017 - 12.6672i) q^{97} +(-3.01719 + 13.2192i) q^{98} -2.49378 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78462 + 0.859427i 1.26192 + 0.607707i 0.940681 0.339292i \(-0.110188\pi\)
0.321236 + 0.946999i \(0.395902\pi\)
\(3\) −0.623490 + 0.781831i −0.359972 + 0.451391i
\(4\) 1.19927 + 1.50384i 0.599636 + 0.751920i
\(5\) −1.09830 0.528911i −0.491173 0.236536i 0.171867 0.985120i \(-0.445020\pi\)
−0.663040 + 0.748584i \(0.730734\pi\)
\(6\) −1.78462 + 0.859427i −0.728568 + 0.350860i
\(7\) 0.245180 0.307445i 0.0926692 0.116203i −0.733335 0.679867i \(-0.762037\pi\)
0.826004 + 0.563664i \(0.190609\pi\)
\(8\) −0.0337262 0.147764i −0.0119240 0.0522424i
\(9\) −0.222521 0.974928i −0.0741736 0.324976i
\(10\) −1.50548 1.88781i −0.476074 0.596978i
\(11\) 0.554919 2.43126i 0.167314 0.733052i −0.819749 0.572723i \(-0.805887\pi\)
0.987064 0.160329i \(-0.0512557\pi\)
\(12\) −1.92348 −0.555262
\(13\) −0.735270 + 3.22143i −0.203927 + 0.893464i 0.764590 + 0.644517i \(0.222942\pi\)
−0.968517 + 0.248947i \(0.919916\pi\)
\(14\) 0.701779 0.337959i 0.187558 0.0903234i
\(15\) 1.09830 0.528911i 0.283579 0.136564i
\(16\) 0.922834 4.04320i 0.230709 1.01080i
\(17\) −4.30028 −1.04297 −0.521486 0.853260i \(-0.674622\pi\)
−0.521486 + 0.853260i \(0.674622\pi\)
\(18\) 0.440765 1.93112i 0.103889 0.455168i
\(19\) 3.34887 + 4.19936i 0.768284 + 0.963398i 0.999956 0.00939593i \(-0.00299086\pi\)
−0.231671 + 0.972794i \(0.574419\pi\)
\(20\) −0.521757 2.28597i −0.116669 0.511158i
\(21\) 0.0875036 + 0.383378i 0.0190948 + 0.0836600i
\(22\) 3.07981 3.86196i 0.656618 0.823372i
\(23\) −2.70461 + 1.30247i −0.563951 + 0.271584i −0.694062 0.719915i \(-0.744181\pi\)
0.130112 + 0.991499i \(0.458466\pi\)
\(24\) 0.136554 + 0.0657611i 0.0278741 + 0.0134234i
\(25\) −2.19094 2.74736i −0.438189 0.549471i
\(26\) −4.08076 + 5.11712i −0.800304 + 1.00355i
\(27\) 0.900969 + 0.433884i 0.173392 + 0.0835010i
\(28\) 0.756386 0.142943
\(29\) −1.86053 + 5.05355i −0.345492 + 0.938422i
\(30\) 2.41460 0.440844
\(31\) 9.01303 + 4.34044i 1.61879 + 0.779567i 0.999982 0.00597750i \(-0.00190271\pi\)
0.618805 + 0.785544i \(0.287617\pi\)
\(32\) 4.93275 6.18547i 0.871995 1.09345i
\(33\) 1.55485 + 1.94972i 0.270664 + 0.339402i
\(34\) −7.67437 3.69578i −1.31614 0.633821i
\(35\) −0.431891 + 0.207988i −0.0730029 + 0.0351564i
\(36\) 1.19927 1.50384i 0.199879 0.250640i
\(37\) −0.812038 3.55777i −0.133498 0.584894i −0.996781 0.0801733i \(-0.974453\pi\)
0.863283 0.504721i \(-0.168405\pi\)
\(38\) 2.36742 + 10.3724i 0.384047 + 1.68262i
\(39\) −2.06018 2.58339i −0.329893 0.413673i
\(40\) −0.0411127 + 0.180127i −0.00650049 + 0.0284805i
\(41\) −7.82011 −1.22130 −0.610648 0.791902i \(-0.709091\pi\)
−0.610648 + 0.791902i \(0.709091\pi\)
\(42\) −0.173325 + 0.759387i −0.0267447 + 0.117176i
\(43\) −2.11613 + 1.01908i −0.322708 + 0.155408i −0.588223 0.808699i \(-0.700172\pi\)
0.265515 + 0.964107i \(0.414458\pi\)
\(44\) 4.32172 2.08123i 0.651524 0.313757i
\(45\) −0.271257 + 1.18845i −0.0404366 + 0.177164i
\(46\) −5.94608 −0.876702
\(47\) 1.90056 8.32691i 0.277226 1.21461i −0.624059 0.781377i \(-0.714517\pi\)
0.901284 0.433228i \(-0.142625\pi\)
\(48\) 2.58572 + 3.24240i 0.373217 + 0.468000i
\(49\) 1.52324 + 6.67374i 0.217605 + 0.953391i
\(50\) −1.54885 6.78594i −0.219040 0.959677i
\(51\) 2.68118 3.36210i 0.375440 0.470787i
\(52\) −5.72630 + 2.75764i −0.794095 + 0.382416i
\(53\) 9.83963 + 4.73852i 1.35158 + 0.650885i 0.962742 0.270422i \(-0.0871632\pi\)
0.388836 + 0.921307i \(0.372877\pi\)
\(54\) 1.23500 + 1.54863i 0.168062 + 0.210743i
\(55\) −1.89539 + 2.37674i −0.255574 + 0.320479i
\(56\) −0.0536983 0.0258597i −0.00717574 0.00345565i
\(57\) −5.37118 −0.711430
\(58\) −7.66351 + 7.41968i −1.00627 + 0.974252i
\(59\) 10.2851 1.33901 0.669503 0.742809i \(-0.266507\pi\)
0.669503 + 0.742809i \(0.266507\pi\)
\(60\) 2.11255 + 1.01735i 0.272729 + 0.131340i
\(61\) 2.32106 2.91052i 0.297182 0.372654i −0.610713 0.791852i \(-0.709117\pi\)
0.907895 + 0.419198i \(0.137689\pi\)
\(62\) 12.3545 + 15.4921i 1.56903 + 1.96750i
\(63\) −0.354295 0.170619i −0.0446369 0.0214960i
\(64\) 6.64609 3.20059i 0.830761 0.400073i
\(65\) 2.51140 3.14919i 0.311500 0.390609i
\(66\) 1.09917 + 4.81578i 0.135299 + 0.592782i
\(67\) −1.14527 5.01776i −0.139917 0.613017i −0.995451 0.0952705i \(-0.969628\pi\)
0.855534 0.517746i \(-0.173229\pi\)
\(68\) −5.15721 6.46693i −0.625403 0.784231i
\(69\) 0.667984 2.92663i 0.0804158 0.352325i
\(70\) −0.949512 −0.113488
\(71\) 1.80048 7.88840i 0.213677 0.936181i −0.748366 0.663285i \(-0.769162\pi\)
0.962044 0.272896i \(-0.0879813\pi\)
\(72\) −0.136554 + 0.0657611i −0.0160931 + 0.00775003i
\(73\) −7.88943 + 3.79935i −0.923387 + 0.444680i −0.834279 0.551342i \(-0.814116\pi\)
−0.0891081 + 0.996022i \(0.528402\pi\)
\(74\) 1.60847 7.04716i 0.186981 0.819215i
\(75\) 3.51400 0.405762
\(76\) −2.29895 + 10.0723i −0.263707 + 1.15538i
\(77\) −0.611425 0.766702i −0.0696783 0.0873738i
\(78\) −1.45641 6.38094i −0.164906 0.722499i
\(79\) −1.62424 7.11624i −0.182741 0.800640i −0.980318 0.197423i \(-0.936743\pi\)
0.797577 0.603216i \(-0.206115\pi\)
\(80\) −3.15204 + 3.95253i −0.352409 + 0.441907i
\(81\) −0.900969 + 0.433884i −0.100108 + 0.0482093i
\(82\) −13.9559 6.72082i −1.54117 0.742190i
\(83\) −2.33795 2.93170i −0.256624 0.321796i 0.636785 0.771042i \(-0.280264\pi\)
−0.893408 + 0.449246i \(0.851693\pi\)
\(84\) −0.471599 + 0.591366i −0.0514556 + 0.0645233i
\(85\) 4.72298 + 2.27447i 0.512279 + 0.246701i
\(86\) −4.65232 −0.501672
\(87\) −2.79100 4.60546i −0.299227 0.493758i
\(88\) −0.377968 −0.0402915
\(89\) −9.38092 4.51762i −0.994376 0.478866i −0.135350 0.990798i \(-0.543216\pi\)
−0.859026 + 0.511932i \(0.828930\pi\)
\(90\) −1.50548 + 1.88781i −0.158691 + 0.198993i
\(91\) 0.810141 + 1.01588i 0.0849258 + 0.106494i
\(92\) −5.20227 2.50528i −0.542375 0.261194i
\(93\) −9.01303 + 4.34044i −0.934607 + 0.450083i
\(94\) 10.5482 13.2270i 1.08796 1.36426i
\(95\) −1.45697 6.38339i −0.149482 0.654922i
\(96\) 1.76048 + 7.71316i 0.179678 + 0.787221i
\(97\) −10.1017 12.6672i −1.02568 1.28616i −0.957484 0.288486i \(-0.906848\pi\)
−0.0681928 0.997672i \(-0.521723\pi\)
\(98\) −3.01719 + 13.2192i −0.304783 + 1.33534i
\(99\) −2.49378 −0.250635
\(100\) 1.50404 6.58965i 0.150404 0.658965i
\(101\) 2.49049 1.19936i 0.247813 0.119341i −0.305854 0.952078i \(-0.598942\pi\)
0.553668 + 0.832738i \(0.313228\pi\)
\(102\) 7.67437 3.69578i 0.759875 0.365937i
\(103\) −0.842490 + 3.69119i −0.0830130 + 0.363704i −0.999324 0.0367637i \(-0.988295\pi\)
0.916311 + 0.400467i \(0.131152\pi\)
\(104\) 0.500809 0.0491084
\(105\) 0.106668 0.467344i 0.0104098 0.0456081i
\(106\) 13.4876 + 16.9129i 1.31003 + 1.64273i
\(107\) 2.51363 + 11.0129i 0.243002 + 1.06466i 0.938268 + 0.345909i \(0.112429\pi\)
−0.695266 + 0.718752i \(0.744714\pi\)
\(108\) 0.428015 + 1.87526i 0.0411858 + 0.180447i
\(109\) 9.27648 11.6323i 0.888526 1.11418i −0.104293 0.994547i \(-0.533258\pi\)
0.992819 0.119630i \(-0.0381707\pi\)
\(110\) −5.42518 + 2.61263i −0.517270 + 0.249104i
\(111\) 3.28788 + 1.58336i 0.312071 + 0.150286i
\(112\) −1.01680 1.27503i −0.0960789 0.120479i
\(113\) −0.0109212 + 0.0136948i −0.00102738 + 0.00128830i −0.782345 0.622845i \(-0.785977\pi\)
0.781318 + 0.624134i \(0.214548\pi\)
\(114\) −9.58551 4.61614i −0.897765 0.432341i
\(115\) 3.65936 0.341237
\(116\) −9.83102 + 3.26264i −0.912787 + 0.302929i
\(117\) 3.30428 0.305480
\(118\) 18.3550 + 8.83930i 1.68971 + 0.813724i
\(119\) −1.05434 + 1.32210i −0.0966513 + 0.121197i
\(120\) −0.115195 0.144450i −0.0105158 0.0131865i
\(121\) 4.30757 + 2.07442i 0.391598 + 0.188583i
\(122\) 6.64360 3.19939i 0.601483 0.289659i
\(123\) 4.87576 6.11401i 0.439632 0.551281i
\(124\) 4.28174 + 18.7595i 0.384511 + 1.68465i
\(125\) 2.30948 + 10.1185i 0.206566 + 0.905025i
\(126\) −0.485646 0.608981i −0.0432648 0.0542524i
\(127\) −2.28217 + 9.99883i −0.202510 + 0.887253i 0.766893 + 0.641775i \(0.221802\pi\)
−0.969402 + 0.245477i \(0.921055\pi\)
\(128\) −1.21162 −0.107093
\(129\) 0.522642 2.28984i 0.0460161 0.201610i
\(130\) 7.18839 3.46174i 0.630463 0.303615i
\(131\) −4.46222 + 2.14889i −0.389866 + 0.187750i −0.618540 0.785754i \(-0.712275\pi\)
0.228674 + 0.973503i \(0.426561\pi\)
\(132\) −1.06738 + 4.67648i −0.0929032 + 0.407036i
\(133\) 2.11215 0.183146
\(134\) 2.26853 9.93906i 0.195971 0.858604i
\(135\) −0.760044 0.953065i −0.0654142 0.0820268i
\(136\) 0.145032 + 0.635427i 0.0124364 + 0.0544874i
\(137\) 3.01935 + 13.2286i 0.257960 + 1.13020i 0.923428 + 0.383771i \(0.125375\pi\)
−0.665468 + 0.746426i \(0.731768\pi\)
\(138\) 3.70732 4.64884i 0.315588 0.395735i
\(139\) −14.8411 + 7.14709i −1.25880 + 0.606208i −0.939858 0.341564i \(-0.889043\pi\)
−0.318946 + 0.947773i \(0.603329\pi\)
\(140\) −0.830735 0.400061i −0.0702099 0.0338113i
\(141\) 5.32526 + 6.67767i 0.448468 + 0.562361i
\(142\) 9.99267 12.5304i 0.838567 1.05153i
\(143\) 7.42411 + 3.57527i 0.620836 + 0.298979i
\(144\) −4.14718 −0.345598
\(145\) 4.71630 4.56624i 0.391667 0.379206i
\(146\) −17.3449 −1.43547
\(147\) −6.16746 2.97009i −0.508684 0.244969i
\(148\) 4.37646 5.48791i 0.359743 0.451103i
\(149\) 4.97975 + 6.24440i 0.407957 + 0.511562i 0.942786 0.333399i \(-0.108195\pi\)
−0.534829 + 0.844960i \(0.679624\pi\)
\(150\) 6.27115 + 3.02003i 0.512037 + 0.246584i
\(151\) 18.2927 8.80931i 1.48864 0.716891i 0.499837 0.866119i \(-0.333393\pi\)
0.988803 + 0.149228i \(0.0476788\pi\)
\(152\) 0.507569 0.636471i 0.0411693 0.0516246i
\(153\) 0.956903 + 4.19246i 0.0773610 + 0.338941i
\(154\) −0.432235 1.89375i −0.0348305 0.152602i
\(155\) −7.60326 9.53418i −0.610708 0.765804i
\(156\) 1.41428 6.19636i 0.113233 0.496106i
\(157\) −4.08988 −0.326408 −0.163204 0.986592i \(-0.552183\pi\)
−0.163204 + 0.986592i \(0.552183\pi\)
\(158\) 3.21725 14.0957i 0.255951 1.12139i
\(159\) −9.83963 + 4.73852i −0.780334 + 0.375789i
\(160\) −8.68918 + 4.18449i −0.686940 + 0.330813i
\(161\) −0.262676 + 1.15086i −0.0207018 + 0.0907005i
\(162\) −1.98078 −0.155625
\(163\) −4.28966 + 18.7942i −0.335992 + 1.47208i 0.471325 + 0.881960i \(0.343776\pi\)
−0.807317 + 0.590118i \(0.799081\pi\)
\(164\) −9.37844 11.7602i −0.732333 0.918316i
\(165\) −0.676455 2.96374i −0.0526620 0.230727i
\(166\) −1.65277 7.24127i −0.128280 0.562031i
\(167\) −2.02456 + 2.53871i −0.156665 + 0.196452i −0.853969 0.520324i \(-0.825811\pi\)
0.697304 + 0.716775i \(0.254383\pi\)
\(168\) 0.0536983 0.0258597i 0.00414292 0.00199512i
\(169\) 1.87561 + 0.903244i 0.144277 + 0.0694803i
\(170\) 6.47398 + 8.11812i 0.496532 + 0.622631i
\(171\) 3.34887 4.19936i 0.256095 0.321133i
\(172\) −4.07035 1.96018i −0.310361 0.149462i
\(173\) −8.02956 −0.610476 −0.305238 0.952276i \(-0.598736\pi\)
−0.305238 + 0.952276i \(0.598736\pi\)
\(174\) −1.02282 10.6177i −0.0775398 0.804923i
\(175\) −1.38184 −0.104457
\(176\) −9.31797 4.48730i −0.702368 0.338243i
\(177\) −6.41266 + 8.04122i −0.482005 + 0.604415i
\(178\) −12.8588 16.1244i −0.963809 1.20858i
\(179\) 9.51892 + 4.58407i 0.711478 + 0.342630i 0.754369 0.656450i \(-0.227943\pi\)
−0.0428918 + 0.999080i \(0.513657\pi\)
\(180\) −2.11255 + 1.01735i −0.157460 + 0.0758289i
\(181\) −7.63399 + 9.57273i −0.567430 + 0.711535i −0.979912 0.199431i \(-0.936091\pi\)
0.412482 + 0.910966i \(0.364662\pi\)
\(182\) 0.572714 + 2.50922i 0.0424524 + 0.185996i
\(183\) 0.828378 + 3.62936i 0.0612355 + 0.268290i
\(184\) 0.283675 + 0.355717i 0.0209128 + 0.0262238i
\(185\) −0.989888 + 4.33698i −0.0727780 + 0.318861i
\(186\) −19.8151 −1.45292
\(187\) −2.38631 + 10.4551i −0.174504 + 0.764552i
\(188\) 14.8016 7.12809i 1.07952 0.519869i
\(189\) 0.354295 0.170619i 0.0257712 0.0124107i
\(190\) 2.88593 12.6441i 0.209367 0.917298i
\(191\) 6.79213 0.491461 0.245731 0.969338i \(-0.420972\pi\)
0.245731 + 0.969338i \(0.420972\pi\)
\(192\) −1.64145 + 7.19165i −0.118461 + 0.519013i
\(193\) −15.2461 19.1181i −1.09744 1.37615i −0.919954 0.392025i \(-0.871775\pi\)
−0.177487 0.984123i \(-0.556797\pi\)
\(194\) −7.14124 31.2878i −0.512711 2.24634i
\(195\) 0.896307 + 3.92698i 0.0641859 + 0.281217i
\(196\) −8.20945 + 10.2943i −0.586389 + 0.735309i
\(197\) 6.77867 3.26444i 0.482960 0.232581i −0.176529 0.984295i \(-0.556487\pi\)
0.659489 + 0.751714i \(0.270773\pi\)
\(198\) −4.45045 2.14323i −0.316280 0.152312i
\(199\) −14.3765 18.0276i −1.01913 1.27794i −0.960091 0.279687i \(-0.909769\pi\)
−0.0590340 0.998256i \(-0.518802\pi\)
\(200\) −0.332068 + 0.416400i −0.0234808 + 0.0294439i
\(201\) 4.63710 + 2.23311i 0.327076 + 0.157512i
\(202\) 5.47534 0.385244
\(203\) 1.09753 + 1.81104i 0.0770313 + 0.127110i
\(204\) 8.27152 0.579122
\(205\) 8.58879 + 4.13614i 0.599867 + 0.288881i
\(206\) −4.67583 + 5.86331i −0.325781 + 0.408516i
\(207\) 1.87165 + 2.34697i 0.130089 + 0.163126i
\(208\) 12.3464 + 5.94569i 0.856066 + 0.412260i
\(209\) 12.0681 5.81168i 0.834766 0.402002i
\(210\) 0.592011 0.742358i 0.0408526 0.0512276i
\(211\) −1.45370 6.36909i −0.100077 0.438466i −0.999997 0.00241130i \(-0.999232\pi\)
0.899920 0.436055i \(-0.143625\pi\)
\(212\) 4.67443 + 20.4800i 0.321041 + 1.40657i
\(213\) 5.04482 + 6.32601i 0.345666 + 0.433451i
\(214\) −4.97895 + 21.8142i −0.340354 + 1.49119i
\(215\) 2.86314 0.195265
\(216\) 0.0337262 0.147764i 0.00229477 0.0100541i
\(217\) 3.54426 1.70683i 0.240600 0.115867i
\(218\) 26.5521 12.7868i 1.79834 0.866034i
\(219\) 1.94853 8.53706i 0.131669 0.576881i
\(220\) −5.84731 −0.394226
\(221\) 3.16187 13.8531i 0.212690 0.931857i
\(222\) 4.50683 + 5.65138i 0.302478 + 0.379296i
\(223\) 2.71840 + 11.9101i 0.182038 + 0.797560i 0.980659 + 0.195725i \(0.0627061\pi\)
−0.798621 + 0.601834i \(0.794437\pi\)
\(224\) −0.692286 3.03310i −0.0462553 0.202658i
\(225\) −2.19094 + 2.74736i −0.146063 + 0.183157i
\(226\) −0.0312600 + 0.0150540i −0.00207938 + 0.00100138i
\(227\) 13.0371 + 6.27836i 0.865306 + 0.416709i 0.813236 0.581934i \(-0.197704\pi\)
0.0520700 + 0.998643i \(0.483418\pi\)
\(228\) −6.44150 8.07739i −0.426599 0.534938i
\(229\) 6.49636 8.14618i 0.429292 0.538315i −0.519394 0.854535i \(-0.673842\pi\)
0.948686 + 0.316220i \(0.102414\pi\)
\(230\) 6.53056 + 3.14495i 0.430612 + 0.207372i
\(231\) 0.980649 0.0645220
\(232\) 0.809482 + 0.104483i 0.0531451 + 0.00685963i
\(233\) −18.5595 −1.21587 −0.607935 0.793987i \(-0.708002\pi\)
−0.607935 + 0.793987i \(0.708002\pi\)
\(234\) 5.89687 + 2.83979i 0.385491 + 0.185643i
\(235\) −6.49158 + 8.14018i −0.423464 + 0.531007i
\(236\) 12.3346 + 15.4671i 0.802916 + 1.00683i
\(237\) 6.57640 + 3.16703i 0.427183 + 0.205720i
\(238\) −3.01785 + 1.45332i −0.195618 + 0.0942047i
\(239\) −14.8606 + 18.6346i −0.961252 + 1.20537i 0.0174007 + 0.999849i \(0.494461\pi\)
−0.978652 + 0.205523i \(0.934111\pi\)
\(240\) −1.12495 4.92873i −0.0726152 0.318148i
\(241\) −4.06237 17.7984i −0.261680 1.14650i −0.919428 0.393258i \(-0.871348\pi\)
0.657748 0.753238i \(-0.271509\pi\)
\(242\) 5.90457 + 7.40409i 0.379560 + 0.475953i
\(243\) 0.222521 0.974928i 0.0142747 0.0625417i
\(244\) 7.16054 0.458407
\(245\) 1.85685 8.13539i 0.118630 0.519751i
\(246\) 13.9559 6.72082i 0.889797 0.428504i
\(247\) −15.9903 + 7.70050i −1.01744 + 0.489971i
\(248\) 0.337387 1.47819i 0.0214241 0.0938650i
\(249\) 3.74978 0.237633
\(250\) −4.57457 + 20.0425i −0.289321 + 1.26760i
\(251\) −10.6999 13.4173i −0.675372 0.846889i 0.319547 0.947570i \(-0.396469\pi\)
−0.994919 + 0.100681i \(0.967898\pi\)
\(252\) −0.168312 0.737421i −0.0106026 0.0464532i
\(253\) 1.66581 + 7.29838i 0.104728 + 0.458845i
\(254\) −12.6661 + 15.8828i −0.794740 + 0.996573i
\(255\) −4.72298 + 2.27447i −0.295765 + 0.142433i
\(256\) −15.4545 7.44248i −0.965904 0.465155i
\(257\) −1.02439 1.28454i −0.0638996 0.0801275i 0.748855 0.662734i \(-0.230604\pi\)
−0.812754 + 0.582607i \(0.802033\pi\)
\(258\) 2.90067 3.63733i 0.180588 0.226450i
\(259\) −1.29292 0.622636i −0.0803379 0.0386887i
\(260\) 7.74772 0.480493
\(261\) 5.34086 + 0.689364i 0.330591 + 0.0426706i
\(262\) −9.81019 −0.606075
\(263\) −6.19347 2.98262i −0.381906 0.183916i 0.233074 0.972459i \(-0.425122\pi\)
−0.614980 + 0.788543i \(0.710836\pi\)
\(264\) 0.235659 0.295507i 0.0145038 0.0181872i
\(265\) −8.30057 10.4086i −0.509900 0.639394i
\(266\) 3.76938 + 1.81524i 0.231116 + 0.111299i
\(267\) 9.38092 4.51762i 0.574103 0.276474i
\(268\) 6.17241 7.73996i 0.377040 0.472793i
\(269\) 0.898416 + 3.93622i 0.0547774 + 0.239995i 0.994904 0.100831i \(-0.0321502\pi\)
−0.940126 + 0.340827i \(0.889293\pi\)
\(270\) −0.537299 2.35406i −0.0326990 0.143264i
\(271\) 8.04210 + 10.0845i 0.488523 + 0.612589i 0.963598 0.267357i \(-0.0861503\pi\)
−0.475074 + 0.879946i \(0.657579\pi\)
\(272\) −3.96845 + 17.3869i −0.240622 + 1.05424i
\(273\) −1.29936 −0.0786411
\(274\) −5.98066 + 26.2030i −0.361305 + 1.58298i
\(275\) −7.89533 + 3.80219i −0.476106 + 0.229281i
\(276\) 5.20227 2.50528i 0.313140 0.150800i
\(277\) 0.712674 3.12243i 0.0428204 0.187608i −0.948994 0.315293i \(-0.897897\pi\)
0.991815 + 0.127684i \(0.0407544\pi\)
\(278\) −32.6281 −1.95690
\(279\) 2.22603 9.75289i 0.133269 0.583890i
\(280\) 0.0452991 + 0.0568033i 0.00270714 + 0.00339465i
\(281\) −4.28030 18.7532i −0.255341 1.11872i −0.926169 0.377109i \(-0.876918\pi\)
0.670828 0.741613i \(-0.265939\pi\)
\(282\) 3.76460 + 16.4938i 0.224178 + 0.982190i
\(283\) 17.6050 22.0760i 1.04651 1.31228i 0.0981179 0.995175i \(-0.468718\pi\)
0.948390 0.317105i \(-0.102711\pi\)
\(284\) 14.0221 6.75271i 0.832061 0.400700i
\(285\) 5.89914 + 2.84088i 0.349435 + 0.168279i
\(286\) 10.1765 + 12.7610i 0.601751 + 0.754572i
\(287\) −1.91733 + 2.40426i −0.113176 + 0.141919i
\(288\) −7.12803 3.43268i −0.420023 0.202272i
\(289\) 1.49242 0.0877892
\(290\) 12.3412 4.09569i 0.724697 0.240507i
\(291\) 16.2019 0.949775
\(292\) −15.1752 7.30798i −0.888060 0.427667i
\(293\) −20.7774 + 26.0541i −1.21383 + 1.52210i −0.427846 + 0.903852i \(0.640727\pi\)
−0.785986 + 0.618245i \(0.787844\pi\)
\(294\) −8.45399 10.6010i −0.493047 0.618261i
\(295\) −11.2961 5.43991i −0.657683 0.316724i
\(296\) −0.498323 + 0.239980i −0.0289645 + 0.0139486i
\(297\) 1.55485 1.94972i 0.0902214 0.113134i
\(298\) 3.52034 + 15.4236i 0.203928 + 0.893466i
\(299\) −2.20720 9.67039i −0.127646 0.559253i
\(300\) 4.21424 + 5.28449i 0.243309 + 0.305100i
\(301\) −0.205522 + 0.900453i −0.0118461 + 0.0519012i
\(302\) 40.2165 2.31420
\(303\) −0.615101 + 2.69493i −0.0353366 + 0.154820i
\(304\) 20.0693 9.66486i 1.15105 0.554318i
\(305\) −4.08862 + 1.96898i −0.234114 + 0.112743i
\(306\) −1.89541 + 8.30434i −0.108353 + 0.474728i
\(307\) −0.940065 −0.0536523 −0.0268262 0.999640i \(-0.508540\pi\)
−0.0268262 + 0.999640i \(0.508540\pi\)
\(308\) 0.419733 1.83897i 0.0239165 0.104785i
\(309\) −2.36060 2.96010i −0.134290 0.168394i
\(310\) −5.37498 23.5493i −0.305279 1.33751i
\(311\) −1.94755 8.53276i −0.110435 0.483848i −0.999652 0.0263630i \(-0.991607\pi\)
0.889217 0.457485i \(-0.151250\pi\)
\(312\) −0.312249 + 0.391548i −0.0176776 + 0.0221671i
\(313\) 29.6754 14.2909i 1.67735 0.807771i 0.680148 0.733075i \(-0.261915\pi\)
0.997206 0.0746966i \(-0.0237988\pi\)
\(314\) −7.29888 3.51496i −0.411900 0.198361i
\(315\) 0.298878 + 0.374781i 0.0168399 + 0.0211165i
\(316\) 8.75378 10.9769i 0.492439 0.617499i
\(317\) 21.1355 + 10.1783i 1.18709 + 0.571672i 0.919969 0.391991i \(-0.128214\pi\)
0.267120 + 0.963663i \(0.413928\pi\)
\(318\) −21.6324 −1.21309
\(319\) 11.2541 + 7.32775i 0.630106 + 0.410275i
\(320\) −8.99219 −0.502679
\(321\) −10.1775 4.90122i −0.568052 0.273559i
\(322\) −1.45786 + 1.82810i −0.0812433 + 0.101876i
\(323\) −14.4011 18.0584i −0.801299 1.00480i
\(324\) −1.73300 0.834568i −0.0962777 0.0463649i
\(325\) 10.4613 5.03792i 0.580291 0.279454i
\(326\) −23.8077 + 29.8539i −1.31859 + 1.65345i
\(327\) 3.31074 + 14.5053i 0.183084 + 0.802145i
\(328\) 0.263742 + 1.15553i 0.0145627 + 0.0638035i
\(329\) −2.09409 2.62591i −0.115451 0.144771i
\(330\) 1.33991 5.87052i 0.0737595 0.323161i
\(331\) −26.4233 −1.45236 −0.726178 0.687506i \(-0.758705\pi\)
−0.726178 + 0.687506i \(0.758705\pi\)
\(332\) 1.60496 7.03181i 0.0880839 0.385921i
\(333\) −3.28788 + 1.58336i −0.180174 + 0.0867674i
\(334\) −5.79490 + 2.79068i −0.317083 + 0.152699i
\(335\) −1.39610 + 6.11673i −0.0762773 + 0.334192i
\(336\) 1.63083 0.0889689
\(337\) 1.42909 6.26127i 0.0778476 0.341073i −0.920973 0.389627i \(-0.872604\pi\)
0.998821 + 0.0485537i \(0.0154612\pi\)
\(338\) 2.57097 + 3.22389i 0.139842 + 0.175357i
\(339\) −0.00389775 0.0170771i −0.000211697 0.000927503i
\(340\) 2.24370 + 9.83031i 0.121682 + 0.533123i
\(341\) 15.5542 19.5044i 0.842310 1.05622i
\(342\) 9.58551 4.61614i 0.518325 0.249612i
\(343\) 4.90534 + 2.36229i 0.264863 + 0.127552i
\(344\) 0.221952 + 0.278319i 0.0119668 + 0.0150059i
\(345\) −2.28157 + 2.86100i −0.122836 + 0.154031i
\(346\) −14.3297 6.90082i −0.770370 0.370990i
\(347\) −5.30429 −0.284749 −0.142375 0.989813i \(-0.545474\pi\)
−0.142375 + 0.989813i \(0.545474\pi\)
\(348\) 3.57870 9.72042i 0.191839 0.521069i
\(349\) 13.3972 0.717134 0.358567 0.933504i \(-0.383265\pi\)
0.358567 + 0.933504i \(0.383265\pi\)
\(350\) −2.46605 1.18759i −0.131816 0.0634793i
\(351\) −2.06018 + 2.58339i −0.109964 + 0.137891i
\(352\) −12.3012 15.4252i −0.655657 0.822167i
\(353\) 14.4975 + 6.98162i 0.771623 + 0.371594i 0.777902 0.628386i \(-0.216284\pi\)
−0.00627832 + 0.999980i \(0.501998\pi\)
\(354\) −18.3550 + 8.83930i −0.975557 + 0.469803i
\(355\) −6.14972 + 7.71151i −0.326393 + 0.409284i
\(356\) −4.45651 19.5253i −0.236195 1.03484i
\(357\) −0.376290 1.64863i −0.0199154 0.0872550i
\(358\) 13.0480 + 16.3616i 0.689607 + 0.864740i
\(359\) 2.68955 11.7837i 0.141949 0.621920i −0.853032 0.521858i \(-0.825239\pi\)
0.994981 0.100061i \(-0.0319039\pi\)
\(360\) 0.184759 0.00973765
\(361\) −2.19173 + 9.60259i −0.115354 + 0.505400i
\(362\) −21.8508 + 10.5228i −1.14845 + 0.553067i
\(363\) −4.30757 + 2.07442i −0.226089 + 0.108879i
\(364\) −0.556148 + 2.43664i −0.0291501 + 0.127715i
\(365\) 10.6744 0.558726
\(366\) −1.64083 + 7.18896i −0.0857677 + 0.375773i
\(367\) −4.56482 5.72410i −0.238282 0.298796i 0.648284 0.761399i \(-0.275487\pi\)
−0.886566 + 0.462603i \(0.846916\pi\)
\(368\) 2.77025 + 12.1373i 0.144409 + 0.632698i
\(369\) 1.74014 + 7.62404i 0.0905880 + 0.396892i
\(370\) −5.49389 + 6.88913i −0.285614 + 0.358149i
\(371\) 3.86931 1.86336i 0.200885 0.0967410i
\(372\) −17.3364 8.34877i −0.898850 0.432864i
\(373\) −5.15974 6.47011i −0.267161 0.335010i 0.630096 0.776517i \(-0.283015\pi\)
−0.897258 + 0.441507i \(0.854444\pi\)
\(374\) −13.2440 + 16.6075i −0.684833 + 0.858754i
\(375\) −9.35089 4.50315i −0.482878 0.232542i
\(376\) −1.29452 −0.0667596
\(377\) −14.9117 9.70931i −0.767991 0.500055i
\(378\) 0.778916 0.0400631
\(379\) 3.47602 + 1.67396i 0.178551 + 0.0859858i 0.521024 0.853542i \(-0.325550\pi\)
−0.342473 + 0.939528i \(0.611264\pi\)
\(380\) 7.85229 9.84647i 0.402814 0.505113i
\(381\) −6.39449 8.01844i −0.327600 0.410797i
\(382\) 12.1214 + 5.83734i 0.620183 + 0.298665i
\(383\) 4.98332 2.39984i 0.254636 0.122626i −0.302212 0.953241i \(-0.597725\pi\)
0.556848 + 0.830615i \(0.312011\pi\)
\(384\) 0.755435 0.947286i 0.0385507 0.0483410i
\(385\) 0.266008 + 1.16546i 0.0135570 + 0.0593971i
\(386\) −10.7780 47.2214i −0.548585 2.40351i
\(387\) 1.46441 + 1.83631i 0.0744402 + 0.0933450i
\(388\) 6.93468 30.3828i 0.352055 1.54245i
\(389\) 8.73816 0.443042 0.221521 0.975156i \(-0.428898\pi\)
0.221521 + 0.975156i \(0.428898\pi\)
\(390\) −1.77538 + 7.77847i −0.0899001 + 0.393878i
\(391\) 11.6306 5.60100i 0.588184 0.283255i
\(392\) 0.934765 0.450159i 0.0472128 0.0227365i
\(393\) 1.10208 4.82852i 0.0555925 0.243567i
\(394\) 14.9029 0.750797
\(395\) −1.97997 + 8.67482i −0.0996231 + 0.436477i
\(396\) −2.99072 3.75025i −0.150290 0.188457i
\(397\) 1.50235 + 6.58223i 0.0754008 + 0.330353i 0.998534 0.0541277i \(-0.0172378\pi\)
−0.923133 + 0.384480i \(0.874381\pi\)
\(398\) −10.1632 44.5280i −0.509436 2.23199i
\(399\) −1.31690 + 1.65134i −0.0659276 + 0.0826706i
\(400\) −13.1300 + 6.32307i −0.656499 + 0.316153i
\(401\) 21.1650 + 10.1925i 1.05693 + 0.508992i 0.879873 0.475209i \(-0.157627\pi\)
0.177059 + 0.984200i \(0.443342\pi\)
\(402\) 6.35627 + 7.97051i 0.317022 + 0.397533i
\(403\) −20.6095 + 25.8434i −1.02663 + 1.28735i
\(404\) 4.79042 + 2.30694i 0.238332 + 0.114775i
\(405\) 1.21902 0.0605734
\(406\) 0.402211 + 4.17526i 0.0199614 + 0.207215i
\(407\) −9.10048 −0.451094
\(408\) −0.587222 0.282791i −0.0290718 0.0140003i
\(409\) −15.2154 + 19.0795i −0.752355 + 0.943423i −0.999675 0.0255111i \(-0.991879\pi\)
0.247320 + 0.968934i \(0.420450\pi\)
\(410\) 11.7730 + 14.7629i 0.581428 + 0.729087i
\(411\) −12.2251 5.88729i −0.603019 0.290399i
\(412\) −6.56133 + 3.15977i −0.323254 + 0.155671i
\(413\) 2.52170 3.16211i 0.124085 0.155597i
\(414\) 1.32313 + 5.79700i 0.0650282 + 0.284907i
\(415\) 1.01715 + 4.45644i 0.0499301 + 0.218758i
\(416\) 16.2992 + 20.4385i 0.799132 + 1.00208i
\(417\) 3.66545 16.0594i 0.179498 0.786431i
\(418\) 26.5316 1.29770
\(419\) −3.72073 + 16.3016i −0.181769 + 0.796384i 0.799019 + 0.601306i \(0.205353\pi\)
−0.980788 + 0.195077i \(0.937504\pi\)
\(420\) 0.830735 0.400061i 0.0405357 0.0195210i
\(421\) 20.8550 10.0432i 1.01641 0.489478i 0.149935 0.988696i \(-0.452094\pi\)
0.866476 + 0.499218i \(0.166379\pi\)
\(422\) 2.87946 12.6158i 0.140170 0.614125i
\(423\) −8.54106 −0.415280
\(424\) 0.368329 1.61375i 0.0178876 0.0783709i
\(425\) 9.42167 + 11.8144i 0.457018 + 0.573083i
\(426\) 3.56634 + 15.6252i 0.172790 + 0.757042i
\(427\) −0.325749 1.42720i −0.0157641 0.0690671i
\(428\) −13.5472 + 16.9876i −0.654827 + 0.821127i
\(429\) −7.42411 + 3.57527i −0.358440 + 0.172615i
\(430\) 5.10962 + 2.46066i 0.246408 + 0.118664i
\(431\) 23.4128 + 29.3588i 1.12776 + 1.41416i 0.897490 + 0.441035i \(0.145389\pi\)
0.230267 + 0.973127i \(0.426040\pi\)
\(432\) 2.58572 3.24240i 0.124406 0.156000i
\(433\) −15.4657 7.44790i −0.743235 0.357923i 0.0236390 0.999721i \(-0.492475\pi\)
−0.766874 + 0.641797i \(0.778189\pi\)
\(434\) 7.79205 0.374030
\(435\) 0.629467 + 6.53435i 0.0301806 + 0.313298i
\(436\) 28.6182 1.37056
\(437\) −14.5270 6.99581i −0.694918 0.334655i
\(438\) 10.8144 13.5608i 0.516730 0.647959i
\(439\) 3.30350 + 4.14245i 0.157667 + 0.197709i 0.854390 0.519632i \(-0.173931\pi\)
−0.696723 + 0.717340i \(0.745359\pi\)
\(440\) 0.415120 + 0.199911i 0.0197901 + 0.00953040i
\(441\) 6.16746 2.97009i 0.293689 0.141433i
\(442\) 17.5484 22.0050i 0.834694 1.04667i
\(443\) −3.07345 13.4656i −0.146024 0.639772i −0.993966 0.109684i \(-0.965016\pi\)
0.847943 0.530088i \(-0.177841\pi\)
\(444\) 1.56194 + 6.84331i 0.0741265 + 0.324769i
\(445\) 7.91361 + 9.92336i 0.375141 + 0.470412i
\(446\) −5.38456 + 23.5913i −0.254966 + 1.11708i
\(447\) −7.98689 −0.377767
\(448\) 0.645479 2.82803i 0.0304960 0.133612i
\(449\) −15.5953 + 7.51031i −0.735989 + 0.354433i −0.764036 0.645173i \(-0.776785\pi\)
0.0280478 + 0.999607i \(0.491071\pi\)
\(450\) −6.27115 + 3.02003i −0.295625 + 0.142365i
\(451\) −4.33953 + 19.0127i −0.204340 + 0.895273i
\(452\) −0.0336923 −0.00158475
\(453\) −4.51793 + 19.7943i −0.212271 + 0.930019i
\(454\) 17.8706 + 22.4090i 0.838707 + 1.05171i
\(455\) −0.352461 1.54423i −0.0165236 0.0723948i
\(456\) 0.181149 + 0.793666i 0.00848309 + 0.0371668i
\(457\) −12.7243 + 15.9558i −0.595219 + 0.746381i −0.984624 0.174686i \(-0.944109\pi\)
0.389406 + 0.921066i \(0.372680\pi\)
\(458\) 18.5946 8.95468i 0.868868 0.418425i
\(459\) −3.87442 1.86582i −0.180842 0.0870891i
\(460\) 4.38856 + 5.50308i 0.204618 + 0.256583i
\(461\) 10.5622 13.2446i 0.491931 0.616861i −0.472457 0.881354i \(-0.656633\pi\)
0.964388 + 0.264492i \(0.0852043\pi\)
\(462\) 1.75009 + 0.842797i 0.0814213 + 0.0392105i
\(463\) 26.1995 1.21759 0.608796 0.793327i \(-0.291653\pi\)
0.608796 + 0.793327i \(0.291653\pi\)
\(464\) 18.7156 + 12.1861i 0.868849 + 0.565726i
\(465\) 12.1947 0.565515
\(466\) −33.1216 15.9505i −1.53433 0.738893i
\(467\) 17.6788 22.1685i 0.818077 1.02584i −0.181026 0.983478i \(-0.557942\pi\)
0.999103 0.0423574i \(-0.0134868\pi\)
\(468\) 3.96272 + 4.96910i 0.183177 + 0.229697i
\(469\) −1.82348 0.878143i −0.0842006 0.0405489i
\(470\) −18.5809 + 8.94809i −0.857073 + 0.412745i
\(471\) 2.55000 3.19760i 0.117498 0.147338i
\(472\) −0.346877 1.51977i −0.0159663 0.0699530i
\(473\) 1.30336 + 5.71038i 0.0599284 + 0.262563i
\(474\) 9.01454 + 11.3039i 0.414051 + 0.519204i
\(475\) 4.19993 18.4011i 0.192706 0.844300i
\(476\) −3.25267 −0.149086
\(477\) 2.43019 10.6474i 0.111271 0.487509i
\(478\) −42.5356 + 20.4841i −1.94553 + 0.936919i
\(479\) −30.3344 + 14.6083i −1.38601 + 0.667469i −0.970273 0.242014i \(-0.922192\pi\)
−0.415741 + 0.909483i \(0.636478\pi\)
\(480\) 2.14605 9.40246i 0.0979534 0.429162i
\(481\) 12.0582 0.549806
\(482\) 8.04666 35.2547i 0.366515 1.60581i
\(483\) −0.736003 0.922918i −0.0334893 0.0419942i
\(484\) 2.04636 + 8.96569i 0.0930164 + 0.407531i
\(485\) 4.39488 + 19.2552i 0.199561 + 0.874336i
\(486\) 1.23500 1.54863i 0.0560205 0.0702475i
\(487\) 20.9826 10.1047i 0.950814 0.457888i 0.106843 0.994276i \(-0.465926\pi\)
0.843971 + 0.536388i \(0.180212\pi\)
\(488\) −0.508351 0.244809i −0.0230120 0.0110820i
\(489\) −12.0194 15.0718i −0.543534 0.681570i
\(490\) 10.3056 12.9228i 0.465557 0.583791i
\(491\) 13.3643 + 6.43593i 0.603124 + 0.290449i 0.710420 0.703778i \(-0.248505\pi\)
−0.107296 + 0.994227i \(0.534219\pi\)
\(492\) 15.0418 0.678139
\(493\) 8.00082 21.7317i 0.360339 0.978747i
\(494\) −35.1545 −1.58168
\(495\) 2.73891 + 1.31899i 0.123105 + 0.0592842i
\(496\) 25.8668 32.4360i 1.16145 1.45642i
\(497\) −1.98381 2.48762i −0.0889862 0.111585i
\(498\) 6.69194 + 3.22267i 0.299873 + 0.144411i
\(499\) −20.8748 + 10.0528i −0.934484 + 0.450024i −0.838220 0.545332i \(-0.816404\pi\)
−0.0962638 + 0.995356i \(0.530689\pi\)
\(500\) −12.4469 + 15.6079i −0.556642 + 0.698007i
\(501\) −0.722556 3.16572i −0.0322814 0.141434i
\(502\) −7.56410 33.1405i −0.337602 1.47913i
\(503\) −9.67873 12.1367i −0.431553 0.541151i 0.517742 0.855537i \(-0.326773\pi\)
−0.949295 + 0.314386i \(0.898201\pi\)
\(504\) −0.0132624 + 0.0581063i −0.000590754 + 0.00258826i
\(505\) −3.36965 −0.149948
\(506\) −3.29960 + 14.4565i −0.146685 + 0.642668i
\(507\) −1.87561 + 0.903244i −0.0832986 + 0.0401145i
\(508\) −17.7736 + 8.55930i −0.788575 + 0.379758i
\(509\) −7.19126 + 31.5070i −0.318747 + 1.39652i 0.521006 + 0.853553i \(0.325557\pi\)
−0.839753 + 0.542969i \(0.817300\pi\)
\(510\) −10.3835 −0.459787
\(511\) −0.766234 + 3.35709i −0.0338962 + 0.148509i
\(512\) −19.6732 24.6694i −0.869441 1.09024i
\(513\) 1.19520 + 5.23651i 0.0527693 + 0.231198i
\(514\) −0.724172 3.17281i −0.0319419 0.139946i
\(515\) 2.87762 3.60842i 0.126803 0.159006i
\(516\) 4.07035 1.96018i 0.179187 0.0862920i
\(517\) −19.1902 9.24152i −0.843985 0.406442i
\(518\) −1.77225 2.22234i −0.0778683 0.0976438i
\(519\) 5.00635 6.27776i 0.219754 0.275563i
\(520\) −0.550037 0.264884i −0.0241207 0.0116159i
\(521\) −0.674556 −0.0295529 −0.0147764 0.999891i \(-0.504704\pi\)
−0.0147764 + 0.999891i \(0.504704\pi\)
\(522\) 8.93894 + 5.82033i 0.391247 + 0.254749i
\(523\) −6.73109 −0.294330 −0.147165 0.989112i \(-0.547015\pi\)
−0.147165 + 0.989112i \(0.547015\pi\)
\(524\) −8.58301 4.13336i −0.374950 0.180567i
\(525\) 0.861561 1.08036i 0.0376016 0.0471509i
\(526\) −8.48964 10.6457i −0.370166 0.464173i
\(527\) −38.7585 18.6651i −1.68835 0.813066i
\(528\) 9.31797 4.48730i 0.405513 0.195285i
\(529\) −8.72177 + 10.9368i −0.379208 + 0.475511i
\(530\) −5.86794 25.7091i −0.254887 1.11673i
\(531\) −2.28865 10.0272i −0.0993190 0.435145i
\(532\) 2.53304 + 3.17633i 0.109821 + 0.137711i
\(533\) 5.74989 25.1919i 0.249056 1.09118i
\(534\) 20.6239 0.892485
\(535\) 3.06416 13.4250i 0.132475 0.580411i
\(536\) −0.702818 + 0.338459i −0.0303571 + 0.0146192i
\(537\) −9.51892 + 4.58407i −0.410772 + 0.197817i
\(538\) −1.77956 + 7.79678i −0.0767224 + 0.336143i
\(539\) 17.0709 0.735294
\(540\) 0.521757 2.28597i 0.0224529 0.0983724i
\(541\) −9.76755 12.2481i −0.419940 0.526588i 0.526194 0.850365i \(-0.323619\pi\)
−0.946133 + 0.323777i \(0.895047\pi\)
\(542\) 5.68522 + 24.9086i 0.244201 + 1.06991i
\(543\) −2.72454 11.9370i −0.116921 0.512265i
\(544\) −21.2122 + 26.5993i −0.909466 + 1.14043i
\(545\) −16.3408 + 7.86931i −0.699963 + 0.337084i
\(546\) −2.31887 1.11671i −0.0992386 0.0477908i
\(547\) −8.06654 10.1151i −0.344901 0.432492i 0.578881 0.815412i \(-0.303490\pi\)
−0.923781 + 0.382921i \(0.874918\pi\)
\(548\) −16.2727 + 20.4053i −0.695136 + 0.871673i
\(549\) −3.35403 1.61522i −0.143147 0.0689358i
\(550\) −17.3579 −0.740142
\(551\) −27.4524 + 9.11068i −1.16951 + 0.388128i
\(552\) −0.454979 −0.0193652
\(553\) −2.58609 1.24539i −0.109972 0.0529595i
\(554\) 3.95535 4.95985i 0.168047 0.210724i
\(555\) −2.77360 3.47799i −0.117733 0.147632i
\(556\) −28.5466 13.7473i −1.21064 0.583016i
\(557\) −8.78368 + 4.23000i −0.372177 + 0.179231i −0.610616 0.791926i \(-0.709078\pi\)
0.238440 + 0.971157i \(0.423364\pi\)
\(558\) 12.3545 15.4921i 0.523009 0.655832i
\(559\) −1.72695 7.56628i −0.0730424 0.320019i
\(560\) 0.442373 + 1.93816i 0.0186937 + 0.0819022i
\(561\) −6.68628 8.38434i −0.282295 0.353987i
\(562\) 8.47832 37.1459i 0.357636 1.56691i
\(563\) 39.5811 1.66814 0.834072 0.551656i \(-0.186004\pi\)
0.834072 + 0.551656i \(0.186004\pi\)
\(564\) −3.65570 + 16.0167i −0.153933 + 0.674424i
\(565\) 0.0192381 0.00926458i 0.000809353 0.000389764i
\(566\) 50.3909 24.2670i 2.11809 1.02002i
\(567\) −0.0875036 + 0.383378i −0.00367480 + 0.0161004i
\(568\) −1.22634 −0.0514563
\(569\) 6.44938 28.2566i 0.270372 1.18458i −0.639203 0.769038i \(-0.720736\pi\)
0.909575 0.415540i \(-0.136407\pi\)
\(570\) 8.08619 + 10.1398i 0.338693 + 0.424708i
\(571\) 6.72499 + 29.4641i 0.281432 + 1.23303i 0.895958 + 0.444138i \(0.146490\pi\)
−0.614526 + 0.788897i \(0.710653\pi\)
\(572\) 3.52691 + 15.4524i 0.147467 + 0.646097i
\(573\) −4.23482 + 5.31030i −0.176912 + 0.221841i
\(574\) −5.48799 + 2.64288i −0.229064 + 0.110312i
\(575\) 9.50401 + 4.57689i 0.396344 + 0.190869i
\(576\) −4.59923 5.76726i −0.191635 0.240302i
\(577\) −16.1799 + 20.2889i −0.673577 + 0.844639i −0.994745 0.102383i \(-0.967353\pi\)
0.321168 + 0.947022i \(0.395925\pi\)
\(578\) 2.66340 + 1.28262i 0.110783 + 0.0533501i
\(579\) 24.4529 1.01623
\(580\) 12.5230 + 1.61639i 0.519990 + 0.0671170i
\(581\) −1.47456 −0.0611749
\(582\) 28.9143 + 13.9244i 1.19854 + 0.577185i
\(583\) 16.9808 21.2932i 0.703271 0.881874i
\(584\) 0.827487 + 1.03764i 0.0342416 + 0.0429377i
\(585\) −3.62907 1.74767i −0.150044 0.0722572i
\(586\) −59.4714 + 28.6399i −2.45674 + 1.18310i
\(587\) 0.483492 0.606280i 0.0199559 0.0250239i −0.771753 0.635922i \(-0.780620\pi\)
0.791709 + 0.610898i \(0.209191\pi\)
\(588\) −2.92992 12.8368i −0.120828 0.529381i
\(589\) 11.9564 + 52.3845i 0.492656 + 2.15847i
\(590\) −15.4840 19.4163i −0.637466 0.799358i
\(591\) −1.67419 + 7.33512i −0.0688671 + 0.301727i
\(592\) −15.1342 −0.622010
\(593\) 6.10600 26.7521i 0.250743 1.09858i −0.680088 0.733130i \(-0.738058\pi\)
0.930832 0.365449i \(-0.119084\pi\)
\(594\) 4.45045 2.14323i 0.182604 0.0879376i
\(595\) 1.85725 0.894406i 0.0761400 0.0366671i
\(596\) −3.41851 + 14.9775i −0.140028 + 0.613501i
\(597\) 23.0582 0.943708
\(598\) 4.37198 19.1549i 0.178784 0.783302i
\(599\) 26.9705 + 33.8200i 1.10199 + 1.38185i 0.916896 + 0.399125i \(0.130686\pi\)
0.185090 + 0.982722i \(0.440742\pi\)
\(600\) −0.118514 0.519242i −0.00483830 0.0211980i
\(601\) 7.35145 + 32.2088i 0.299872 + 1.31382i 0.870318 + 0.492490i \(0.163913\pi\)
−0.570447 + 0.821335i \(0.693230\pi\)
\(602\) −1.14065 + 1.43033i −0.0464896 + 0.0582961i
\(603\) −4.63710 + 2.23311i −0.188837 + 0.0909393i
\(604\) 35.1857 + 16.9446i 1.43169 + 0.689464i
\(605\) −3.63381 4.55665i −0.147735 0.185254i
\(606\) −3.41382 + 4.28079i −0.138677 + 0.173895i
\(607\) 15.8783 + 7.64658i 0.644480 + 0.310365i 0.727423 0.686189i \(-0.240718\pi\)
−0.0829433 + 0.996554i \(0.526432\pi\)
\(608\) 42.4942 1.72337
\(609\) −2.10023 0.271084i −0.0851055 0.0109849i
\(610\) −8.98883 −0.363947
\(611\) 25.4271 + 12.2451i 1.02867 + 0.495382i
\(612\) −5.15721 + 6.46693i −0.208468 + 0.261410i
\(613\) 23.7282 + 29.7542i 0.958371 + 1.20176i 0.979390 + 0.201980i \(0.0647377\pi\)
−0.0210185 + 0.999779i \(0.506691\pi\)
\(614\) −1.67766 0.807917i −0.0677048 0.0326049i
\(615\) −8.58879 + 4.13614i −0.346334 + 0.166785i
\(616\) −0.0926700 + 0.116204i −0.00373378 + 0.00468201i
\(617\) 1.14817 + 5.03046i 0.0462235 + 0.202519i 0.992767 0.120058i \(-0.0383081\pi\)
−0.946543 + 0.322577i \(0.895451\pi\)
\(618\) −1.66879 7.31143i −0.0671284 0.294109i
\(619\) −18.4979 23.1956i −0.743494 0.932312i 0.255915 0.966699i \(-0.417623\pi\)
−0.999409 + 0.0343876i \(0.989052\pi\)
\(620\) 5.21951 22.8682i 0.209620 0.918407i
\(621\) −3.00189 −0.120462
\(622\) 3.85766 16.9015i 0.154678 0.677688i
\(623\) −3.68893 + 1.77650i −0.147794 + 0.0711738i
\(624\) −12.3464 + 5.94569i −0.494250 + 0.238018i
\(625\) −1.09440 + 4.79488i −0.0437760 + 0.191795i
\(626\) 65.2414 2.60757
\(627\) −2.98057 + 13.0587i −0.119032 + 0.521515i
\(628\) −4.90488 6.15053i −0.195726 0.245433i
\(629\) 3.49199 + 15.2994i 0.139235 + 0.610028i
\(630\) 0.211286 + 0.925705i 0.00841784 + 0.0368810i
\(631\) 6.21623 7.79490i 0.247464 0.310310i −0.642550 0.766244i \(-0.722123\pi\)
0.890014 + 0.455934i \(0.150695\pi\)
\(632\) −0.996745 + 0.480007i −0.0396484 + 0.0190937i
\(633\) 5.88592 + 2.83451i 0.233945 + 0.112662i
\(634\) 28.9713 + 36.3289i 1.15060 + 1.44281i
\(635\) 7.79499 9.77461i 0.309335 0.387894i
\(636\) −18.9264 9.11446i −0.750479 0.361412i
\(637\) −22.6190 −0.896196
\(638\) 13.7865 + 22.7493i 0.545814 + 0.900653i
\(639\) −8.09127 −0.320086
\(640\) 1.33072 + 0.640842i 0.0526014 + 0.0253315i
\(641\) 13.9528 17.4963i 0.551104 0.691063i −0.425781 0.904826i \(-0.640001\pi\)
0.976886 + 0.213763i \(0.0685721\pi\)
\(642\) −13.9507 17.4936i −0.550590 0.690418i
\(643\) 5.33870 + 2.57098i 0.210538 + 0.101390i 0.536181 0.844103i \(-0.319866\pi\)
−0.325643 + 0.945493i \(0.605581\pi\)
\(644\) −2.04573 + 0.985171i −0.0806130 + 0.0388212i
\(645\) −1.78514 + 2.23850i −0.0702898 + 0.0881407i
\(646\) −10.1806 44.6041i −0.400550 1.75492i
\(647\) −3.42464 15.0043i −0.134636 0.589881i −0.996562 0.0828464i \(-0.973599\pi\)
0.861926 0.507034i \(-0.169258\pi\)
\(648\) 0.0944986 + 0.118497i 0.00371226 + 0.00465502i
\(649\) 5.70740 25.0057i 0.224035 0.981561i
\(650\) 22.9993 0.902105
\(651\) −0.875360 + 3.83520i −0.0343081 + 0.150313i
\(652\) −33.4080 + 16.0884i −1.30836 + 0.630071i
\(653\) −30.2207 + 14.5535i −1.18263 + 0.569523i −0.918675 0.395013i \(-0.870740\pi\)
−0.263951 + 0.964536i \(0.585026\pi\)
\(654\) −6.55784 + 28.7318i −0.256432 + 1.12350i
\(655\) 6.03741 0.235901
\(656\) −7.21667 + 31.6183i −0.281763 + 1.23449i
\(657\) 5.45965 + 6.84619i 0.213001 + 0.267095i
\(658\) −1.48038 6.48597i −0.0577112 0.252849i
\(659\) −2.27680 9.97530i −0.0886914 0.388582i 0.911026 0.412349i \(-0.135291\pi\)
−0.999718 + 0.0237662i \(0.992434\pi\)
\(660\) 3.64574 4.57161i 0.141910 0.177950i
\(661\) −12.0033 + 5.78051i −0.466876 + 0.224836i −0.652505 0.757784i \(-0.726282\pi\)
0.185629 + 0.982620i \(0.440568\pi\)
\(662\) −47.1556 22.7089i −1.83275 0.882607i
\(663\) 8.85936 + 11.1093i 0.344069 + 0.431449i
\(664\) −0.354349 + 0.444340i −0.0137514 + 0.0172437i
\(665\) −2.31976 1.11714i −0.0899566 0.0433208i
\(666\) −7.22839 −0.280094
\(667\) −1.55010 16.0912i −0.0600199 0.623054i
\(668\) −6.24581 −0.241658
\(669\) −11.0066 5.30050i −0.425539 0.204929i
\(670\) −7.74840 + 9.71618i −0.299347 + 0.375369i
\(671\) −5.78823 7.25821i −0.223452 0.280200i
\(672\) 2.80301 + 1.34986i 0.108128 + 0.0520719i
\(673\) −34.2673 + 16.5022i −1.32091 + 0.636115i −0.955571 0.294761i \(-0.904760\pi\)
−0.365335 + 0.930876i \(0.619046\pi\)
\(674\) 7.93149 9.94577i 0.305510 0.383097i
\(675\) −0.781938 3.42590i −0.0300968 0.131863i
\(676\) 0.891027 + 3.90384i 0.0342703 + 0.150148i
\(677\) 5.49590 + 6.89164i 0.211224 + 0.264867i 0.876146 0.482046i \(-0.160106\pi\)
−0.664921 + 0.746913i \(0.731535\pi\)
\(678\) 0.00772057 0.0338260i 0.000296507 0.00129908i
\(679\) −6.37121 −0.244505
\(680\) 0.176796 0.774595i 0.00677983 0.0297044i
\(681\) −13.0371 + 6.27836i −0.499585 + 0.240587i
\(682\) 44.5210 21.4402i 1.70480 0.820988i
\(683\) 2.25860 9.89559i 0.0864231 0.378644i −0.913157 0.407607i \(-0.866363\pi\)
0.999580 + 0.0289628i \(0.00922044\pi\)
\(684\) 10.3314 0.395030
\(685\) 3.68063 16.1259i 0.140630 0.616139i
\(686\) 6.72395 + 8.43157i 0.256722 + 0.321919i
\(687\) 2.31852 + 10.1581i 0.0884572 + 0.387556i
\(688\) 2.16749 + 9.49640i 0.0826348 + 0.362047i
\(689\) −22.4996 + 28.2136i −0.857166 + 1.07485i
\(690\) −6.53056 + 3.14495i −0.248614 + 0.119726i
\(691\) 0.129926 + 0.0625692i 0.00494263 + 0.00238024i 0.436353 0.899775i \(-0.356270\pi\)
−0.431411 + 0.902156i \(0.641984\pi\)
\(692\) −9.62962 12.0752i −0.366063 0.459029i
\(693\) −0.611425 + 0.766702i −0.0232261 + 0.0291246i
\(694\) −9.46614 4.55865i −0.359330 0.173044i
\(695\) 20.0801 0.761681
\(696\) −0.586392 + 0.567734i −0.0222271 + 0.0215199i
\(697\) 33.6287 1.27378
\(698\) 23.9088 + 11.5139i 0.904963 + 0.435807i
\(699\) 11.5716 14.5104i 0.437679 0.548832i
\(700\) −1.65720 2.07806i −0.0626362 0.0785433i
\(701\) −43.4549 20.9268i −1.64127 0.790393i −0.999728 0.0233027i \(-0.992582\pi\)
−0.641539 0.767090i \(-0.721704\pi\)
\(702\) −5.89687 + 2.83979i −0.222563 + 0.107181i
\(703\) 12.2209 15.3246i 0.460921 0.577977i
\(704\) −4.09341 17.9344i −0.154276 0.675929i
\(705\) −2.31682 10.1506i −0.0872564 0.382295i
\(706\) 19.8723 + 24.9191i 0.747904 + 0.937842i
\(707\) 0.241881 1.05975i 0.00909686 0.0398559i
\(708\) −19.7832 −0.743499
\(709\) −2.34972 + 10.2948i −0.0882454 + 0.386629i −0.999693 0.0247883i \(-0.992109\pi\)
0.911447 + 0.411417i \(0.134966\pi\)
\(710\) −17.6024 + 8.47686i −0.660606 + 0.318131i
\(711\) −6.57640 + 3.16703i −0.246634 + 0.118773i
\(712\) −0.351158 + 1.53852i −0.0131602 + 0.0576586i
\(713\) −30.0301 −1.12463
\(714\) 0.745347 3.26558i 0.0278939 0.122211i
\(715\) −6.26288 7.85340i −0.234218 0.293700i
\(716\) 4.52207 + 19.8125i 0.168998 + 0.740427i
\(717\) −5.30368 23.2370i −0.198070 0.867800i
\(718\) 14.9271 18.7179i 0.557073 0.698547i
\(719\) 22.7910 10.9756i 0.849961 0.409320i 0.0423980 0.999101i \(-0.486500\pi\)
0.807563 + 0.589781i \(0.200786\pi\)
\(720\) 4.55483 + 2.19349i 0.169748 + 0.0817466i
\(721\) 0.928278 + 1.16402i 0.0345709 + 0.0433505i
\(722\) −12.1641 + 15.2533i −0.452702 + 0.567671i
\(723\) 16.4482 + 7.92104i 0.611715 + 0.294587i
\(724\) −23.5511 −0.875269
\(725\) 17.9602 5.96050i 0.667026 0.221368i
\(726\) −9.47019 −0.351472
\(727\) 44.2191 + 21.2948i 1.64000 + 0.789780i 0.999767 + 0.0215952i \(0.00687451\pi\)
0.640228 + 0.768185i \(0.278840\pi\)
\(728\) 0.122788 0.153971i 0.00455083 0.00570656i
\(729\) 0.623490 + 0.781831i 0.0230922 + 0.0289567i
\(730\) 19.0498 + 9.17391i 0.705065 + 0.339542i
\(731\) 9.09997 4.38232i 0.336575 0.162086i
\(732\) −4.46452 + 5.59834i −0.165014 + 0.206920i
\(733\) 0.756862 + 3.31603i 0.0279553 + 0.122480i 0.986980 0.160841i \(-0.0514207\pi\)
−0.959025 + 0.283322i \(0.908564\pi\)
\(734\) −3.22701 14.1385i −0.119111 0.521860i
\(735\) 5.20278 + 6.52408i 0.191907 + 0.240644i
\(736\) −5.28477 + 23.1541i −0.194799 + 0.853471i
\(737\) −12.8350 −0.472783
\(738\) −3.44683 + 15.1015i −0.126879 + 0.555895i
\(739\) −6.51194 + 3.13599i −0.239546 + 0.115359i −0.549806 0.835293i \(-0.685298\pi\)
0.310260 + 0.950652i \(0.399584\pi\)
\(740\) −7.70927 + 3.71259i −0.283398 + 0.136477i
\(741\) 3.94927 17.3029i 0.145080 0.635637i
\(742\) 8.50668 0.312290
\(743\) −4.95044 + 21.6893i −0.181614 + 0.795703i 0.799248 + 0.601001i \(0.205231\pi\)
−0.980862 + 0.194702i \(0.937626\pi\)
\(744\) 0.945336 + 1.18541i 0.0346577 + 0.0434594i
\(745\) −2.16650 9.49205i −0.0793743 0.347762i
\(746\) −3.64758 15.9811i −0.133548 0.585110i
\(747\) −2.33795 + 2.93170i −0.0855412 + 0.107265i
\(748\) −18.5846 + 8.94988i −0.679521 + 0.327240i
\(749\) 4.00217 + 1.92734i 0.146236 + 0.0704236i
\(750\) −12.8176 16.0728i −0.468034 0.586896i
\(751\) 16.0400 20.1135i 0.585308 0.733953i −0.397700 0.917515i \(-0.630192\pi\)
0.983008 + 0.183563i \(0.0587630\pi\)
\(752\) −31.9135 15.3687i −1.16377 0.560440i
\(753\) 17.1613 0.625393
\(754\) −18.2672 30.1429i −0.665253 1.09774i
\(755\) −24.7502 −0.900750
\(756\) 0.681480 + 0.328183i 0.0247852 + 0.0119359i
\(757\) −16.5778 + 20.7879i −0.602529 + 0.755548i −0.985770 0.168101i \(-0.946237\pi\)
0.383240 + 0.923649i \(0.374808\pi\)
\(758\) 4.76473 + 5.97478i 0.173063 + 0.217014i
\(759\) −6.74472 3.24808i −0.244818 0.117898i
\(760\) −0.894097 + 0.430575i −0.0324323 + 0.0156186i
\(761\) −5.12010 + 6.42041i −0.185604 + 0.232740i −0.865924 0.500175i \(-0.833269\pi\)
0.680321 + 0.732914i \(0.261840\pi\)
\(762\) −4.52047 19.8055i −0.163759 0.717476i
\(763\) −1.30191 5.70403i −0.0471322 0.206500i
\(764\) 8.14561 + 10.2143i 0.294698 + 0.369539i
\(765\) 1.16648 5.11068i 0.0421742