Properties

Label 87.2.g.b.16.1
Level $87$
Weight $2$
Character 87.16
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 16.1
Root \(1.29273 + 1.62103i\) of defining polynomial
Character \(\chi\) \(=\) 87.16
Dual form 87.2.g.b.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.86804 - 0.899602i) q^{2} +(-0.623490 + 0.781831i) q^{3} +(1.43332 + 1.79733i) q^{4} +(-1.70773 - 0.822397i) q^{5} +(1.86804 - 0.899602i) q^{6} +(-2.93833 + 3.68455i) q^{7} +(-0.137887 - 0.604122i) q^{8} +(-0.222521 - 0.974928i) q^{9} +O(q^{10})\) \(q+(-1.86804 - 0.899602i) q^{2} +(-0.623490 + 0.781831i) q^{3} +(1.43332 + 1.79733i) q^{4} +(-1.70773 - 0.822397i) q^{5} +(1.86804 - 0.899602i) q^{6} +(-2.93833 + 3.68455i) q^{7} +(-0.137887 - 0.604122i) q^{8} +(-0.222521 - 0.974928i) q^{9} +(2.45027 + 3.07255i) q^{10} +(-0.832232 + 3.64624i) q^{11} -2.29887 q^{12} +(0.250393 - 1.09704i) q^{13} +(8.80354 - 4.23956i) q^{14} +(1.70773 - 0.822397i) q^{15} +(0.737200 - 3.22989i) q^{16} -5.60261 q^{17} +(-0.461368 + 2.02139i) q^{18} +(-1.20592 - 1.51218i) q^{19} +(-0.969600 - 4.24810i) q^{20} +(-1.04868 - 4.59455i) q^{21} +(4.83481 - 6.06266i) q^{22} +(3.89751 - 1.87694i) q^{23} +(0.558293 + 0.268860i) q^{24} +(-0.877459 - 1.10030i) q^{25} +(-1.45465 + 1.82407i) q^{26} +(0.900969 + 0.433884i) q^{27} -10.8339 q^{28} +(3.82459 + 3.79111i) q^{29} -3.92993 q^{30} +(-0.874966 - 0.421361i) q^{31} +(-5.05543 + 6.33931i) q^{32} +(-2.33186 - 2.92406i) q^{33} +(10.4659 + 5.04011i) q^{34} +(8.04802 - 3.87572i) q^{35} +(1.43332 - 1.79733i) q^{36} +(2.21633 + 9.71037i) q^{37} +(0.892354 + 3.90966i) q^{38} +(0.701586 + 0.879761i) q^{39} +(-0.261356 + 1.14507i) q^{40} +1.59051 q^{41} +(-2.17430 + 9.52621i) q^{42} +(-4.08593 + 1.96768i) q^{43} +(-7.74634 + 3.73044i) q^{44} +(-0.421773 + 1.84791i) q^{45} -8.96921 q^{46} +(-1.30426 + 5.71432i) q^{47} +(2.06559 + 2.59017i) q^{48} +(-3.38446 - 14.8283i) q^{49} +(0.649300 + 2.84477i) q^{50} +(3.49317 - 4.38029i) q^{51} +(2.33064 - 1.12238i) q^{52} +(-4.64798 - 2.23835i) q^{53} +(-1.29273 - 1.62103i) q^{54} +(4.41989 - 5.54236i) q^{55} +(2.63107 + 1.26706i) q^{56} +1.93415 q^{57} +(-3.73401 - 10.5226i) q^{58} +5.71853 q^{59} +(3.92583 + 1.89058i) q^{60} +(-6.51069 + 8.16415i) q^{61} +(1.25542 + 1.57424i) q^{62} +(4.24601 + 2.04477i) q^{63} +(9.17690 - 4.41936i) q^{64} +(-1.32981 + 1.66753i) q^{65} +(1.72552 + 7.56002i) q^{66} +(0.883099 + 3.86911i) q^{67} +(-8.03032 - 10.0697i) q^{68} +(-0.962605 + 4.21745i) q^{69} -18.5206 q^{70} +(0.0665482 - 0.291567i) q^{71} +(-0.558293 + 0.268860i) q^{72} +(13.6108 - 6.55462i) q^{73} +(4.59527 - 20.1332i) q^{74} +1.40734 q^{75} +(0.989404 - 4.33486i) q^{76} +(-10.9894 - 13.7803i) q^{77} +(-0.519158 - 2.27458i) q^{78} +(3.07354 + 13.4661i) q^{79} +(-3.91519 + 4.90949i) q^{80} +(-0.900969 + 0.433884i) q^{81} +(-2.97115 - 1.43083i) q^{82} +(1.81951 + 2.28159i) q^{83} +(6.75482 - 8.47027i) q^{84} +(9.56772 + 4.60757i) q^{85} +9.40282 q^{86} +(-5.34860 + 0.626466i) q^{87} +2.31753 q^{88} +(-6.56353 - 3.16083i) q^{89} +(2.45027 - 3.07255i) q^{90} +(3.30637 + 4.14606i) q^{91} +(8.95985 + 4.31484i) q^{92} +(0.874966 - 0.421361i) q^{93} +(7.57701 - 9.50127i) q^{94} +(0.815772 + 3.57413i) q^{95} +(-1.80426 - 7.90500i) q^{96} +(-7.99029 - 10.0195i) q^{97} +(-7.01725 + 30.7446i) q^{98} +3.74001 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 2 q^{2} + 3 q^{3} - 6 q^{4} - 7 q^{5} + 2 q^{6} - 4 q^{7} - 3 q^{8} - 3 q^{9} + 6 q^{10} - 6 q^{11} - 22 q^{12} - 11 q^{13} - 2 q^{14} + 7 q^{15} + 18 q^{16} - 32 q^{17} - 2 q^{18} + 2 q^{19} + 51 q^{20} + 4 q^{21} + 20 q^{22} - 6 q^{23} - 4 q^{24} + 4 q^{25} - 3 q^{26} + 3 q^{27} - 48 q^{28} - 10 q^{29} + 8 q^{30} + 8 q^{31} + 55 q^{32} - 8 q^{33} + 6 q^{34} + 31 q^{35} - 6 q^{36} + 20 q^{37} - 20 q^{38} - 10 q^{39} - 59 q^{40} - 68 q^{41} - 19 q^{42} - 3 q^{43} - 10 q^{44} + 14 q^{45} - 12 q^{46} + 19 q^{47} + 24 q^{48} + 17 q^{49} + 23 q^{50} + 11 q^{51} - 4 q^{52} - q^{53} - 5 q^{54} + 3 q^{55} + 7 q^{56} - 2 q^{57} - 30 q^{58} + 20 q^{59} + 47 q^{60} + 24 q^{61} + 79 q^{62} + 3 q^{63} - 23 q^{64} + 6 q^{65} + 50 q^{66} - 14 q^{67} - 8 q^{68} - 8 q^{69} + 28 q^{70} - 28 q^{71} + 4 q^{72} + 43 q^{73} - 47 q^{74} - 18 q^{75} + 19 q^{76} + 26 q^{77} - 11 q^{78} + 9 q^{79} - 74 q^{80} - 3 q^{81} - 17 q^{82} + 8 q^{83} - 15 q^{84} - 21 q^{85} - 140 q^{86} - 11 q^{87} - 58 q^{88} - 6 q^{89} + 6 q^{90} - 15 q^{91} + 11 q^{92} - 8 q^{93} + 6 q^{94} - 16 q^{95} + 36 q^{96} - 81 q^{97} - 11 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.86804 0.899602i −1.32091 0.636115i −0.365335 0.930876i \(-0.619045\pi\)
−0.955571 + 0.294762i \(0.904760\pi\)
\(3\) −0.623490 + 0.781831i −0.359972 + 0.451391i
\(4\) 1.43332 + 1.79733i 0.716660 + 0.898663i
\(5\) −1.70773 0.822397i −0.763718 0.367787i 0.0111272 0.999938i \(-0.496458\pi\)
−0.774845 + 0.632151i \(0.782172\pi\)
\(6\) 1.86804 0.899602i 0.762625 0.367261i
\(7\) −2.93833 + 3.68455i −1.11058 + 1.39263i −0.199753 + 0.979846i \(0.564014\pi\)
−0.910830 + 0.412781i \(0.864558\pi\)
\(8\) −0.137887 0.604122i −0.0487504 0.213590i
\(9\) −0.222521 0.974928i −0.0741736 0.324976i
\(10\) 2.45027 + 3.07255i 0.774845 + 0.971624i
\(11\) −0.832232 + 3.64624i −0.250927 + 1.09938i 0.679722 + 0.733470i \(0.262101\pi\)
−0.930649 + 0.365914i \(0.880757\pi\)
\(12\) −2.29887 −0.663625
\(13\) 0.250393 1.09704i 0.0694465 0.304265i −0.928262 0.371928i \(-0.878697\pi\)
0.997708 + 0.0676624i \(0.0215541\pi\)
\(14\) 8.80354 4.23956i 2.35285 1.13307i
\(15\) 1.70773 0.822397i 0.440933 0.212342i
\(16\) 0.737200 3.22989i 0.184300 0.807472i
\(17\) −5.60261 −1.35883 −0.679416 0.733753i \(-0.737767\pi\)
−0.679416 + 0.733753i \(0.737767\pi\)
\(18\) −0.461368 + 2.02139i −0.108746 + 0.476445i
\(19\) −1.20592 1.51218i −0.276657 0.346917i 0.624018 0.781410i \(-0.285499\pi\)
−0.900675 + 0.434493i \(0.856928\pi\)
\(20\) −0.969600 4.24810i −0.216809 0.949903i
\(21\) −1.04868 4.59455i −0.228840 1.00261i
\(22\) 4.83481 6.06266i 1.03079 1.29256i
\(23\) 3.89751 1.87694i 0.812687 0.391369i 0.0190933 0.999818i \(-0.493922\pi\)
0.793593 + 0.608448i \(0.208208\pi\)
\(24\) 0.558293 + 0.268860i 0.113961 + 0.0548808i
\(25\) −0.877459 1.10030i −0.175492 0.220060i
\(26\) −1.45465 + 1.82407i −0.285280 + 0.357730i
\(27\) 0.900969 + 0.433884i 0.173392 + 0.0835010i
\(28\) −10.8339 −2.04741
\(29\) 3.82459 + 3.79111i 0.710208 + 0.703991i
\(30\) −3.92993 −0.717505
\(31\) −0.874966 0.421361i −0.157148 0.0756787i 0.353656 0.935375i \(-0.384938\pi\)
−0.510805 + 0.859697i \(0.670653\pi\)
\(32\) −5.05543 + 6.33931i −0.893683 + 1.12064i
\(33\) −2.33186 2.92406i −0.405925 0.509014i
\(34\) 10.4659 + 5.04011i 1.79489 + 0.864373i
\(35\) 8.04802 3.87572i 1.36036 0.655116i
\(36\) 1.43332 1.79733i 0.238887 0.299554i
\(37\) 2.21633 + 9.71037i 0.364362 + 1.59637i 0.741986 + 0.670416i \(0.233884\pi\)
−0.377624 + 0.925959i \(0.623259\pi\)
\(38\) 0.892354 + 3.90966i 0.144759 + 0.634230i
\(39\) 0.701586 + 0.879761i 0.112344 + 0.140874i
\(40\) −0.261356 + 1.14507i −0.0413239 + 0.181052i
\(41\) 1.59051 0.248397 0.124198 0.992257i \(-0.460364\pi\)
0.124198 + 0.992257i \(0.460364\pi\)
\(42\) −2.17430 + 9.52621i −0.335501 + 1.46993i
\(43\) −4.08593 + 1.96768i −0.623098 + 0.300068i −0.718667 0.695355i \(-0.755247\pi\)
0.0955686 + 0.995423i \(0.469533\pi\)
\(44\) −7.74634 + 3.73044i −1.16780 + 0.562385i
\(45\) −0.421773 + 1.84791i −0.0628743 + 0.275470i
\(46\) −8.96921 −1.32244
\(47\) −1.30426 + 5.71432i −0.190245 + 0.833519i 0.786238 + 0.617924i \(0.212026\pi\)
−0.976483 + 0.215595i \(0.930831\pi\)
\(48\) 2.06559 + 2.59017i 0.298142 + 0.373859i
\(49\) −3.38446 14.8283i −0.483495 2.11833i
\(50\) 0.649300 + 2.84477i 0.0918249 + 0.402311i
\(51\) 3.49317 4.38029i 0.489141 0.613364i
\(52\) 2.33064 1.12238i 0.323201 0.155646i
\(53\) −4.64798 2.23835i −0.638449 0.307461i 0.0865120 0.996251i \(-0.472428\pi\)
−0.724961 + 0.688790i \(0.758142\pi\)
\(54\) −1.29273 1.62103i −0.175918 0.220594i
\(55\) 4.41989 5.54236i 0.595977 0.747332i
\(56\) 2.63107 + 1.26706i 0.351592 + 0.169318i
\(57\) 1.93415 0.256184
\(58\) −3.73401 10.5226i −0.490299 1.38168i
\(59\) 5.71853 0.744490 0.372245 0.928135i \(-0.378588\pi\)
0.372245 + 0.928135i \(0.378588\pi\)
\(60\) 3.92583 + 1.89058i 0.506823 + 0.244073i
\(61\) −6.51069 + 8.16415i −0.833608 + 1.04531i 0.164652 + 0.986352i \(0.447350\pi\)
−0.998260 + 0.0589600i \(0.981222\pi\)
\(62\) 1.25542 + 1.57424i 0.159438 + 0.199929i
\(63\) 4.24601 + 2.04477i 0.534946 + 0.257617i
\(64\) 9.17690 4.41936i 1.14711 0.552420i
\(65\) −1.32981 + 1.66753i −0.164942 + 0.206831i
\(66\) 1.72552 + 7.56002i 0.212397 + 0.930574i
\(67\) 0.883099 + 3.86911i 0.107888 + 0.472687i 0.999791 + 0.0204600i \(0.00651307\pi\)
−0.891903 + 0.452227i \(0.850630\pi\)
\(68\) −8.03032 10.0697i −0.973820 1.22113i
\(69\) −0.962605 + 4.21745i −0.115884 + 0.507721i
\(70\) −18.5206 −2.21364
\(71\) 0.0665482 0.291567i 0.00789782 0.0346026i −0.970825 0.239787i \(-0.922922\pi\)
0.978723 + 0.205185i \(0.0657795\pi\)
\(72\) −0.558293 + 0.268860i −0.0657955 + 0.0316854i
\(73\) 13.6108 6.55462i 1.59302 0.767160i 0.593728 0.804666i \(-0.297656\pi\)
0.999296 + 0.0375058i \(0.0119413\pi\)
\(74\) 4.59527 20.1332i 0.534189 2.34044i
\(75\) 1.40734 0.162505
\(76\) 0.989404 4.33486i 0.113492 0.497243i
\(77\) −10.9894 13.7803i −1.25236 1.57041i
\(78\) −0.519158 2.27458i −0.0587830 0.257545i
\(79\) 3.07354 + 13.4661i 0.345801 + 1.51505i 0.786609 + 0.617451i \(0.211835\pi\)
−0.440809 + 0.897601i \(0.645308\pi\)
\(80\) −3.91519 + 4.90949i −0.437731 + 0.548897i
\(81\) −0.900969 + 0.433884i −0.100108 + 0.0482093i
\(82\) −2.97115 1.43083i −0.328108 0.158009i
\(83\) 1.81951 + 2.28159i 0.199717 + 0.250437i 0.871597 0.490223i \(-0.163085\pi\)
−0.671880 + 0.740660i \(0.734513\pi\)
\(84\) 6.75482 8.47027i 0.737011 0.924183i
\(85\) 9.56772 + 4.60757i 1.03776 + 0.499761i
\(86\) 9.40282 1.01393
\(87\) −5.34860 + 0.626466i −0.573430 + 0.0671642i
\(88\) 2.31753 0.247050
\(89\) −6.56353 3.16083i −0.695732 0.335047i 0.0523724 0.998628i \(-0.483322\pi\)
−0.748105 + 0.663581i \(0.769036\pi\)
\(90\) 2.45027 3.07255i 0.258282 0.323875i
\(91\) 3.30637 + 4.14606i 0.346602 + 0.434625i
\(92\) 8.95985 + 4.31484i 0.934129 + 0.449853i
\(93\) 0.874966 0.421361i 0.0907297 0.0436931i
\(94\) 7.57701 9.50127i 0.781509 0.979981i
\(95\) 0.815772 + 3.57413i 0.0836964 + 0.366698i
\(96\) −1.80426 7.90500i −0.184147 0.806800i
\(97\) −7.99029 10.0195i −0.811291 1.01733i −0.999381 0.0351751i \(-0.988801\pi\)
0.188090 0.982152i \(-0.439770\pi\)
\(98\) −7.01725 + 30.7446i −0.708849 + 3.10567i
\(99\) 3.74001 0.375886
\(100\) 0.719916 3.15416i 0.0719916 0.315416i
\(101\) 8.51665 4.10140i 0.847438 0.408105i 0.0408123 0.999167i \(-0.487005\pi\)
0.806626 + 0.591062i \(0.201291\pi\)
\(102\) −10.4659 + 5.04011i −1.03628 + 0.499046i
\(103\) −1.23571 + 5.41401i −0.121758 + 0.533458i 0.876852 + 0.480760i \(0.159639\pi\)
−0.998611 + 0.0526978i \(0.983218\pi\)
\(104\) −0.697275 −0.0683734
\(105\) −1.98770 + 8.70867i −0.193979 + 0.849879i
\(106\) 6.66900 + 8.36266i 0.647750 + 0.812253i
\(107\) −1.40124 6.13923i −0.135463 0.593502i −0.996399 0.0847887i \(-0.972978\pi\)
0.860936 0.508713i \(-0.169879\pi\)
\(108\) 0.511546 + 2.24123i 0.0492235 + 0.215662i
\(109\) −10.2240 + 12.8205i −0.979284 + 1.22798i −0.00562210 + 0.999984i \(0.501790\pi\)
−0.973661 + 0.227999i \(0.926782\pi\)
\(110\) −13.2424 + 6.37723i −1.26262 + 0.608045i
\(111\) −8.97373 4.32152i −0.851749 0.410181i
\(112\) 9.73453 + 12.2067i 0.919826 + 1.15343i
\(113\) 1.71259 2.14752i 0.161107 0.202022i −0.694725 0.719275i \(-0.744474\pi\)
0.855832 + 0.517253i \(0.173046\pi\)
\(114\) −3.61307 1.73996i −0.338395 0.162962i
\(115\) −8.19947 −0.764604
\(116\) −1.33200 + 12.3079i −0.123673 + 1.14276i
\(117\) −1.12526 −0.104030
\(118\) −10.6825 5.14440i −0.983400 0.473581i
\(119\) 16.4623 20.6431i 1.50910 1.89235i
\(120\) −0.732302 0.918278i −0.0668497 0.0838269i
\(121\) −2.69183 1.29632i −0.244712 0.117847i
\(122\) 19.5067 9.39394i 1.76606 0.850488i
\(123\) −0.991669 + 1.24351i −0.0894158 + 0.112124i
\(124\) −0.496782 2.17654i −0.0446123 0.195459i
\(125\) 2.70244 + 11.8402i 0.241714 + 1.05902i
\(126\) −6.09224 7.63943i −0.542740 0.680574i
\(127\) 2.76187 12.1005i 0.245076 1.07375i −0.691250 0.722616i \(-0.742940\pi\)
0.936326 0.351132i \(-0.114203\pi\)
\(128\) −4.90192 −0.433273
\(129\) 1.00914 4.42134i 0.0888499 0.389277i
\(130\) 3.98425 1.91871i 0.349442 0.168282i
\(131\) −17.0367 + 8.20444i −1.48850 + 0.716825i −0.988783 0.149362i \(-0.952278\pi\)
−0.499720 + 0.866187i \(0.666564\pi\)
\(132\) 1.91319 8.38222i 0.166522 0.729579i
\(133\) 9.11507 0.790377
\(134\) 1.83099 8.02209i 0.158173 0.693003i
\(135\) −1.18178 1.48191i −0.101712 0.127542i
\(136\) 0.772527 + 3.38466i 0.0662436 + 0.290232i
\(137\) −1.96363 8.60324i −0.167764 0.735024i −0.986888 0.161407i \(-0.948397\pi\)
0.819123 0.573617i \(-0.194460\pi\)
\(138\) 5.59221 7.01241i 0.476041 0.596936i
\(139\) −9.32088 + 4.48870i −0.790587 + 0.380727i −0.785187 0.619259i \(-0.787433\pi\)
−0.00539998 + 0.999985i \(0.501719\pi\)
\(140\) 18.5013 + 8.90976i 1.56365 + 0.753012i
\(141\) −3.65444 4.58253i −0.307760 0.385918i
\(142\) −0.386609 + 0.484792i −0.0324435 + 0.0406829i
\(143\) 3.79170 + 1.82599i 0.317078 + 0.152697i
\(144\) −3.31295 −0.276079
\(145\) −3.41355 9.61951i −0.283480 0.798857i
\(146\) −31.3221 −2.59224
\(147\) 13.7034 + 6.59921i 1.13024 + 0.544294i
\(148\) −14.2760 + 17.9015i −1.17348 + 1.47150i
\(149\) 7.54443 + 9.46042i 0.618064 + 0.775028i 0.988071 0.154001i \(-0.0492160\pi\)
−0.370007 + 0.929029i \(0.620645\pi\)
\(150\) −2.62896 1.26604i −0.214654 0.103372i
\(151\) −8.59578 + 4.13951i −0.699514 + 0.336868i −0.749613 0.661876i \(-0.769761\pi\)
0.0500991 + 0.998744i \(0.484046\pi\)
\(152\) −0.747259 + 0.937033i −0.0606107 + 0.0760034i
\(153\) 1.24670 + 5.46214i 0.100790 + 0.441588i
\(154\) 8.13190 + 35.6282i 0.655287 + 2.87100i
\(155\) 1.14767 + 1.43914i 0.0921835 + 0.115594i
\(156\) −0.575620 + 2.52196i −0.0460865 + 0.201918i
\(157\) 0.889508 0.0709905 0.0354952 0.999370i \(-0.488699\pi\)
0.0354952 + 0.999370i \(0.488699\pi\)
\(158\) 6.37260 27.9202i 0.506977 2.22121i
\(159\) 4.64798 2.23835i 0.368609 0.177513i
\(160\) 13.8467 6.66823i 1.09468 0.527170i
\(161\) −4.53648 + 19.8756i −0.357525 + 1.56642i
\(162\) 2.07337 0.162899
\(163\) −1.71620 + 7.51914i −0.134423 + 0.588945i 0.862181 + 0.506600i \(0.169098\pi\)
−0.996604 + 0.0823446i \(0.973759\pi\)
\(164\) 2.27971 + 2.85867i 0.178016 + 0.223225i
\(165\) 1.57744 + 6.91121i 0.122803 + 0.538037i
\(166\) −1.34639 5.89894i −0.104500 0.457846i
\(167\) 5.23031 6.55860i 0.404734 0.507520i −0.537137 0.843495i \(-0.680494\pi\)
0.941871 + 0.335975i \(0.109066\pi\)
\(168\) −2.63107 + 1.26706i −0.202992 + 0.0977557i
\(169\) 10.5718 + 5.09110i 0.813214 + 0.391623i
\(170\) −13.7279 17.2143i −1.05288 1.32027i
\(171\) −1.20592 + 1.51218i −0.0922191 + 0.115639i
\(172\) −9.39300 4.52343i −0.716210 0.344908i
\(173\) −3.52185 −0.267761 −0.133881 0.990997i \(-0.542744\pi\)
−0.133881 + 0.990997i \(0.542744\pi\)
\(174\) 10.5550 + 3.64135i 0.800171 + 0.276050i
\(175\) 6.63236 0.501360
\(176\) 11.1634 + 5.37603i 0.841475 + 0.405233i
\(177\) −3.56545 + 4.47093i −0.267995 + 0.336056i
\(178\) 9.41746 + 11.8091i 0.705868 + 0.885131i
\(179\) −6.42875 3.09592i −0.480507 0.231400i 0.177919 0.984045i \(-0.443063\pi\)
−0.658427 + 0.752645i \(0.728778\pi\)
\(180\) −3.92583 + 1.89058i −0.292614 + 0.140916i
\(181\) 13.1435 16.4814i 0.976949 1.22505i 0.00260345 0.999997i \(-0.499171\pi\)
0.974345 0.225058i \(-0.0722573\pi\)
\(182\) −2.44664 10.7194i −0.181357 0.794577i
\(183\) −2.32364 10.1805i −0.171768 0.752566i
\(184\) −1.67132 2.09577i −0.123211 0.154502i
\(185\) 4.20090 18.4053i 0.308856 1.35319i
\(186\) −2.01353 −0.147639
\(187\) 4.66267 20.4285i 0.340968 1.49388i
\(188\) −12.1399 + 5.84627i −0.885393 + 0.426383i
\(189\) −4.24601 + 2.04477i −0.308851 + 0.148735i
\(190\) 1.69140 7.41049i 0.122707 0.537614i
\(191\) −13.8150 −0.999620 −0.499810 0.866135i \(-0.666597\pi\)
−0.499810 + 0.866135i \(0.666597\pi\)
\(192\) −2.26651 + 9.93021i −0.163571 + 0.716651i
\(193\) 2.63922 + 3.30948i 0.189975 + 0.238222i 0.867693 0.497101i \(-0.165602\pi\)
−0.677717 + 0.735322i \(0.737031\pi\)
\(194\) 5.91263 + 25.9049i 0.424502 + 1.85987i
\(195\) −0.474603 2.07937i −0.0339870 0.148907i
\(196\) 21.8003 27.3367i 1.55716 1.95262i
\(197\) −4.15777 + 2.00228i −0.296229 + 0.142656i −0.576095 0.817383i \(-0.695424\pi\)
0.279866 + 0.960039i \(0.409710\pi\)
\(198\) −6.98651 3.36452i −0.496509 0.239106i
\(199\) −2.38547 2.99128i −0.169101 0.212046i 0.690059 0.723753i \(-0.257585\pi\)
−0.859160 + 0.511707i \(0.829013\pi\)
\(200\) −0.543725 + 0.681810i −0.0384472 + 0.0482112i
\(201\) −3.57559 1.72191i −0.252203 0.121455i
\(202\) −19.5991 −1.37899
\(203\) −25.2064 + 2.95235i −1.76914 + 0.207214i
\(204\) 12.8796 0.901755
\(205\) −2.71616 1.30803i −0.189705 0.0913571i
\(206\) 7.17881 9.00194i 0.500171 0.627195i
\(207\) −2.69716 3.38213i −0.187466 0.235074i
\(208\) −3.35874 1.61748i −0.232886 0.112152i
\(209\) 6.51737 3.13860i 0.450816 0.217102i
\(210\) 11.5474 14.4800i 0.796848 0.999216i
\(211\) 2.22081 + 9.73000i 0.152887 + 0.669841i 0.992038 + 0.125942i \(0.0401953\pi\)
−0.839151 + 0.543899i \(0.816948\pi\)
\(212\) −2.63900 11.5622i −0.181247 0.794095i
\(213\) 0.186464 + 0.233818i 0.0127763 + 0.0160210i
\(214\) −2.90529 + 12.7289i −0.198601 + 0.870130i
\(215\) 8.59586 0.586233
\(216\) 0.137887 0.604122i 0.00938202 0.0411053i
\(217\) 4.12346 1.98575i 0.279919 0.134802i
\(218\) 30.6323 14.7517i 2.07468 0.999113i
\(219\) −3.36159 + 14.7281i −0.227155 + 0.995232i
\(220\) 16.2965 1.09871
\(221\) −1.40285 + 6.14630i −0.0943662 + 0.413445i
\(222\) 12.8757 + 16.1456i 0.864158 + 1.08362i
\(223\) −1.71179 7.49983i −0.114630 0.502226i −0.999348 0.0360999i \(-0.988507\pi\)
0.884718 0.466126i \(-0.154351\pi\)
\(224\) −8.50297 37.2540i −0.568129 2.48913i
\(225\) −0.877459 + 1.10030i −0.0584973 + 0.0733533i
\(226\) −5.13110 + 2.47101i −0.341316 + 0.164369i
\(227\) −5.94778 2.86430i −0.394768 0.190110i 0.225959 0.974137i \(-0.427448\pi\)
−0.620727 + 0.784027i \(0.713163\pi\)
\(228\) 2.77225 + 3.47629i 0.183597 + 0.230223i
\(229\) −1.45190 + 1.82062i −0.0959441 + 0.120310i −0.827486 0.561487i \(-0.810230\pi\)
0.731542 + 0.681797i \(0.238801\pi\)
\(230\) 15.3170 + 7.37626i 1.00997 + 0.486376i
\(231\) 17.6256 1.15968
\(232\) 1.76293 2.83327i 0.115742 0.186013i
\(233\) 1.74843 0.114544 0.0572719 0.998359i \(-0.481760\pi\)
0.0572719 + 0.998359i \(0.481760\pi\)
\(234\) 2.10203 + 1.01228i 0.137414 + 0.0661750i
\(235\) 6.92675 8.68587i 0.451851 0.566604i
\(236\) 8.19648 + 10.2781i 0.533546 + 0.669045i
\(237\) −12.4445 5.99297i −0.808359 0.389285i
\(238\) −49.3228 + 23.7526i −3.19712 + 1.53965i
\(239\) −14.2277 + 17.8409i −0.920312 + 1.15403i 0.0673967 + 0.997726i \(0.478531\pi\)
−0.987708 + 0.156308i \(0.950041\pi\)
\(240\) −1.39731 6.12203i −0.0901962 0.395175i
\(241\) −2.48695 10.8960i −0.160199 0.701876i −0.989674 0.143333i \(-0.954218\pi\)
0.829476 0.558542i \(-0.188639\pi\)
\(242\) 3.86229 + 4.84315i 0.248277 + 0.311330i
\(243\) 0.222521 0.974928i 0.0142747 0.0625417i
\(244\) −24.0055 −1.53680
\(245\) −6.41502 + 28.1060i −0.409841 + 1.79563i
\(246\) 2.97115 1.43083i 0.189433 0.0912263i
\(247\) −1.96088 + 0.944309i −0.124768 + 0.0600850i
\(248\) −0.133907 + 0.586687i −0.00850313 + 0.0372546i
\(249\) −2.91826 −0.184937
\(250\) 5.60317 24.5491i 0.354375 1.55262i
\(251\) 12.9264 + 16.2091i 0.815904 + 1.02311i 0.999198 + 0.0400532i \(0.0127527\pi\)
−0.183293 + 0.983058i \(0.558676\pi\)
\(252\) 2.41077 + 10.5623i 0.151864 + 0.665360i
\(253\) 3.60016 + 15.7733i 0.226340 + 0.991660i
\(254\) −16.0449 + 20.1197i −1.00675 + 1.26242i
\(255\) −9.56772 + 4.60757i −0.599154 + 0.288537i
\(256\) −9.19680 4.42894i −0.574800 0.276809i
\(257\) 1.47517 + 1.84981i 0.0920186 + 0.115388i 0.825709 0.564096i \(-0.190775\pi\)
−0.733691 + 0.679484i \(0.762204\pi\)
\(258\) −5.86256 + 7.35142i −0.364987 + 0.457679i
\(259\) −42.2906 20.3661i −2.62781 1.26549i
\(260\) −4.90313 −0.304079
\(261\) 2.84501 4.57230i 0.176102 0.283018i
\(262\) 39.2060 2.42215
\(263\) 22.0382 + 10.6131i 1.35894 + 0.654429i 0.964399 0.264451i \(-0.0851908\pi\)
0.394537 + 0.918880i \(0.370905\pi\)
\(264\) −1.44496 + 1.81192i −0.0889310 + 0.111516i
\(265\) 6.09666 + 7.64497i 0.374515 + 0.469627i
\(266\) −17.0273 8.19994i −1.04401 0.502770i
\(267\) 6.56353 3.16083i 0.401681 0.193440i
\(268\) −5.68828 + 7.13288i −0.347467 + 0.435710i
\(269\) −1.44384 6.32587i −0.0880324 0.385695i 0.911648 0.410972i \(-0.134811\pi\)
−0.999680 + 0.0252765i \(0.991953\pi\)
\(270\) 0.874493 + 3.83140i 0.0532199 + 0.233172i
\(271\) −0.298700 0.374558i −0.0181447 0.0227528i 0.772676 0.634800i \(-0.218918\pi\)
−0.790821 + 0.612047i \(0.790346\pi\)
\(272\) −4.13024 + 18.0958i −0.250433 + 1.09722i
\(273\) −5.30301 −0.320953
\(274\) −4.07134 + 17.8377i −0.245959 + 1.07761i
\(275\) 4.74221 2.28373i 0.285966 0.137714i
\(276\) −8.95985 + 4.31484i −0.539319 + 0.259723i
\(277\) −0.926181 + 4.05787i −0.0556488 + 0.243813i −0.995101 0.0988677i \(-0.968478\pi\)
0.939452 + 0.342681i \(0.111335\pi\)
\(278\) 21.4498 1.28648
\(279\) −0.216099 + 0.946790i −0.0129375 + 0.0566828i
\(280\) −3.45113 4.32758i −0.206244 0.258622i
\(281\) 2.07349 + 9.08457i 0.123694 + 0.541940i 0.998362 + 0.0572168i \(0.0182226\pi\)
−0.874667 + 0.484723i \(0.838920\pi\)
\(282\) 2.70420 + 11.8479i 0.161033 + 0.705532i
\(283\) 6.10026 7.64949i 0.362623 0.454715i −0.566732 0.823902i \(-0.691793\pi\)
0.929355 + 0.369187i \(0.120364\pi\)
\(284\) 0.619425 0.298300i 0.0367561 0.0177008i
\(285\) −3.30299 1.59064i −0.195652 0.0942212i
\(286\) −5.44040 6.82205i −0.321698 0.403396i
\(287\) −4.67345 + 5.86032i −0.275865 + 0.345924i
\(288\) 7.30531 + 3.51805i 0.430470 + 0.207303i
\(289\) 14.3892 0.846424
\(290\) −2.27707 + 21.0405i −0.133714 + 1.23554i
\(291\) 12.8154 0.751254
\(292\) 31.2894 + 15.0682i 1.83107 + 0.881799i
\(293\) −7.13649 + 8.94887i −0.416918 + 0.522799i −0.945297 0.326210i \(-0.894228\pi\)
0.528379 + 0.849008i \(0.322800\pi\)
\(294\) −19.6619 24.6552i −1.14670 1.43792i
\(295\) −9.76569 4.70291i −0.568580 0.273814i
\(296\) 5.56065 2.67787i 0.323206 0.155648i
\(297\) −2.33186 + 2.92406i −0.135308 + 0.169671i
\(298\) −5.58271 24.4594i −0.323398 1.41690i
\(299\) −1.08318 4.74571i −0.0626418 0.274452i
\(300\) 2.01716 + 2.52944i 0.116461 + 0.146037i
\(301\) 4.75579 20.8365i 0.274119 1.20099i
\(302\) 19.7812 1.13828
\(303\) −2.10344 + 9.21577i −0.120839 + 0.529432i
\(304\) −5.77316 + 2.78021i −0.331114 + 0.159456i
\(305\) 17.8326 8.58775i 1.02109 0.491733i
\(306\) 2.58487 11.3250i 0.147767 0.647409i
\(307\) −20.1309 −1.14893 −0.574465 0.818529i \(-0.694790\pi\)
−0.574465 + 0.818529i \(0.694790\pi\)
\(308\) 9.01630 39.5030i 0.513751 2.25089i
\(309\) −3.46239 4.34170i −0.196968 0.246990i
\(310\) −0.849253 3.72082i −0.0482344 0.211329i
\(311\) −0.395288 1.73187i −0.0224147 0.0982054i 0.962483 0.271341i \(-0.0874672\pi\)
−0.984898 + 0.173136i \(0.944610\pi\)
\(312\) 0.434744 0.545151i 0.0246125 0.0308631i
\(313\) 13.4354 6.47017i 0.759416 0.365716i −0.0137612 0.999905i \(-0.504380\pi\)
0.773177 + 0.634190i \(0.218666\pi\)
\(314\) −1.66164 0.800203i −0.0937717 0.0451581i
\(315\) −5.56940 6.98381i −0.313800 0.393493i
\(316\) −19.7976 + 24.8253i −1.11370 + 1.39653i
\(317\) 10.2900 + 4.95542i 0.577946 + 0.278324i 0.699934 0.714208i \(-0.253213\pi\)
−0.121988 + 0.992532i \(0.538927\pi\)
\(318\) −10.6962 −0.599815
\(319\) −17.0063 + 10.7903i −0.952168 + 0.604141i
\(320\) −19.3061 −1.07924
\(321\) 5.67350 + 2.73221i 0.316664 + 0.152497i
\(322\) 26.3545 33.0475i 1.46868 1.84166i
\(323\) 6.75630 + 8.47213i 0.375931 + 0.471402i
\(324\) −2.07121 0.997440i −0.115067 0.0554133i
\(325\) −1.42679 + 0.687104i −0.0791438 + 0.0381137i
\(326\) 9.97016 12.5022i 0.552196 0.692432i
\(327\) −3.64891 15.9869i −0.201785 0.884079i
\(328\) −0.219311 0.960865i −0.0121094 0.0530549i
\(329\) −17.2223 21.5961i −0.949498 1.19063i
\(330\) 3.27061 14.3295i 0.180041 0.788813i
\(331\) 9.83216 0.540424 0.270212 0.962801i \(-0.412906\pi\)
0.270212 + 0.962801i \(0.412906\pi\)
\(332\) −1.49282 + 6.54049i −0.0819294 + 0.358956i
\(333\) 8.97373 4.32152i 0.491757 0.236818i
\(334\) −15.6706 + 7.54655i −0.857456 + 0.412929i
\(335\) 1.67385 7.33363i 0.0914524 0.400679i
\(336\) −15.6130 −0.851757
\(337\) 3.33880 14.6283i 0.181876 0.796852i −0.798860 0.601517i \(-0.794563\pi\)
0.980737 0.195335i \(-0.0625795\pi\)
\(338\) −15.1686 19.0208i −0.825062 1.03459i
\(339\) 0.611216 + 2.67791i 0.0331967 + 0.145444i
\(340\) 5.43229 + 23.8004i 0.294607 + 1.29076i
\(341\) 2.26456 2.83967i 0.122633 0.153777i
\(342\) 3.61307 1.73996i 0.195372 0.0940864i
\(343\) 34.8582 + 16.7868i 1.88216 + 0.906403i
\(344\) 1.75212 + 2.19708i 0.0944678 + 0.118459i
\(345\) 5.11228 6.41060i 0.275236 0.345135i
\(346\) 6.57897 + 3.16826i 0.353687 + 0.170327i
\(347\) 33.4677 1.79664 0.898320 0.439341i \(-0.144788\pi\)
0.898320 + 0.439341i \(0.144788\pi\)
\(348\) −8.79222 8.71525i −0.471312 0.467187i
\(349\) 27.7844 1.48727 0.743633 0.668588i \(-0.233101\pi\)
0.743633 + 0.668588i \(0.233101\pi\)
\(350\) −12.3895 5.96649i −0.662249 0.318922i
\(351\) 0.701586 0.879761i 0.0374479 0.0469582i
\(352\) −18.9074 23.7091i −1.00777 1.26370i
\(353\) −12.3781 5.96096i −0.658817 0.317270i 0.0744354 0.997226i \(-0.476285\pi\)
−0.733253 + 0.679956i \(0.761999\pi\)
\(354\) 10.6825 5.14440i 0.567766 0.273422i
\(355\) −0.353430 + 0.443187i −0.0187581 + 0.0235219i
\(356\) −3.72659 16.3273i −0.197509 0.865343i
\(357\) 5.87532 + 25.7415i 0.310955 + 1.36238i
\(358\) 9.22408 + 11.5666i 0.487508 + 0.611315i
\(359\) 5.47410 23.9836i 0.288912 1.26581i −0.597109 0.802160i \(-0.703684\pi\)
0.886021 0.463646i \(-0.153459\pi\)
\(360\) 1.17452 0.0619027
\(361\) 3.39546 14.8765i 0.178709 0.782974i
\(362\) −39.3793 + 18.9641i −2.06973 + 0.996730i
\(363\) 2.69183 1.29632i 0.141285 0.0680390i
\(364\) −2.71273 + 11.8852i −0.142186 + 0.622956i
\(365\) −28.6340 −1.49877
\(366\) −4.81776 + 21.1080i −0.251828 + 1.10333i
\(367\) −2.76423 3.46624i −0.144292 0.180936i 0.704434 0.709770i \(-0.251201\pi\)
−0.848726 + 0.528834i \(0.822630\pi\)
\(368\) −3.18906 13.9722i −0.166241 0.728351i
\(369\) −0.353923 1.55064i −0.0184245 0.0807229i
\(370\) −24.4049 + 30.6028i −1.26875 + 1.59097i
\(371\) 21.9046 10.5487i 1.13723 0.547661i
\(372\) 2.01143 + 0.968653i 0.104288 + 0.0502223i
\(373\) 15.1984 + 19.0582i 0.786944 + 0.986797i 0.999953 + 0.00974631i \(0.00310239\pi\)
−0.213008 + 0.977050i \(0.568326\pi\)
\(374\) −27.0875 + 33.9667i −1.40066 + 1.75638i
\(375\) −10.9420 5.26938i −0.565041 0.272109i
\(376\) 3.63199 0.187305
\(377\) 5.11666 3.24647i 0.263522 0.167202i
\(378\) 9.77119 0.502576
\(379\) −12.1680 5.85978i −0.625027 0.300997i 0.0944331 0.995531i \(-0.469896\pi\)
−0.719460 + 0.694534i \(0.755610\pi\)
\(380\) −5.25461 + 6.58908i −0.269556 + 0.338012i
\(381\) 7.73857 + 9.70387i 0.396459 + 0.497144i
\(382\) 25.8070 + 12.4280i 1.32040 + 0.635873i
\(383\) −22.2743 + 10.7267i −1.13816 + 0.548111i −0.905458 0.424436i \(-0.860472\pi\)
−0.232707 + 0.972547i \(0.574758\pi\)
\(384\) 3.05630 3.83248i 0.155966 0.195575i
\(385\) 7.43401 + 32.5705i 0.378872 + 1.65995i
\(386\) −1.95296 8.55650i −0.0994033 0.435514i
\(387\) 2.82755 + 3.54564i 0.143732 + 0.180235i
\(388\) 6.55568 28.7223i 0.332814 1.45815i
\(389\) 30.2883 1.53568 0.767839 0.640643i \(-0.221332\pi\)
0.767839 + 0.640643i \(0.221332\pi\)
\(390\) −0.984028 + 4.31131i −0.0498282 + 0.218312i
\(391\) −21.8362 + 10.5158i −1.10430 + 0.531805i
\(392\) −8.49144 + 4.08926i −0.428882 + 0.206539i
\(393\) 4.20771 18.4352i 0.212251 0.929933i
\(394\) 9.56814 0.482036
\(395\) 5.82570 25.5240i 0.293123 1.28425i
\(396\) 5.36063 + 6.72202i 0.269382 + 0.337794i
\(397\) 3.02597 + 13.2577i 0.151869 + 0.665383i 0.992341 + 0.123528i \(0.0394208\pi\)
−0.840472 + 0.541855i \(0.817722\pi\)
\(398\) 1.76519 + 7.73381i 0.0884810 + 0.387661i
\(399\) −5.68316 + 7.12645i −0.284514 + 0.356769i
\(400\) −4.20070 + 2.02295i −0.210035 + 0.101148i
\(401\) 13.4305 + 6.46779i 0.670687 + 0.322986i 0.738053 0.674742i \(-0.235745\pi\)
−0.0673661 + 0.997728i \(0.521460\pi\)
\(402\) 5.13032 + 6.43322i 0.255877 + 0.320860i
\(403\) −0.681337 + 0.854370i −0.0339398 + 0.0425592i
\(404\) 19.5786 + 9.42857i 0.974073 + 0.469089i
\(405\) 1.89543 0.0941848
\(406\) 49.7426 + 17.1606i 2.46868 + 0.851667i
\(407\) −37.2509 −1.84646
\(408\) −3.12790 1.50632i −0.154854 0.0745737i
\(409\) −12.8458 + 16.1081i −0.635182 + 0.796494i −0.990391 0.138293i \(-0.955838\pi\)
0.355209 + 0.934787i \(0.384410\pi\)
\(410\) 3.89720 + 4.88693i 0.192469 + 0.241348i
\(411\) 7.95059 + 3.82880i 0.392174 + 0.188861i
\(412\) −11.5019 + 5.53902i −0.566658 + 0.272888i
\(413\) −16.8029 + 21.0702i −0.826818 + 1.03680i
\(414\) 1.99584 + 8.74433i 0.0980900 + 0.429761i
\(415\) −1.23085 5.39269i −0.0604198 0.264717i
\(416\) 5.68866 + 7.13335i 0.278909 + 0.349741i
\(417\) 2.30207 10.0860i 0.112733 0.493914i
\(418\) −14.9982 −0.733587
\(419\) 1.19222 5.22348i 0.0582440 0.255184i −0.937421 0.348199i \(-0.886793\pi\)
0.995665 + 0.0930153i \(0.0296505\pi\)
\(420\) −18.5013 + 8.90976i −0.902771 + 0.434752i
\(421\) −1.72756 + 0.831947i −0.0841959 + 0.0405466i −0.475508 0.879712i \(-0.657736\pi\)
0.391312 + 0.920258i \(0.372021\pi\)
\(422\) 4.60456 20.1739i 0.224146 0.982049i
\(423\) 5.86127 0.284985
\(424\) −0.711341 + 3.11659i −0.0345458 + 0.151355i
\(425\) 4.91606 + 6.16454i 0.238464 + 0.299024i
\(426\) −0.137979 0.604526i −0.00668511 0.0292894i
\(427\) −10.9506 47.9779i −0.529938 2.32181i
\(428\) 9.02577 11.3180i 0.436277 0.547074i
\(429\) −3.79170 + 1.82599i −0.183065 + 0.0881596i
\(430\) −16.0574 7.73285i −0.774358 0.372911i
\(431\) −12.6219 15.8273i −0.607975 0.762377i 0.378622 0.925551i \(-0.376398\pi\)
−0.986597 + 0.163175i \(0.947827\pi\)
\(432\) 2.06559 2.59017i 0.0993807 0.124620i
\(433\) 16.3972 + 7.89648i 0.788000 + 0.379481i 0.784197 0.620512i \(-0.213075\pi\)
0.00380279 + 0.999993i \(0.498790\pi\)
\(434\) −9.48918 −0.455495
\(435\) 9.64915 + 3.32884i 0.462641 + 0.159606i
\(436\) −37.6969 −1.80536
\(437\) −7.53835 3.63028i −0.360608 0.173660i
\(438\) 19.5290 24.4886i 0.933132 1.17011i
\(439\) −0.244431 0.306507i −0.0116661 0.0146288i 0.775964 0.630777i \(-0.217264\pi\)
−0.787630 + 0.616148i \(0.788692\pi\)
\(440\) −3.95771 1.90593i −0.188676 0.0908618i
\(441\) −13.7034 + 6.59921i −0.652543 + 0.314248i
\(442\) 8.14982 10.2195i 0.387647 0.486094i
\(443\) −1.21378 5.31793i −0.0576685 0.252662i 0.937874 0.346976i \(-0.112791\pi\)
−0.995543 + 0.0943137i \(0.969934\pi\)
\(444\) −5.09504 22.3228i −0.241800 1.05939i
\(445\) 8.60925 + 10.7957i 0.408117 + 0.511763i
\(446\) −3.54917 + 15.5499i −0.168058 + 0.736310i
\(447\) −12.1003 −0.572326
\(448\) −10.6814 + 46.7982i −0.504648 + 2.21101i
\(449\) −2.50192 + 1.20486i −0.118073 + 0.0568608i −0.491988 0.870602i \(-0.663729\pi\)
0.373915 + 0.927463i \(0.378015\pi\)
\(450\) 2.62896 1.26604i 0.123930 0.0596818i
\(451\) −1.32368 + 5.79940i −0.0623295 + 0.273083i
\(452\) 6.31448 0.297008
\(453\) 2.12298 9.30139i 0.0997464 0.437017i
\(454\) 8.53397 + 10.7013i 0.400519 + 0.502235i
\(455\) −2.23667 9.79948i −0.104857 0.459407i
\(456\) −0.266694 1.16846i −0.0124891 0.0547182i
\(457\) −22.7119 + 28.4798i −1.06242 + 1.33223i −0.121880 + 0.992545i \(0.538892\pi\)
−0.940539 + 0.339686i \(0.889679\pi\)
\(458\) 4.35004 2.09487i 0.203264 0.0978868i
\(459\) −5.04777 2.43088i −0.235610 0.113464i
\(460\) −11.7525 14.7371i −0.547961 0.687121i
\(461\) 15.8091 19.8240i 0.736304 0.923296i −0.262833 0.964841i \(-0.584657\pi\)
0.999137 + 0.0415457i \(0.0132282\pi\)
\(462\) −32.9254 15.8560i −1.53183 0.737689i
\(463\) 28.4073 1.32020 0.660099 0.751179i \(-0.270514\pi\)
0.660099 + 0.751179i \(0.270514\pi\)
\(464\) 15.0643 9.55818i 0.699345 0.443727i
\(465\) −1.84073 −0.0853617
\(466\) −3.26615 1.57289i −0.151301 0.0728629i
\(467\) −8.27602 + 10.3778i −0.382968 + 0.480227i −0.935531 0.353244i \(-0.885079\pi\)
0.552563 + 0.833471i \(0.313650\pi\)
\(468\) −1.61285 2.02245i −0.0745541 0.0934879i
\(469\) −16.8507 8.11489i −0.778095 0.374711i
\(470\) −20.7533 + 9.99425i −0.957277 + 0.461001i
\(471\) −0.554599 + 0.695445i −0.0255546 + 0.0320444i
\(472\) −0.788511 3.45469i −0.0362942 0.159015i
\(473\) −3.77420 16.5359i −0.173538 0.760320i
\(474\) 17.8556 + 22.3902i 0.820136 + 1.02842i
\(475\) −0.605700 + 2.65375i −0.0277914 + 0.121762i
\(476\) 60.6980 2.78209
\(477\) −1.14796 + 5.02952i −0.0525613 + 0.230286i
\(478\) 42.6276 20.5284i 1.94974 0.938947i
\(479\) −23.6592 + 11.3937i −1.08101 + 0.520589i −0.887641 0.460536i \(-0.847657\pi\)
−0.193374 + 0.981125i \(0.561943\pi\)
\(480\) −3.41986 + 14.9834i −0.156095 + 0.683895i
\(481\) 11.2077 0.511025
\(482\) −5.15637 + 22.5915i −0.234866 + 1.02902i
\(483\) −12.7109 15.9390i −0.578367 0.725250i
\(484\) −1.52835 6.69613i −0.0694704 0.304370i
\(485\) 5.40521 + 23.6818i 0.245438 + 1.07533i
\(486\) −1.29273 + 1.62103i −0.0586392 + 0.0735312i
\(487\) −8.31764 + 4.00556i −0.376908 + 0.181509i −0.612740 0.790284i \(-0.709933\pi\)
0.235832 + 0.971794i \(0.424219\pi\)
\(488\) 5.82988 + 2.80752i 0.263906 + 0.127091i
\(489\) −4.80867 6.02988i −0.217456 0.272681i
\(490\) 37.2678 46.7323i 1.68359 2.11115i
\(491\) 10.9181 + 5.25786i 0.492725 + 0.237284i 0.663710 0.747990i \(-0.268981\pi\)
−0.170985 + 0.985274i \(0.554695\pi\)
\(492\) −3.65638 −0.164842
\(493\) −21.4277 21.2401i −0.965054 0.956606i
\(494\) 4.51251 0.203027
\(495\) −6.38692 3.07578i −0.287071 0.138246i
\(496\) −2.00597 + 2.51541i −0.0900709 + 0.112945i
\(497\) 0.878751 + 1.10192i 0.0394174 + 0.0494278i
\(498\) 5.45144 + 2.62527i 0.244285 + 0.117641i
\(499\) 26.6604 12.8390i 1.19348 0.574750i 0.271671 0.962390i \(-0.412424\pi\)
0.921811 + 0.387640i \(0.126710\pi\)
\(500\) −17.4072 + 21.8279i −0.778473 + 0.976175i
\(501\) 1.86668 + 8.17845i 0.0833970 + 0.365386i
\(502\) −9.56521 41.9079i −0.426916 1.87044i
\(503\) −5.59719 7.01866i −0.249567 0.312947i 0.641230 0.767349i \(-0.278424\pi\)
−0.890797 + 0.454402i \(0.849853\pi\)
\(504\) 0.649822 2.84705i 0.0289454 0.126818i
\(505\) −17.9171 −0.797300
\(506\) 7.46446 32.7039i 0.331836 1.45387i
\(507\) −10.5718 + 5.09110i −0.469510 + 0.226104i
\(508\) 25.7072 12.3799i 1.14057 0.549271i
\(509\) −6.60071 + 28.9196i −0.292572 + 1.28184i 0.588361 + 0.808598i \(0.299773\pi\)
−0.880933 + 0.473241i \(0.843084\pi\)
\(510\) 22.0179 0.974968
\(511\) −15.8422 + 69.4092i −0.700818 + 3.07048i
\(512\) 19.3083 + 24.2119i 0.853315 + 1.07002i
\(513\) −0.430388 1.88565i −0.0190021 0.0832536i
\(514\) −1.09159 4.78258i −0.0481481 0.210951i
\(515\) 6.56272 8.22939i 0.289188 0.362630i
\(516\) 9.39300 4.52343i 0.413504 0.199133i
\(517\) −19.7503 9.51127i −0.868619 0.418305i
\(518\) 60.6793 + 76.0894i 2.66609 + 3.34318i
\(519\) 2.19584 2.75349i 0.0963866 0.120865i
\(520\) 1.19075 + 0.573437i 0.0522180 + 0.0251469i
\(521\) −23.8067 −1.04299 −0.521496 0.853254i \(-0.674626\pi\)
−0.521496 + 0.853254i \(0.674626\pi\)
\(522\) −9.42784 + 5.98188i −0.412646 + 0.261820i
\(523\) 9.45221 0.413316 0.206658 0.978413i \(-0.433741\pi\)
0.206658 + 0.978413i \(0.433741\pi\)
\(524\) −39.1651 18.8609i −1.71093 0.823942i
\(525\) −4.13521 + 5.18539i −0.180475 + 0.226309i
\(526\) −31.6208 39.6513i −1.37873 1.72888i
\(527\) 4.90209 + 2.36072i 0.213538 + 0.102835i
\(528\) −11.1634 + 5.37603i −0.485826 + 0.233962i
\(529\) −2.67260 + 3.35133i −0.116200 + 0.145710i
\(530\) −4.51139 19.7657i −0.195962 0.858567i
\(531\) −1.27249 5.57516i −0.0552215 0.241941i
\(532\) 13.0648 + 16.3828i 0.566431 + 0.710282i
\(533\) 0.398254 1.74486i 0.0172503 0.0755784i
\(534\) −15.1044 −0.653633
\(535\) −2.65596 + 11.6365i −0.114827 + 0.503090i
\(536\) 2.21565 1.06700i 0.0957014 0.0460874i
\(537\) 6.42875 3.09592i 0.277421 0.133599i
\(538\) −2.99361 + 13.1159i −0.129064 + 0.565466i
\(539\) 56.8843 2.45018
\(540\) 0.969600 4.24810i 0.0417250 0.182809i
\(541\) −14.3377 17.9789i −0.616426 0.772973i 0.371411 0.928469i \(-0.378874\pi\)
−0.987837 + 0.155495i \(0.950303\pi\)
\(542\) 0.221031 + 0.968400i 0.00949410 + 0.0415964i
\(543\) 4.69086 + 20.5520i 0.201304 + 0.881971i
\(544\) 28.3236 35.5167i 1.21436 1.52277i
\(545\) 28.0034 13.4857i 1.19953 0.577665i
\(546\) 9.90624 + 4.77059i 0.423948 + 0.204163i
\(547\) 2.80622 + 3.51888i 0.119985 + 0.150457i 0.838196 0.545369i \(-0.183610\pi\)
−0.718211 + 0.695825i \(0.755039\pi\)
\(548\) 12.6483 15.8605i 0.540309 0.677526i
\(549\) 9.40822 + 4.53076i 0.401533 + 0.193368i
\(550\) −10.9131 −0.465336
\(551\) 1.12068 10.3552i 0.0477425 0.441148i
\(552\) 2.68059 0.114093
\(553\) −58.6474 28.2431i −2.49394 1.20102i
\(554\) 5.38061 6.74707i 0.228600 0.286656i
\(555\) 11.7707 + 14.7599i 0.499637 + 0.626525i
\(556\) −21.4275 10.3189i −0.908726 0.437620i
\(557\) 12.4667 6.00364i 0.528231 0.254382i −0.150707 0.988578i \(-0.548155\pi\)
0.678938 + 0.734196i \(0.262441\pi\)
\(558\) 1.25542 1.57424i 0.0531460 0.0666429i
\(559\) 1.13554 + 4.97514i 0.0480283 + 0.210426i
\(560\) −6.58514 28.8514i −0.278273 1.21919i
\(561\) 13.0645 + 16.3824i 0.551584 + 0.691664i
\(562\) 4.29912 18.8357i 0.181348 0.794536i
\(563\) −29.6777 −1.25077 −0.625384 0.780317i \(-0.715058\pi\)
−0.625384 + 0.780317i \(0.715058\pi\)
\(564\) 2.99831 13.1364i 0.126252 0.553144i
\(565\) −4.69075 + 2.25895i −0.197341 + 0.0950346i
\(566\) −18.2770 + 8.80176i −0.768241 + 0.369966i
\(567\) 1.04868 4.59455i 0.0440403 0.192953i
\(568\) −0.185318 −0.00777578
\(569\) −2.34470 + 10.2728i −0.0982950 + 0.430658i −0.999999 0.00169638i \(-0.999460\pi\)
0.901704 + 0.432355i \(0.142317\pi\)
\(570\) 4.73919 + 5.94276i 0.198503 + 0.248915i
\(571\) 7.76939 + 34.0399i 0.325139 + 1.42453i 0.828276 + 0.560320i \(0.189322\pi\)
−0.503137 + 0.864207i \(0.667821\pi\)
\(572\) 2.15283 + 9.43215i 0.0900142 + 0.394378i
\(573\) 8.61352 10.8010i 0.359835 0.451219i
\(574\) 14.0022 6.74308i 0.584439 0.281451i
\(575\) −5.48510 2.64149i −0.228745 0.110158i
\(576\) −6.35061 7.96341i −0.264609 0.331809i
\(577\) −5.20425 + 6.52592i −0.216656 + 0.271678i −0.878268 0.478168i \(-0.841301\pi\)
0.661613 + 0.749846i \(0.269872\pi\)
\(578\) −26.8796 12.9446i −1.11805 0.538422i
\(579\) −4.23298 −0.175917
\(580\) 12.3967 19.9231i 0.514744 0.827261i
\(581\) −13.7529 −0.570568
\(582\) −23.9398 11.5288i −0.992335 0.477883i
\(583\) 12.0298 15.0848i 0.498222 0.624750i
\(584\) −5.83655 7.31880i −0.241518 0.302854i
\(585\) 1.92163 + 0.925408i 0.0794496 + 0.0382609i
\(586\) 21.3817 10.2969i 0.883269 0.425360i
\(587\) −10.5208 + 13.1927i −0.434240 + 0.544520i −0.950015 0.312204i \(-0.898933\pi\)
0.515775 + 0.856724i \(0.327504\pi\)
\(588\) 7.78042 + 34.0883i 0.320859 + 1.40578i
\(589\) 0.417967 + 1.83123i 0.0172220 + 0.0754546i
\(590\) 14.0120 + 17.5705i 0.576864 + 0.723364i
\(591\) 1.02688 4.49907i 0.0422404 0.185067i
\(592\) 32.9973 1.35618
\(593\) 6.25458 27.4031i 0.256845 1.12531i −0.667758 0.744378i \(-0.732746\pi\)
0.924603 0.380932i \(-0.124397\pi\)
\(594\) 6.98651 3.36452i 0.286660 0.138048i
\(595\) −45.0899 + 21.7141i −1.84850 + 0.890193i
\(596\) −6.18987 + 27.1196i −0.253547 + 1.11086i
\(597\) 3.82599 0.156587
\(598\) −2.24583 + 9.83962i −0.0918387 + 0.402372i
\(599\) −11.2525 14.1101i −0.459763 0.576525i 0.496868 0.867826i \(-0.334483\pi\)
−0.956631 + 0.291301i \(0.905912\pi\)
\(600\) −0.194053 0.850203i −0.00792219 0.0347094i
\(601\) 3.54163 + 15.5169i 0.144466 + 0.632947i 0.994366 + 0.106003i \(0.0338053\pi\)
−0.849900 + 0.526944i \(0.823338\pi\)
\(602\) −27.6285 + 34.6451i −1.12606 + 1.41203i
\(603\) 3.57559 1.72191i 0.145609 0.0701218i
\(604\) −19.7605 9.51617i −0.804045 0.387208i
\(605\) 3.53082 + 4.42751i 0.143548 + 0.180004i
\(606\) 12.2198 15.3232i 0.496397 0.622462i
\(607\) 31.9807 + 15.4011i 1.29806 + 0.625112i 0.949967 0.312349i \(-0.101116\pi\)
0.348091 + 0.937461i \(0.386830\pi\)
\(608\) 15.6826 0.636014
\(609\) 13.4077 21.5479i 0.543307 0.873166i
\(610\) −41.0377 −1.66157
\(611\) 5.94228 + 2.86165i 0.240399 + 0.115770i
\(612\) −8.03032 + 10.0697i −0.324607 + 0.407044i
\(613\) −17.6983 22.1929i −0.714826 0.896364i 0.283206 0.959059i \(-0.408602\pi\)
−0.998033 + 0.0626951i \(0.980030\pi\)
\(614\) 37.6053 + 18.1098i 1.51763 + 0.730851i
\(615\) 2.71616 1.30803i 0.109526 0.0527450i
\(616\) −6.80967 + 8.53905i −0.274369 + 0.344048i
\(617\) −6.85060 30.0144i −0.275795 1.20833i −0.903055 0.429525i \(-0.858681\pi\)
0.627260 0.778810i \(-0.284176\pi\)
\(618\) 2.56209 + 11.2252i 0.103062 + 0.451545i
\(619\) 1.19253 + 1.49539i 0.0479319 + 0.0601047i 0.805220 0.592977i \(-0.202047\pi\)
−0.757288 + 0.653081i \(0.773476\pi\)
\(620\) −0.941616 + 4.12549i −0.0378162 + 0.165684i
\(621\) 4.32591 0.173593
\(622\) −0.819579 + 3.59081i −0.0328621 + 0.143978i
\(623\) 30.9320 14.8961i 1.23926 0.596798i
\(624\) 3.35874 1.61748i 0.134457 0.0647511i
\(625\) 3.55649 15.5820i 0.142260 0.623280i
\(626\) −30.9186 −1.23575
\(627\) −1.60966 + 7.05237i −0.0642835 + 0.281645i
\(628\) 1.27495 + 1.59874i 0.0508760 + 0.0637965i
\(629\) −12.4172 54.4034i −0.495107 2.16920i
\(630\) 4.12123 + 18.0563i 0.164194 + 0.719380i
\(631\) 3.99885 5.01440i 0.159192 0.199620i −0.695839 0.718198i \(-0.744967\pi\)
0.855030 + 0.518578i \(0.173539\pi\)
\(632\) 7.71136 3.71359i 0.306741 0.147719i
\(633\) −8.99187 4.33026i −0.357395 0.172112i
\(634\) −14.7643 18.5139i −0.586366 0.735279i
\(635\) −14.6679 + 18.3930i −0.582080 + 0.729905i
\(636\) 10.6851 + 5.14566i 0.423691 + 0.204039i
\(637\) −17.1147 −0.678111
\(638\) 41.4754 4.85789i 1.64203 0.192326i
\(639\) −0.299065 −0.0118308
\(640\) 8.37114 + 4.03133i 0.330898 + 0.159352i
\(641\) −17.9604 + 22.5217i −0.709395 + 0.889553i −0.997686 0.0679897i \(-0.978341\pi\)
0.288291 + 0.957543i \(0.406913\pi\)
\(642\) −8.14044 10.2078i −0.321277 0.402869i
\(643\) −2.76235 1.33028i −0.108936 0.0524610i 0.378622 0.925551i \(-0.376398\pi\)
−0.487558 + 0.873090i \(0.662112\pi\)
\(644\) −42.2252 + 20.3346i −1.66390 + 0.801294i
\(645\) −5.35943 + 6.72051i −0.211027 + 0.264620i
\(646\) −4.99951 21.9043i −0.196703 0.861812i
\(647\) 10.1603 + 44.5151i 0.399442 + 1.75007i 0.629604 + 0.776917i \(0.283217\pi\)
−0.230162 + 0.973152i \(0.573926\pi\)
\(648\) 0.386351 + 0.484469i 0.0151773 + 0.0190317i
\(649\) −4.75914 + 20.8512i −0.186813 + 0.818480i
\(650\) 3.28342 0.128786
\(651\) −1.01841 + 4.46195i −0.0399146 + 0.174877i
\(652\) −15.9742 + 7.69277i −0.625598 + 0.301272i
\(653\) 11.5433 5.55897i 0.451725 0.217539i −0.194166 0.980969i \(-0.562200\pi\)
0.645891 + 0.763429i \(0.276486\pi\)
\(654\) −7.56554 + 33.1468i −0.295836 + 1.29614i
\(655\) 35.8413 1.40044
\(656\) 1.17253 5.13718i 0.0457795 0.200573i
\(657\) −9.41897 11.8110i −0.367469 0.460792i
\(658\) 12.7441 + 55.8357i 0.496818 + 2.17670i
\(659\) −5.61559 24.6035i −0.218752 0.958416i −0.958401 0.285424i \(-0.907866\pi\)
0.739649 0.672993i \(-0.234991\pi\)
\(660\) −10.1607 + 12.7411i −0.395506 + 0.495948i
\(661\) 14.6652 7.06237i 0.570409 0.274694i −0.126367 0.991984i \(-0.540332\pi\)
0.696776 + 0.717289i \(0.254617\pi\)
\(662\) −18.3669 8.84503i −0.713849 0.343772i
\(663\) −3.93071 4.92895i −0.152656 0.191425i
\(664\) 1.12747 1.41381i 0.0437544 0.0548663i
\(665\) −15.5660 7.49621i −0.603625 0.290691i
\(666\) −20.6510 −0.800208
\(667\) 22.0221 + 7.59736i 0.852698 + 0.294171i
\(668\) 19.2847 0.746146
\(669\) 6.93088 + 3.33774i 0.267963 + 0.129044i
\(670\) −9.72418 + 12.1937i −0.375678 + 0.471085i
\(671\) −24.3501 30.5340i −0.940024 1.17875i
\(672\) 34.4278 + 16.5796i 1.32808 + 0.639571i
\(673\) 38.3263 18.4570i 1.47737 0.711465i 0.490272 0.871570i \(-0.336898\pi\)
0.987100 + 0.160105i \(0.0511833\pi\)
\(674\) −19.3966 + 24.3226i −0.747130 + 0.936872i
\(675\) −0.313162 1.37205i −0.0120536 0.0528102i
\(676\) 6.00237 + 26.2981i 0.230861 + 1.01147i
\(677\) 12.9894 + 16.2882i 0.499224 + 0.626007i 0.966054 0.258340i \(-0.0831755\pi\)
−0.466830 + 0.884347i \(0.654604\pi\)
\(678\) 1.26728 5.55231i 0.0486695 0.213235i
\(679\) 60.3954 2.31776
\(680\) 1.46427 6.41540i 0.0561523 0.246019i
\(681\) 5.94778 2.86430i 0.227919 0.109760i
\(682\) −6.78486 + 3.26742i −0.259806 + 0.125116i
\(683\) −7.62083 + 33.3891i −0.291603 + 1.27760i 0.590691 + 0.806898i \(0.298855\pi\)
−0.882294 + 0.470699i \(0.844002\pi\)
\(684\) −4.44634 −0.170010
\(685\) −3.72193 + 16.3069i −0.142208 + 0.623053i
\(686\) −50.0151 62.7169i −1.90959 2.39454i
\(687\) −0.518176 2.27028i −0.0197697 0.0866165i
\(688\) 3.34323 + 14.6477i 0.127460 + 0.558437i
\(689\) −3.61939 + 4.53857i −0.137888 + 0.172906i
\(690\) −15.3170 + 7.37626i −0.583106 + 0.280809i
\(691\) 8.21851 + 3.95783i 0.312647 + 0.150563i 0.583626 0.812022i \(-0.301633\pi\)
−0.270979 + 0.962585i \(0.587348\pi\)
\(692\) −5.04794 6.32991i −0.191894 0.240627i
\(693\) −10.9894 + 13.7803i −0.417452 + 0.523469i
\(694\) −62.5191 30.1076i −2.37319 1.14287i
\(695\) 19.6090 0.743812
\(696\) 1.11596 + 3.14483i 0.0423005 + 0.119204i
\(697\) −8.91103 −0.337529
\(698\) −51.9025 24.9949i −1.96454 0.946072i
\(699\) −1.09013 + 1.36698i −0.0412325 + 0.0517040i
\(700\) 9.50629 + 11.9205i 0.359304 + 0.450553i
\(701\) 38.5938 + 18.5858i 1.45767 + 0.701976i 0.983907 0.178679i \(-0.0571822\pi\)
0.473760 + 0.880654i \(0.342897\pi\)
\(702\) −2.10203 + 1.01228i −0.0793359 + 0.0382061i
\(703\) 12.0111 15.0614i 0.453006 0.568052i
\(704\) 8.47677 + 37.1391i 0.319480 + 1.39973i
\(705\) 2.47213 + 10.8311i 0.0931057 + 0.407923i
\(706\) 17.7602 + 22.2706i 0.668416 + 0.838167i
\(707\) −9.91290 + 43.4312i −0.372813 + 1.63340i
\(708\) −13.1461 −0.494062
\(709\) −2.44899 + 10.7297i −0.0919738 + 0.402964i −0.999868 0.0162353i \(-0.994832\pi\)
0.907894 + 0.419199i \(0.137689\pi\)
\(710\) 1.05891 0.509946i 0.0397403 0.0191379i
\(711\) 12.4445 5.99297i 0.466706 0.224754i
\(712\) −1.00450 + 4.40101i −0.0376453 + 0.164935i
\(713\) −4.20106 −0.157331
\(714\) 12.1817 53.3716i 0.455889 1.99738i
\(715\) −4.97350 6.23658i −0.185998 0.233235i
\(716\) −3.65007 15.9920i −0.136409 0.597649i
\(717\) −5.07780 22.2473i −0.189634 0.830840i
\(718\) −31.8015 + 39.8779i −1.18682 + 1.48823i
\(719\) −16.3737 + 7.88517i −0.610637 + 0.294067i −0.713530 0.700625i \(-0.752905\pi\)
0.102892 + 0.994692i \(0.467190\pi\)
\(720\) 5.65761 + 2.72456i 0.210847 + 0.101538i
\(721\) −16.3172 20.4612i −0.607685 0.762013i
\(722\) −19.7258 + 24.7354i −0.734118 + 0.920555i
\(723\) 10.0695 + 4.84919i 0.374487 + 0.180343i
\(724\) 48.4613 1.80105
\(725\) 0.815434 7.53474i 0.0302845 0.279833i
\(726\) −6.19463 −0.229904
\(727\) 37.1991 + 17.9141i 1.37964 + 0.664399i 0.968922 0.247365i \(-0.0795645\pi\)
0.410716 + 0.911763i \(0.365279\pi\)
\(728\) 2.04882 2.56914i 0.0759344 0.0952187i
\(729\) 0.623490 + 0.781831i 0.0230922 + 0.0289567i
\(730\) 53.4896 + 25.7592i 1.97974 + 0.953391i
\(731\) 22.8919 11.0241i 0.846686 0.407742i
\(732\) 14.9672 18.7683i 0.553204 0.693695i
\(733\) −1.01201 4.43390i −0.0373794 0.163770i 0.952793 0.303619i \(-0.0981952\pi\)
−0.990173 + 0.139850i \(0.955338\pi\)
\(734\) 2.04547 + 8.96178i 0.0754996 + 0.330785i
\(735\) −17.9745 22.5393i −0.662999 0.831375i
\(736\) −7.80508 + 34.1963i −0.287699 + 1.26049i
\(737\) −14.8427 −0.546736
\(738\) −0.733813 + 3.21504i −0.0270120 + 0.118347i
\(739\) −42.6604 + 20.5442i −1.56929 + 0.755729i −0.997889 0.0649431i \(-0.979313\pi\)
−0.571399 + 0.820672i \(0.693599\pi\)
\(740\) 39.1016 18.8304i 1.43740 0.692218i
\(741\) 0.484297 2.12184i 0.0177911 0.0779479i
\(742\) −50.4083 −1.85055
\(743\) 3.01788 13.2222i 0.110715 0.485076i −0.888920 0.458063i \(-0.848543\pi\)
0.999635 0.0270128i \(-0.00859948\pi\)
\(744\) −0.375200 0.470486i −0.0137555 0.0172489i
\(745\) −5.10360 22.3603i −0.186981 0.819219i
\(746\) −11.2465 49.2741i −0.411763 1.80405i
\(747\) 1.81951 2.28159i 0.0665723 0.0834790i
\(748\) 43.3997 20.9002i 1.58685 0.764187i
\(749\) 26.7376 + 12.8761i 0.976970 + 0.470484i
\(750\) 15.6997 + 19.6868i 0.573273 + 0.718862i
\(751\) 17.8218 22.3478i 0.650326 0.815483i −0.341926 0.939727i \(-0.611079\pi\)
0.992252 + 0.124244i \(0.0396506\pi\)
\(752\) 17.4951 + 8.42519i 0.637980 + 0.307235i
\(753\) −20.7323 −0.755526
\(754\) −12.4787 + 1.46159i −0.454447 + 0.0532280i
\(755\) 18.0835 0.658128
\(756\) −9.76099 4.70065i −0.355004 0.170961i
\(757\) 4.64105 5.81969i 0.168682 0.211520i −0.690304 0.723519i \(-0.742523\pi\)
0.858986 + 0.511999i \(0.171095\pi\)
\(758\) 17.4588 + 21.8927i 0.634132 + 0.795177i
\(759\) −14.5767 7.01979i −0.529102 0.254802i
\(760\) 2.04673 0.985652i 0.0742426 0.0357534i
\(761\) 27.5300 34.5215i 0.997960 1.25140i 0.0301959 0.999544i \(-0.490387\pi\)
0.967764 0.251858i \(-0.0810417\pi\)
\(762\) −5.72637 25.0889i −0.207444 0.908874i
\(763\) −17.1963 75.3417i −0.622546 2.72755i
\(764\) −19.8013 24.8301i −0.716387 0.898321i
\(765\) 2.36303 10.3531i 0.0854356 0.374318i