Properties

Label 87.2.g.a.82.2
Level $87$
Weight $2$
Character 87.82
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 82.2
Root \(0.183119 - 0.802295i\) of defining polynomial
Character \(\chi\) \(=\) 87.82
Dual form 87.2.g.a.52.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.110403 + 0.138441i) q^{2} +(-0.222521 - 0.974928i) q^{3} +(0.438065 - 1.91929i) q^{4} +(-2.15193 - 2.69844i) q^{5} +(0.110403 - 0.138441i) q^{6} +(0.844514 + 3.70006i) q^{7} +(0.633146 - 0.304907i) q^{8} +(-0.900969 + 0.433884i) q^{9} +O(q^{10})\) \(q+(0.110403 + 0.138441i) q^{2} +(-0.222521 - 0.974928i) q^{3} +(0.438065 - 1.91929i) q^{4} +(-2.15193 - 2.69844i) q^{5} +(0.110403 - 0.138441i) q^{6} +(0.844514 + 3.70006i) q^{7} +(0.633146 - 0.304907i) q^{8} +(-0.900969 + 0.433884i) q^{9} +(0.135995 - 0.595831i) q^{10} +(3.84419 + 1.85126i) q^{11} -1.96865 q^{12} +(4.18329 + 2.01457i) q^{13} +(-0.419003 + 0.525413i) q^{14} +(-2.15193 + 2.69844i) q^{15} +(-3.43526 - 1.65434i) q^{16} -3.07208 q^{17} +(-0.159537 - 0.0768290i) q^{18} +(0.799448 - 3.50261i) q^{19} +(-6.12176 + 2.94808i) q^{20} +(3.41937 - 1.64668i) q^{21} +(0.168119 + 0.736579i) q^{22} +(-0.270347 + 0.339005i) q^{23} +(-0.438150 - 0.549423i) q^{24} +(-1.53815 + 6.73907i) q^{25} +(0.182949 + 0.801554i) q^{26} +(0.623490 + 0.781831i) q^{27} +7.47142 q^{28} +(-1.41466 + 5.19603i) q^{29} -0.611154 q^{30} +(-2.81961 - 3.53568i) q^{31} +(-0.462984 - 2.02846i) q^{32} +(0.949437 - 4.15975i) q^{33} +(-0.339167 - 0.425302i) q^{34} +(8.16704 - 10.2411i) q^{35} +(0.438065 + 1.91929i) q^{36} +(-5.70128 + 2.74559i) q^{37} +(0.573166 - 0.276022i) q^{38} +(1.03319 - 4.52669i) q^{39} +(-2.18526 - 1.05236i) q^{40} -1.97128 q^{41} +(0.605476 + 0.291582i) q^{42} +(-0.156607 + 0.196379i) q^{43} +(5.23711 - 6.56713i) q^{44} +(3.10963 + 1.49752i) q^{45} -0.0767793 q^{46} +(4.33933 + 2.08971i) q^{47} +(-0.848440 + 3.71726i) q^{48} +(-6.67044 + 3.21231i) q^{49} +(-1.10278 + 0.531070i) q^{50} +(0.683602 + 2.99505i) q^{51} +(5.69909 - 7.14643i) q^{52} +(6.83931 + 8.57623i) q^{53} +(-0.0394024 + 0.172633i) q^{54} +(-3.27691 - 14.3571i) q^{55} +(1.66287 + 2.08518i) q^{56} -3.59269 q^{57} +(-0.875526 + 0.377811i) q^{58} -6.06991 q^{59} +(4.23639 + 5.31227i) q^{60} +(-0.843741 - 3.69667i) q^{61} +(0.178190 - 0.780699i) q^{62} +(-2.36628 - 2.96722i) q^{63} +(-4.52484 + 5.67398i) q^{64} +(-3.56598 - 15.6236i) q^{65} +(0.680701 - 0.327808i) q^{66} +(4.74553 - 2.28533i) q^{67} +(-1.34577 + 5.89620i) q^{68} +(0.390663 + 0.188133i) q^{69} +2.31946 q^{70} +(5.25813 + 2.53218i) q^{71} +(-0.438150 + 0.549423i) q^{72} +(-6.57753 + 8.24796i) q^{73} +(-1.00954 - 0.486169i) q^{74} +6.91237 q^{75} +(-6.37230 - 3.06874i) q^{76} +(-3.60331 + 15.7871i) q^{77} +(0.740747 - 0.356725i) q^{78} +(-9.04273 + 4.35475i) q^{79} +(2.92833 + 12.8299i) q^{80} +(0.623490 - 0.781831i) q^{81} +(-0.217635 - 0.272906i) q^{82} +(1.57949 - 6.92019i) q^{83} +(-1.66255 - 7.28410i) q^{84} +(6.61090 + 8.28981i) q^{85} -0.0444768 q^{86} +(5.38055 + 0.222965i) q^{87} +2.99840 q^{88} +(-8.71402 - 10.9270i) q^{89} +(0.135995 + 0.595831i) q^{90} +(-3.92117 + 17.1798i) q^{91} +(0.532218 + 0.667380i) q^{92} +(-2.81961 + 3.53568i) q^{93} +(0.189773 + 0.831452i) q^{94} +(-11.1719 + 5.38012i) q^{95} +(-1.87458 + 0.902751i) q^{96} +(3.18704 - 13.9633i) q^{97} +(-1.18115 - 0.568813i) q^{98} -4.26673 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.110403 + 0.138441i 0.0780667 + 0.0978926i 0.819331 0.573320i \(-0.194345\pi\)
−0.741264 + 0.671213i \(0.765774\pi\)
\(3\) −0.222521 0.974928i −0.128473 0.562875i
\(4\) 0.438065 1.91929i 0.219032 0.959644i
\(5\) −2.15193 2.69844i −0.962373 1.20678i −0.978361 0.206906i \(-0.933661\pi\)
0.0159877 0.999872i \(-0.494911\pi\)
\(6\) 0.110403 0.138441i 0.0450718 0.0565183i
\(7\) 0.844514 + 3.70006i 0.319196 + 1.39849i 0.838966 + 0.544184i \(0.183161\pi\)
−0.519770 + 0.854306i \(0.673982\pi\)
\(8\) 0.633146 0.304907i 0.223851 0.107801i
\(9\) −0.900969 + 0.433884i −0.300323 + 0.144628i
\(10\) 0.135995 0.595831i 0.0430053 0.188418i
\(11\) 3.84419 + 1.85126i 1.15907 + 0.558177i 0.911745 0.410756i \(-0.134735\pi\)
0.247322 + 0.968933i \(0.420450\pi\)
\(12\) −1.96865 −0.568299
\(13\) 4.18329 + 2.01457i 1.16024 + 0.558741i 0.912093 0.409982i \(-0.134465\pi\)
0.248144 + 0.968723i \(0.420179\pi\)
\(14\) −0.419003 + 0.525413i −0.111983 + 0.140422i
\(15\) −2.15193 + 2.69844i −0.555626 + 0.696733i
\(16\) −3.43526 1.65434i −0.858816 0.413584i
\(17\) −3.07208 −0.745088 −0.372544 0.928014i \(-0.621514\pi\)
−0.372544 + 0.928014i \(0.621514\pi\)
\(18\) −0.159537 0.0768290i −0.0376032 0.0181088i
\(19\) 0.799448 3.50261i 0.183406 0.803554i −0.796587 0.604523i \(-0.793364\pi\)
0.979993 0.199030i \(-0.0637792\pi\)
\(20\) −6.12176 + 2.94808i −1.36887 + 0.659212i
\(21\) 3.41937 1.64668i 0.746167 0.359335i
\(22\) 0.168119 + 0.736579i 0.0358432 + 0.157039i
\(23\) −0.270347 + 0.339005i −0.0563713 + 0.0706873i −0.809218 0.587509i \(-0.800109\pi\)
0.752847 + 0.658196i \(0.228680\pi\)
\(24\) −0.438150 0.549423i −0.0894371 0.112151i
\(25\) −1.53815 + 6.73907i −0.307630 + 1.34781i
\(26\) 0.182949 + 0.801554i 0.0358793 + 0.157198i
\(27\) 0.623490 + 0.781831i 0.119991 + 0.150464i
\(28\) 7.47142 1.41197
\(29\) −1.41466 + 5.19603i −0.262696 + 0.964879i
\(30\) −0.611154 −0.111581
\(31\) −2.81961 3.53568i −0.506417 0.635027i 0.461246 0.887272i \(-0.347402\pi\)
−0.967663 + 0.252245i \(0.918831\pi\)
\(32\) −0.462984 2.02846i −0.0818447 0.358585i
\(33\) 0.949437 4.15975i 0.165276 0.724120i
\(34\) −0.339167 0.425302i −0.0581666 0.0729386i
\(35\) 8.16704 10.2411i 1.38048 1.73107i
\(36\) 0.438065 + 1.91929i 0.0730108 + 0.319881i
\(37\) −5.70128 + 2.74559i −0.937284 + 0.451372i −0.839210 0.543807i \(-0.816982\pi\)
−0.0980737 + 0.995179i \(0.531268\pi\)
\(38\) 0.573166 0.276022i 0.0929798 0.0447767i
\(39\) 1.03319 4.52669i 0.165443 0.724851i
\(40\) −2.18526 1.05236i −0.345520 0.166394i
\(41\) −1.97128 −0.307862 −0.153931 0.988082i \(-0.549193\pi\)
−0.153931 + 0.988082i \(0.549193\pi\)
\(42\) 0.605476 + 0.291582i 0.0934270 + 0.0449921i
\(43\) −0.156607 + 0.196379i −0.0238823 + 0.0299475i −0.793629 0.608402i \(-0.791811\pi\)
0.769747 + 0.638349i \(0.220382\pi\)
\(44\) 5.23711 6.56713i 0.789524 0.990032i
\(45\) 3.10963 + 1.49752i 0.463557 + 0.223237i
\(46\) −0.0767793 −0.0113205
\(47\) 4.33933 + 2.08971i 0.632956 + 0.304816i 0.722713 0.691148i \(-0.242895\pi\)
−0.0897569 + 0.995964i \(0.528609\pi\)
\(48\) −0.848440 + 3.71726i −0.122462 + 0.536540i
\(49\) −6.67044 + 3.21231i −0.952919 + 0.458902i
\(50\) −1.10278 + 0.531070i −0.155957 + 0.0751047i
\(51\) 0.683602 + 2.99505i 0.0957234 + 0.419392i
\(52\) 5.69909 7.14643i 0.790322 0.991032i
\(53\) 6.83931 + 8.57623i 0.939452 + 1.17804i 0.983845 + 0.179021i \(0.0572932\pi\)
−0.0443931 + 0.999014i \(0.514135\pi\)
\(54\) −0.0394024 + 0.172633i −0.00536198 + 0.0234924i
\(55\) −3.27691 14.3571i −0.441859 1.93591i
\(56\) 1.66287 + 2.08518i 0.222211 + 0.278644i
\(57\) −3.59269 −0.475863
\(58\) −0.875526 + 0.377811i −0.114962 + 0.0496090i
\(59\) −6.06991 −0.790234 −0.395117 0.918631i \(-0.629296\pi\)
−0.395117 + 0.918631i \(0.629296\pi\)
\(60\) 4.23639 + 5.31227i 0.546916 + 0.685811i
\(61\) −0.843741 3.69667i −0.108030 0.473310i −0.999784 0.0207897i \(-0.993382\pi\)
0.891754 0.452521i \(-0.149475\pi\)
\(62\) 0.178190 0.780699i 0.0226301 0.0991489i
\(63\) −2.36628 2.96722i −0.298123 0.373834i
\(64\) −4.52484 + 5.67398i −0.565606 + 0.709247i
\(65\) −3.56598 15.6236i −0.442305 1.93787i
\(66\) 0.680701 0.327808i 0.0837885 0.0403504i
\(67\) 4.74553 2.28533i 0.579759 0.279197i −0.120934 0.992661i \(-0.538589\pi\)
0.700693 + 0.713463i \(0.252875\pi\)
\(68\) −1.34577 + 5.89620i −0.163198 + 0.715019i
\(69\) 0.390663 + 0.188133i 0.0470303 + 0.0226486i
\(70\) 2.31946 0.277228
\(71\) 5.25813 + 2.53218i 0.624025 + 0.300515i 0.719048 0.694960i \(-0.244578\pi\)
−0.0950227 + 0.995475i \(0.530292\pi\)
\(72\) −0.438150 + 0.549423i −0.0516365 + 0.0647501i
\(73\) −6.57753 + 8.24796i −0.769841 + 0.965350i −0.999970 0.00780984i \(-0.997514\pi\)
0.230128 + 0.973160i \(0.426085\pi\)
\(74\) −1.00954 0.486169i −0.117357 0.0565160i
\(75\) 6.91237 0.798172
\(76\) −6.37230 3.06874i −0.730953 0.352009i
\(77\) −3.60331 + 15.7871i −0.410636 + 1.79911i
\(78\) 0.740747 0.356725i 0.0838731 0.0403912i
\(79\) −9.04273 + 4.35475i −1.01739 + 0.489947i −0.866803 0.498650i \(-0.833829\pi\)
−0.150583 + 0.988597i \(0.548115\pi\)
\(80\) 2.92833 + 12.8299i 0.327397 + 1.43442i
\(81\) 0.623490 0.781831i 0.0692766 0.0868702i
\(82\) −0.217635 0.272906i −0.0240338 0.0301374i
\(83\) 1.57949 6.92019i 0.173371 0.759590i −0.811223 0.584737i \(-0.801198\pi\)
0.984595 0.174853i \(-0.0559451\pi\)
\(84\) −1.66255 7.28410i −0.181399 0.794760i
\(85\) 6.61090 + 8.28981i 0.717053 + 0.899156i
\(86\) −0.0444768 −0.00479606
\(87\) 5.38055 + 0.222965i 0.576855 + 0.0239044i
\(88\) 2.99840 0.319630
\(89\) −8.71402 10.9270i −0.923684 1.15826i −0.987073 0.160274i \(-0.948762\pi\)
0.0633886 0.997989i \(-0.479809\pi\)
\(90\) 0.135995 + 0.595831i 0.0143351 + 0.0628061i
\(91\) −3.92117 + 17.1798i −0.411050 + 1.80093i
\(92\) 0.532218 + 0.667380i 0.0554875 + 0.0695792i
\(93\) −2.81961 + 3.53568i −0.292380 + 0.366633i
\(94\) 0.189773 + 0.831452i 0.0195736 + 0.0857577i
\(95\) −11.1719 + 5.38012i −1.14622 + 0.551988i
\(96\) −1.87458 + 0.902751i −0.191324 + 0.0921367i
\(97\) 3.18704 13.9633i 0.323595 1.41776i −0.507510 0.861646i \(-0.669434\pi\)
0.831105 0.556116i \(-0.187709\pi\)
\(98\) −1.18115 0.568813i −0.119314 0.0574588i
\(99\) −4.26673 −0.428822
\(100\) 12.2604 + 5.90430i 1.22604 + 0.590430i
\(101\) 0.509045 0.638322i 0.0506519 0.0635154i −0.755860 0.654733i \(-0.772781\pi\)
0.806512 + 0.591218i \(0.201353\pi\)
\(102\) −0.339167 + 0.425302i −0.0335825 + 0.0421111i
\(103\) 4.46695 + 2.15117i 0.440142 + 0.211961i 0.640812 0.767698i \(-0.278598\pi\)
−0.200670 + 0.979659i \(0.564312\pi\)
\(104\) 3.26289 0.319953
\(105\) −11.8017 5.68340i −1.15173 0.554643i
\(106\) −0.432221 + 1.89368i −0.0419810 + 0.183931i
\(107\) 10.3935 5.00522i 1.00477 0.483873i 0.142218 0.989835i \(-0.454577\pi\)
0.862556 + 0.505962i \(0.168862\pi\)
\(108\) 1.77369 0.854163i 0.170673 0.0821919i
\(109\) −1.92418 8.43038i −0.184303 0.807484i −0.979550 0.201199i \(-0.935516\pi\)
0.795247 0.606285i \(-0.207341\pi\)
\(110\) 1.62583 2.03873i 0.155017 0.194385i
\(111\) 3.94541 + 4.94738i 0.374481 + 0.469585i
\(112\) 3.22001 14.1078i 0.304262 1.33306i
\(113\) −1.68793 7.39532i −0.158787 0.695693i −0.990156 0.139971i \(-0.955299\pi\)
0.831368 0.555722i \(-0.187558\pi\)
\(114\) −0.396643 0.497375i −0.0371490 0.0465834i
\(115\) 1.49655 0.139554
\(116\) 9.35296 + 4.99134i 0.868401 + 0.463434i
\(117\) −4.64311 −0.429255
\(118\) −0.670136 0.840324i −0.0616910 0.0773581i
\(119\) −2.59441 11.3669i −0.237829 1.04200i
\(120\) −0.539714 + 2.36464i −0.0492689 + 0.215861i
\(121\) 4.49223 + 5.63308i 0.408385 + 0.512098i
\(122\) 0.418620 0.524932i 0.0379000 0.0475251i
\(123\) 0.438650 + 1.92185i 0.0395518 + 0.173288i
\(124\) −8.02116 + 3.86279i −0.720321 + 0.346888i
\(125\) 5.94678 2.86382i 0.531896 0.256148i
\(126\) 0.149540 0.655179i 0.0133221 0.0583680i
\(127\) −1.11242 0.535714i −0.0987114 0.0475369i 0.383877 0.923384i \(-0.374589\pi\)
−0.482588 + 0.875848i \(0.660303\pi\)
\(128\) −5.44633 −0.481392
\(129\) 0.226304 + 0.108982i 0.0199249 + 0.00959534i
\(130\) 1.76925 2.21857i 0.155173 0.194581i
\(131\) −2.49124 + 3.12392i −0.217661 + 0.272938i −0.878659 0.477449i \(-0.841561\pi\)
0.660999 + 0.750387i \(0.270133\pi\)
\(132\) −7.56785 3.64448i −0.658697 0.317212i
\(133\) 13.6350 1.18230
\(134\) 0.840304 + 0.404669i 0.0725912 + 0.0349581i
\(135\) 0.768016 3.36490i 0.0661003 0.289604i
\(136\) −1.94507 + 0.936698i −0.166789 + 0.0803212i
\(137\) −15.0046 + 7.22585i −1.28193 + 0.617346i −0.945886 0.324500i \(-0.894804\pi\)
−0.336046 + 0.941846i \(0.609090\pi\)
\(138\) 0.0170850 + 0.0748543i 0.00145437 + 0.00637202i
\(139\) 5.15692 6.46658i 0.437405 0.548488i −0.513452 0.858118i \(-0.671634\pi\)
0.950857 + 0.309630i \(0.100205\pi\)
\(140\) −16.0780 20.1612i −1.35884 1.70393i
\(141\) 1.07173 4.69554i 0.0902556 0.395436i
\(142\) 0.229956 + 1.00750i 0.0192974 + 0.0845476i
\(143\) 12.3519 + 15.4888i 1.03292 + 1.29524i
\(144\) 3.81285 0.317738
\(145\) 17.0654 7.36414i 1.41721 0.611558i
\(146\) −1.86803 −0.154600
\(147\) 4.61609 + 5.78839i 0.380728 + 0.477418i
\(148\) 2.77205 + 12.1451i 0.227861 + 0.998324i
\(149\) 2.08913 9.15309i 0.171149 0.749851i −0.814379 0.580334i \(-0.802922\pi\)
0.985527 0.169517i \(-0.0542208\pi\)
\(150\) 0.763147 + 0.956956i 0.0623107 + 0.0781351i
\(151\) 12.2599 15.3734i 0.997693 1.25107i 0.0298388 0.999555i \(-0.490501\pi\)
0.967854 0.251513i \(-0.0809280\pi\)
\(152\) −0.561803 2.46142i −0.0455682 0.199647i
\(153\) 2.76785 1.33292i 0.223767 0.107761i
\(154\) −2.58340 + 1.24410i −0.208177 + 0.100253i
\(155\) −3.47320 + 15.2171i −0.278974 + 1.22227i
\(156\) −8.23542 3.96597i −0.659362 0.317532i
\(157\) −2.61457 −0.208665 −0.104333 0.994542i \(-0.533271\pi\)
−0.104333 + 0.994542i \(0.533271\pi\)
\(158\) −1.60122 0.771107i −0.127386 0.0613460i
\(159\) 6.83931 8.57623i 0.542393 0.680139i
\(160\) −4.47737 + 5.61445i −0.353967 + 0.443861i
\(161\) −1.48265 0.714006i −0.116849 0.0562715i
\(162\) 0.177073 0.0139121
\(163\) 0.475531 + 0.229004i 0.0372465 + 0.0179370i 0.452414 0.891808i \(-0.350563\pi\)
−0.415168 + 0.909745i \(0.636277\pi\)
\(164\) −0.863547 + 3.78345i −0.0674317 + 0.295437i
\(165\) −13.2680 + 6.38951i −1.03291 + 0.497423i
\(166\) 1.13242 0.545344i 0.0878928 0.0423269i
\(167\) 3.34870 + 14.6716i 0.259131 + 1.13533i 0.922183 + 0.386753i \(0.126403\pi\)
−0.663053 + 0.748573i \(0.730740\pi\)
\(168\) 1.66287 2.08518i 0.128293 0.160875i
\(169\) 5.33610 + 6.69126i 0.410469 + 0.514712i
\(170\) −0.417786 + 1.83044i −0.0320427 + 0.140388i
\(171\) 0.799448 + 3.50261i 0.0611353 + 0.267851i
\(172\) 0.308304 + 0.386601i 0.0235079 + 0.0294780i
\(173\) 0.103233 0.00784865 0.00392433 0.999992i \(-0.498751\pi\)
0.00392433 + 0.999992i \(0.498751\pi\)
\(174\) 0.563161 + 0.769504i 0.0426931 + 0.0583360i
\(175\) −26.2339 −1.98310
\(176\) −10.1432 12.7192i −0.764572 0.958743i
\(177\) 1.35068 + 5.91772i 0.101523 + 0.444803i
\(178\) 0.550695 2.41275i 0.0412764 0.180844i
\(179\) −2.52461 3.16576i −0.188698 0.236620i 0.678479 0.734620i \(-0.262640\pi\)
−0.867177 + 0.498000i \(0.834068\pi\)
\(180\) 4.23639 5.31227i 0.315762 0.395953i
\(181\) 2.56394 + 11.2334i 0.190576 + 0.834969i 0.976305 + 0.216398i \(0.0694309\pi\)
−0.785729 + 0.618571i \(0.787712\pi\)
\(182\) −2.81129 + 1.35385i −0.208387 + 0.100354i
\(183\) −3.41624 + 1.64517i −0.252536 + 0.121615i
\(184\) −0.0678043 + 0.297070i −0.00499860 + 0.0219003i
\(185\) 19.6776 + 9.47621i 1.44672 + 0.696705i
\(186\) −0.800776 −0.0587158
\(187\) −11.8097 5.68723i −0.863607 0.415891i
\(188\) 5.91166 7.41299i 0.431152 0.540648i
\(189\) −2.36628 + 2.96722i −0.172121 + 0.215833i
\(190\) −1.97824 0.952672i −0.143517 0.0691141i
\(191\) 1.55942 0.112836 0.0564179 0.998407i \(-0.482032\pi\)
0.0564179 + 0.998407i \(0.482032\pi\)
\(192\) 6.53859 + 3.14882i 0.471882 + 0.227246i
\(193\) −2.97677 + 13.0421i −0.214273 + 0.938790i 0.747354 + 0.664427i \(0.231324\pi\)
−0.961626 + 0.274363i \(0.911533\pi\)
\(194\) 2.28496 1.10038i 0.164050 0.0790024i
\(195\) −14.4384 + 6.95314i −1.03395 + 0.497925i
\(196\) 3.24327 + 14.2097i 0.231662 + 1.01498i
\(197\) −7.96548 + 9.98840i −0.567517 + 0.711644i −0.979927 0.199354i \(-0.936116\pi\)
0.412411 + 0.910998i \(0.364687\pi\)
\(198\) −0.471060 0.590690i −0.0334768 0.0419785i
\(199\) −1.96309 + 8.60088i −0.139160 + 0.609700i 0.856460 + 0.516213i \(0.172659\pi\)
−0.995620 + 0.0934873i \(0.970199\pi\)
\(200\) 1.08092 + 4.73580i 0.0764323 + 0.334872i
\(201\) −3.28401 4.11802i −0.231636 0.290463i
\(202\) 0.144570 0.0101719
\(203\) −20.4203 0.846200i −1.43322 0.0593916i
\(204\) 6.04783 0.423433
\(205\) 4.24205 + 5.31937i 0.296278 + 0.371521i
\(206\) 0.195355 + 0.855906i 0.0136110 + 0.0596338i
\(207\) 0.0964858 0.422732i 0.00670623 0.0293819i
\(208\) −11.0379 13.8411i −0.765344 0.959711i
\(209\) 9.55749 11.9847i 0.661105 0.829000i
\(210\) −0.516128 2.26131i −0.0356162 0.156045i
\(211\) 13.5356 6.51841i 0.931830 0.448746i 0.0945500 0.995520i \(-0.469859\pi\)
0.837280 + 0.546774i \(0.184144\pi\)
\(212\) 19.4563 9.36966i 1.33626 0.643511i
\(213\) 1.29865 5.68976i 0.0889821 0.389856i
\(214\) 1.84040 + 0.886289i 0.125807 + 0.0605854i
\(215\) 0.866924 0.0591237
\(216\) 0.633146 + 0.304907i 0.0430801 + 0.0207463i
\(217\) 10.7010 13.4186i 0.726432 0.910917i
\(218\) 0.954675 1.19712i 0.0646587 0.0810795i
\(219\) 9.50480 + 4.57727i 0.642275 + 0.309303i
\(220\) −28.9909 −1.95457
\(221\) −12.8514 6.18891i −0.864479 0.416311i
\(222\) −0.249336 + 1.09241i −0.0167343 + 0.0733179i
\(223\) −21.5743 + 10.3896i −1.44472 + 0.695740i −0.981669 0.190592i \(-0.938959\pi\)
−0.463050 + 0.886332i \(0.653245\pi\)
\(224\) 7.11444 3.42613i 0.475353 0.228918i
\(225\) −1.53815 6.73907i −0.102543 0.449271i
\(226\) 0.837463 1.05015i 0.0557072 0.0698546i
\(227\) −3.21628 4.03308i −0.213472 0.267685i 0.663554 0.748128i \(-0.269047\pi\)
−0.877026 + 0.480443i \(0.840476\pi\)
\(228\) −1.57383 + 6.89539i −0.104229 + 0.456659i
\(229\) 1.80280 + 7.89857i 0.119132 + 0.521952i 0.998915 + 0.0465760i \(0.0148310\pi\)
−0.879783 + 0.475376i \(0.842312\pi\)
\(230\) 0.165224 + 0.207184i 0.0108945 + 0.0136613i
\(231\) 16.1931 1.06543
\(232\) 0.688620 + 3.72118i 0.0452101 + 0.244308i
\(233\) 24.5153 1.60605 0.803027 0.595943i \(-0.203222\pi\)
0.803027 + 0.595943i \(0.203222\pi\)
\(234\) −0.512613 0.642796i −0.0335106 0.0420209i
\(235\) −3.69899 16.2063i −0.241295 1.05718i
\(236\) −2.65901 + 11.6499i −0.173087 + 0.758343i
\(237\) 6.25776 + 7.84699i 0.406485 + 0.509716i
\(238\) 1.28721 1.61411i 0.0834374 0.104627i
\(239\) 6.21741 + 27.2402i 0.402171 + 1.76202i 0.618580 + 0.785722i \(0.287708\pi\)
−0.216410 + 0.976303i \(0.569435\pi\)
\(240\) 11.8566 5.70982i 0.765339 0.368568i
\(241\) −3.57537 + 1.72181i −0.230310 + 0.110911i −0.545480 0.838124i \(-0.683653\pi\)
0.315170 + 0.949035i \(0.397938\pi\)
\(242\) −0.283893 + 1.24382i −0.0182494 + 0.0799557i
\(243\) −0.900969 0.433884i −0.0577972 0.0278337i
\(244\) −7.46459 −0.477871
\(245\) 23.0225 + 11.0871i 1.47086 + 0.708327i
\(246\) −0.217635 + 0.272906i −0.0138759 + 0.0173998i
\(247\) 10.4006 13.0419i 0.661773 0.829837i
\(248\) −2.86328 1.37888i −0.181818 0.0875591i
\(249\) −7.09816 −0.449828
\(250\) 1.05301 + 0.507104i 0.0665983 + 0.0320721i
\(251\) 7.03374 30.8168i 0.443965 1.94514i 0.154218 0.988037i \(-0.450714\pi\)
0.289748 0.957103i \(-0.406429\pi\)
\(252\) −6.73152 + 3.24173i −0.424046 + 0.204210i
\(253\) −1.66685 + 0.802714i −0.104794 + 0.0504662i
\(254\) −0.0486499 0.213149i −0.00305256 0.0133742i
\(255\) 6.61090 8.28981i 0.413991 0.519128i
\(256\) 8.44840 + 10.5940i 0.528025 + 0.662122i
\(257\) 0.901269 3.94872i 0.0562196 0.246314i −0.939008 0.343895i \(-0.888253\pi\)
0.995228 + 0.0975812i \(0.0311106\pi\)
\(258\) 0.00989702 + 0.0433617i 0.000616161 + 0.00269958i
\(259\) −14.9736 18.7764i −0.930417 1.16671i
\(260\) −31.5483 −1.95654
\(261\) −0.979909 5.29526i −0.0606549 0.327768i
\(262\) −0.707518 −0.0437106
\(263\) −8.91597 11.1803i −0.549782 0.689405i 0.426850 0.904322i \(-0.359623\pi\)
−0.976632 + 0.214917i \(0.931052\pi\)
\(264\) −0.667206 2.92322i −0.0410637 0.179912i
\(265\) 8.42468 36.9109i 0.517524 2.26742i
\(266\) 1.50534 + 1.88764i 0.0922986 + 0.115739i
\(267\) −8.71402 + 10.9270i −0.533289 + 0.668723i
\(268\) −2.30735 10.1092i −0.140944 0.617515i
\(269\) −19.3865 + 9.33606i −1.18202 + 0.569230i −0.918498 0.395425i \(-0.870597\pi\)
−0.263519 + 0.964654i \(0.584883\pi\)
\(270\) 0.550631 0.265170i 0.0335103 0.0161377i
\(271\) 4.40370 19.2939i 0.267506 1.17202i −0.645399 0.763846i \(-0.723309\pi\)
0.912904 0.408174i \(-0.133834\pi\)
\(272\) 10.5534 + 5.08225i 0.639894 + 0.308157i
\(273\) 17.6216 1.06651
\(274\) −2.65691 1.27950i −0.160510 0.0772974i
\(275\) −18.3887 + 23.0587i −1.10888 + 1.39049i
\(276\) 0.532218 0.667380i 0.0320357 0.0401715i
\(277\) −5.04862 2.43129i −0.303342 0.146082i 0.276020 0.961152i \(-0.410984\pi\)
−0.579363 + 0.815070i \(0.696699\pi\)
\(278\) 1.46458 0.0878397
\(279\) 4.07445 + 1.96215i 0.243931 + 0.117471i
\(280\) 2.04833 8.97432i 0.122411 0.536318i
\(281\) 9.74719 4.69400i 0.581469 0.280021i −0.119939 0.992781i \(-0.538270\pi\)
0.701407 + 0.712761i \(0.252555\pi\)
\(282\) 0.768377 0.370031i 0.0457562 0.0220350i
\(283\) 1.65442 + 7.24849i 0.0983451 + 0.430878i 0.999999 0.00158078i \(-0.000503178\pi\)
−0.901654 + 0.432459i \(0.857646\pi\)
\(284\) 7.16339 8.98260i 0.425069 0.533019i
\(285\) 7.73121 + 9.69464i 0.457958 + 0.574261i
\(286\) −0.780596 + 3.42001i −0.0461576 + 0.202230i
\(287\) −1.66477 7.29384i −0.0982683 0.430542i
\(288\) 1.29725 + 1.62670i 0.0764413 + 0.0958543i
\(289\) −7.56234 −0.444843
\(290\) 2.90357 + 1.54953i 0.170504 + 0.0909916i
\(291\) −14.3224 −0.839595
\(292\) 12.9488 + 16.2373i 0.757772 + 0.950216i
\(293\) −2.76291 12.1051i −0.161411 0.707186i −0.989252 0.146223i \(-0.953288\pi\)
0.827841 0.560963i \(-0.189569\pi\)
\(294\) −0.291720 + 1.27811i −0.0170135 + 0.0745409i
\(295\) 13.0620 + 16.3793i 0.760500 + 0.953637i
\(296\) −2.77259 + 3.47672i −0.161153 + 0.202080i
\(297\) 0.949437 + 4.15975i 0.0550919 + 0.241373i
\(298\) 1.49781 0.721307i 0.0867658 0.0417842i
\(299\) −1.81389 + 0.873523i −0.104900 + 0.0505172i
\(300\) 3.02807 13.2668i 0.174826 0.765961i
\(301\) −0.858870 0.413610i −0.0495045 0.0238401i
\(302\) 3.48183 0.200357
\(303\) −0.735591 0.354242i −0.0422586 0.0203507i
\(304\) −8.54080 + 10.7098i −0.489849 + 0.614251i
\(305\) −8.15957 + 10.2318i −0.467215 + 0.585870i
\(306\) 0.490110 + 0.236025i 0.0280177 + 0.0134926i
\(307\) 24.0387 1.37196 0.685981 0.727620i \(-0.259373\pi\)
0.685981 + 0.727620i \(0.259373\pi\)
\(308\) 28.7216 + 13.8316i 1.63656 + 0.788128i
\(309\) 1.10325 4.83364i 0.0627615 0.274976i
\(310\) −2.49012 + 1.19918i −0.141429 + 0.0681088i
\(311\) 28.1593 13.5608i 1.59677 0.768963i 0.597314 0.802007i \(-0.296234\pi\)
0.999454 + 0.0330440i \(0.0105201\pi\)
\(312\) −0.726062 3.18108i −0.0411051 0.180093i
\(313\) −13.1250 + 16.4582i −0.741867 + 0.930272i −0.999351 0.0360104i \(-0.988535\pi\)
0.257484 + 0.966283i \(0.417106\pi\)
\(314\) −0.288656 0.361964i −0.0162898 0.0204268i
\(315\) −2.91478 + 12.7705i −0.164229 + 0.719536i
\(316\) 4.39671 + 19.2633i 0.247334 + 1.08364i
\(317\) −9.75852 12.2368i −0.548093 0.687287i 0.428214 0.903677i \(-0.359143\pi\)
−0.976307 + 0.216390i \(0.930572\pi\)
\(318\) 1.94238 0.108923
\(319\) −15.0574 + 17.3556i −0.843055 + 0.971728i
\(320\) 25.0480 1.40023
\(321\) −7.19249 9.01910i −0.401446 0.503397i
\(322\) −0.0648412 0.284088i −0.00361346 0.0158316i
\(323\) −2.45597 + 10.7603i −0.136654 + 0.598718i
\(324\) −1.22743 1.53915i −0.0681906 0.0855083i
\(325\) −20.0108 + 25.0928i −1.11000 + 1.39190i
\(326\) 0.0207966 + 0.0911157i 0.00115181 + 0.00504643i
\(327\) −7.79084 + 3.75187i −0.430835 + 0.207479i
\(328\) −1.24811 + 0.601056i −0.0689151 + 0.0331878i
\(329\) −4.06743 + 17.8206i −0.224244 + 0.982479i
\(330\) −2.34939 1.13141i −0.129330 0.0622820i
\(331\) −19.4595 −1.06959 −0.534796 0.844981i \(-0.679612\pi\)
−0.534796 + 0.844981i \(0.679612\pi\)
\(332\) −12.5899 6.06299i −0.690962 0.332750i
\(333\) 3.94541 4.94738i 0.216207 0.271115i
\(334\) −1.66145 + 2.08339i −0.0909104 + 0.113998i
\(335\) −16.3789 7.88765i −0.894873 0.430948i
\(336\) −14.4706 −0.789435
\(337\) −18.1797 8.75489i −0.990312 0.476909i −0.132672 0.991160i \(-0.542356\pi\)
−0.857640 + 0.514251i \(0.828070\pi\)
\(338\) −0.337223 + 1.47747i −0.0183425 + 0.0803638i
\(339\) −6.83431 + 3.29123i −0.371189 + 0.178755i
\(340\) 18.8065 9.05675i 1.01993 0.491171i
\(341\) −4.29364 18.8117i −0.232514 1.01871i
\(342\) −0.396643 + 0.497375i −0.0214480 + 0.0268950i
\(343\) −0.955090 1.19764i −0.0515700 0.0646667i
\(344\) −0.0392777 + 0.172087i −0.00211771 + 0.00927831i
\(345\) −0.333014 1.45903i −0.0179289 0.0785515i
\(346\) 0.0113972 + 0.0142917i 0.000612719 + 0.000768325i
\(347\) 0.788354 0.0423211 0.0211605 0.999776i \(-0.493264\pi\)
0.0211605 + 0.999776i \(0.493264\pi\)
\(348\) 2.78496 10.2291i 0.149290 0.548340i
\(349\) 20.9417 1.12098 0.560491 0.828161i \(-0.310613\pi\)
0.560491 + 0.828161i \(0.310613\pi\)
\(350\) −2.89630 3.63185i −0.154814 0.194131i
\(351\) 1.03319 + 4.52669i 0.0551475 + 0.241617i
\(352\) 1.97543 8.65491i 0.105291 0.461308i
\(353\) −22.5006 28.2149i −1.19759 1.50173i −0.816658 0.577122i \(-0.804176\pi\)
−0.380929 0.924604i \(-0.624396\pi\)
\(354\) −0.670136 + 0.840324i −0.0356173 + 0.0446627i
\(355\) −4.48220 19.6378i −0.237891 1.04227i
\(356\) −24.7894 + 11.9380i −1.31384 + 0.632710i
\(357\) −10.5046 + 5.05873i −0.555960 + 0.267736i
\(358\) 0.159547 0.699020i 0.00843230 0.0369443i
\(359\) −16.7787 8.08019i −0.885545 0.426456i −0.0648984 0.997892i \(-0.520672\pi\)
−0.820647 + 0.571436i \(0.806387\pi\)
\(360\) 2.42545 0.127833
\(361\) 5.48925 + 2.64349i 0.288908 + 0.139131i
\(362\) −1.27209 + 1.59515i −0.0668596 + 0.0838393i
\(363\) 4.49223 5.63308i 0.235781 0.295660i
\(364\) 31.2552 + 15.0517i 1.63822 + 0.788923i
\(365\) 36.4110 1.90584
\(366\) −0.604923 0.291315i −0.0316198 0.0152273i
\(367\) −3.58975 + 15.7277i −0.187383 + 0.820981i 0.790606 + 0.612325i \(0.209766\pi\)
−0.977989 + 0.208655i \(0.933091\pi\)
\(368\) 1.48954 0.717325i 0.0776477 0.0373932i
\(369\) 1.77606 0.855305i 0.0924579 0.0445254i
\(370\) 0.860566 + 3.77038i 0.0447387 + 0.196013i
\(371\) −25.9566 + 32.5486i −1.34760 + 1.68984i
\(372\) 5.55081 + 6.96050i 0.287796 + 0.360885i
\(373\) −0.252766 + 1.10744i −0.0130877 + 0.0573410i −0.981050 0.193754i \(-0.937934\pi\)
0.967962 + 0.251095i \(0.0807907\pi\)
\(374\) −0.516476 2.26283i −0.0267063 0.117008i
\(375\) −4.11530 5.16042i −0.212513 0.266483i
\(376\) 3.38460 0.174547
\(377\) −16.3857 + 18.8866i −0.843906 + 0.972709i
\(378\) −0.672028 −0.0345654
\(379\) 18.8590 + 23.6485i 0.968723 + 1.21474i 0.976664 + 0.214772i \(0.0689008\pi\)
−0.00794116 + 0.999968i \(0.502528\pi\)
\(380\) 5.43196 + 23.7990i 0.278654 + 1.22086i
\(381\) −0.274745 + 1.20374i −0.0140756 + 0.0616693i
\(382\) 0.172165 + 0.215888i 0.00880873 + 0.0110458i
\(383\) −10.9608 + 13.7443i −0.560068 + 0.702303i −0.978570 0.205912i \(-0.933984\pi\)
0.418502 + 0.908216i \(0.362555\pi\)
\(384\) 1.21192 + 5.30978i 0.0618456 + 0.270963i
\(385\) 50.3547 24.2495i 2.56631 1.23587i
\(386\) −2.13420 + 1.02778i −0.108628 + 0.0523125i
\(387\) 0.0558924 0.244881i 0.00284117 0.0124480i
\(388\) −25.4035 12.2337i −1.28967 0.621071i
\(389\) 38.5442 1.95427 0.977134 0.212625i \(-0.0682014\pi\)
0.977134 + 0.212625i \(0.0682014\pi\)
\(390\) −2.55664 1.23121i −0.129460 0.0623448i
\(391\) 0.830527 1.04145i 0.0420016 0.0526683i
\(392\) −3.24390 + 4.06772i −0.163842 + 0.205451i
\(393\) 3.59995 + 1.73364i 0.181593 + 0.0874507i
\(394\) −2.26222 −0.113969
\(395\) 31.2103 + 15.0301i 1.57036 + 0.756247i
\(396\) −1.86910 + 8.18908i −0.0939260 + 0.411517i
\(397\) 18.9872 9.14373i 0.952938 0.458911i 0.108223 0.994127i \(-0.465484\pi\)
0.844715 + 0.535216i \(0.179770\pi\)
\(398\) −1.40745 + 0.677790i −0.0705489 + 0.0339745i
\(399\) −3.03407 13.2931i −0.151894 0.665489i
\(400\) 16.4326 20.6059i 0.821631 1.03029i
\(401\) −21.6506 27.1490i −1.08118 1.35576i −0.930130 0.367231i \(-0.880306\pi\)
−0.151051 0.988526i \(-0.548266\pi\)
\(402\) 0.207538 0.909283i 0.0103511 0.0453509i
\(403\) −4.67239 20.4711i −0.232748 1.01974i
\(404\) −1.00213 1.25663i −0.0498578 0.0625197i
\(405\) −3.45143 −0.171503
\(406\) −2.13732 2.92043i −0.106073 0.144939i
\(407\) −26.9996 −1.33832
\(408\) 1.34603 + 1.68787i 0.0666385 + 0.0835621i
\(409\) 0.697528 + 3.05607i 0.0344905 + 0.151113i 0.989241 0.146295i \(-0.0467349\pi\)
−0.954750 + 0.297408i \(0.903878\pi\)
\(410\) −0.268083 + 1.17455i −0.0132397 + 0.0580068i
\(411\) 10.3835 + 13.0205i 0.512181 + 0.642255i
\(412\) 6.08553 7.63102i 0.299813 0.375953i
\(413\) −5.12612 22.4590i −0.252240 1.10514i
\(414\) 0.0691757 0.0333133i 0.00339980 0.00163726i
\(415\) −22.0727 + 10.6296i −1.08350 + 0.521788i
\(416\) 2.14968 9.41838i 0.105397 0.461774i
\(417\) −7.45197 3.58868i −0.364925 0.175738i
\(418\) 2.71435 0.132763
\(419\) 7.82316 + 3.76744i 0.382186 + 0.184051i 0.615105 0.788445i \(-0.289113\pi\)
−0.232919 + 0.972496i \(0.574828\pi\)
\(420\) −16.0780 + 20.1612i −0.784526 + 0.983764i
\(421\) 17.6965 22.1907i 0.862475 1.08151i −0.133426 0.991059i \(-0.542598\pi\)
0.995901 0.0904508i \(-0.0288308\pi\)
\(422\) 2.39679 + 1.15423i 0.116674 + 0.0561871i
\(423\) −4.81629 −0.234176
\(424\) 6.94523 + 3.34465i 0.337290 + 0.162430i
\(425\) 4.72531 20.7029i 0.229211 1.00424i
\(426\) 0.931071 0.448380i 0.0451106 0.0217241i
\(427\) 12.9653 6.24378i 0.627437 0.302158i
\(428\) −5.05346 22.1406i −0.244268 1.07021i
\(429\) 12.3519 15.4888i 0.596355 0.747805i
\(430\) 0.0957110 + 0.120018i 0.00461560 + 0.00578777i
\(431\) −0.0183247 + 0.0802859i −0.000882671 + 0.00386723i −0.975367 0.220587i \(-0.929203\pi\)
0.974485 + 0.224454i \(0.0720599\pi\)
\(432\) −0.848440 3.71726i −0.0408206 0.178847i
\(433\) 0.788400 + 0.988623i 0.0378881 + 0.0475102i 0.800415 0.599447i \(-0.204613\pi\)
−0.762526 + 0.646957i \(0.776041\pi\)
\(434\) 3.03912 0.145882
\(435\) −10.9769 14.9989i −0.526303 0.719141i
\(436\) −17.0232 −0.815265
\(437\) 0.971272 + 1.21794i 0.0464623 + 0.0582618i
\(438\) 0.415677 + 1.82120i 0.0198618 + 0.0870202i
\(439\) −6.49242 + 28.4451i −0.309866 + 1.35761i 0.544857 + 0.838529i \(0.316584\pi\)
−0.854723 + 0.519084i \(0.826273\pi\)
\(440\) −6.45234 8.09098i −0.307603 0.385722i
\(441\) 4.61609 5.78839i 0.219814 0.275638i
\(442\) −0.562035 2.46244i −0.0267333 0.117126i
\(443\) 16.4847 7.93860i 0.783211 0.377174i 0.000849826 1.00000i \(-0.499729\pi\)
0.782361 + 0.622825i \(0.214015\pi\)
\(444\) 11.2238 5.40509i 0.532658 0.256514i
\(445\) −10.7339 + 47.0285i −0.508837 + 2.22936i
\(446\) −3.82021 1.83972i −0.180892 0.0871131i
\(447\) −9.38848 −0.444060
\(448\) −24.8153 11.9504i −1.17241 0.564605i
\(449\) −6.63592 + 8.32119i −0.313169 + 0.392701i −0.913358 0.407157i \(-0.866520\pi\)
0.600190 + 0.799858i \(0.295092\pi\)
\(450\) 0.763147 0.956956i 0.0359751 0.0451113i
\(451\) −7.57796 3.64935i −0.356832 0.171841i
\(452\) −14.9332 −0.702397
\(453\) −17.7160 8.53158i −0.832370 0.400848i
\(454\) 0.203257 0.890529i 0.00953934 0.0417946i
\(455\) 54.7966 26.3886i 2.56890 1.23712i
\(456\) −2.27469 + 1.09543i −0.106522 + 0.0512984i
\(457\) −6.72070 29.4453i −0.314381 1.37739i −0.847249 0.531196i \(-0.821743\pi\)
0.532868 0.846199i \(-0.321114\pi\)
\(458\) −0.894452 + 1.12161i −0.0417950 + 0.0524093i
\(459\) −1.91541 2.40185i −0.0894036 0.112109i
\(460\) 0.655586 2.87231i 0.0305669 0.133922i
\(461\) 8.11297 + 35.5452i 0.377859 + 1.65551i 0.704011 + 0.710189i \(0.251391\pi\)
−0.326152 + 0.945317i \(0.605752\pi\)
\(462\) 1.78777 + 2.24179i 0.0831747 + 0.104298i
\(463\) 18.1919 0.845450 0.422725 0.906258i \(-0.361074\pi\)
0.422725 + 0.906258i \(0.361074\pi\)
\(464\) 13.4557 15.5094i 0.624666 0.720006i
\(465\) 15.6084 0.723823
\(466\) 2.70657 + 3.39393i 0.125379 + 0.157221i
\(467\) −2.20583 9.66436i −0.102074 0.447213i −0.999975 0.00701766i \(-0.997766\pi\)
0.897902 0.440196i \(-0.145091\pi\)
\(468\) −2.03398 + 8.91146i −0.0940208 + 0.411932i
\(469\) 12.4635 + 15.6287i 0.575511 + 0.721669i
\(470\) 1.83524 2.30132i 0.0846533 0.106152i
\(471\) 0.581796 + 2.54902i 0.0268078 + 0.117452i
\(472\) −3.84313 + 1.85076i −0.176895 + 0.0851880i
\(473\) −0.965577 + 0.464997i −0.0443973 + 0.0213806i
\(474\) −0.395469 + 1.73266i −0.0181645 + 0.0795838i
\(475\) 22.3746 + 10.7751i 1.02662 + 0.494394i
\(476\) −22.9528 −1.05204
\(477\) −9.88310 4.75945i −0.452516 0.217920i
\(478\) −3.08475 + 3.86815i −0.141093 + 0.176925i
\(479\) 26.6415 33.4074i 1.21728 1.52642i 0.439027 0.898474i \(-0.355323\pi\)
0.778255 0.627949i \(-0.216105\pi\)
\(480\) 6.46999 + 3.11578i 0.295313 + 0.142215i
\(481\) −29.3813 −1.33967
\(482\) −0.633101 0.304885i −0.0288369 0.0138871i
\(483\) −0.366184 + 1.60436i −0.0166619 + 0.0730007i
\(484\) 12.7794 6.15423i 0.580881 0.279738i
\(485\) −44.5375 + 21.4481i −2.02234 + 0.973908i
\(486\) −0.0394024 0.172633i −0.00178733 0.00783080i
\(487\) −15.8593 + 19.8869i −0.718654 + 0.901163i −0.998261 0.0589511i \(-0.981224\pi\)
0.279607 + 0.960115i \(0.409796\pi\)
\(488\) −1.66135 2.08327i −0.0752059 0.0943052i
\(489\) 0.117446 0.514567i 0.00531111 0.0232695i
\(490\) 1.00685 + 4.41131i 0.0454850 + 0.199283i
\(491\) 19.5910 + 24.5664i 0.884131 + 1.10867i 0.993406 + 0.114654i \(0.0365759\pi\)
−0.109274 + 0.994012i \(0.534853\pi\)
\(492\) 3.88074 0.174957
\(493\) 4.34594 15.9626i 0.195731 0.718920i
\(494\) 2.95379 0.132897
\(495\) 9.18171 + 11.5135i 0.412687 + 0.517493i
\(496\) 3.83690 + 16.8106i 0.172282 + 0.754817i
\(497\) −4.92865 + 21.5938i −0.221080 + 0.968616i
\(498\) −0.783658 0.982676i −0.0351166 0.0440348i
\(499\) −4.33114 + 5.43107i −0.193888 + 0.243128i −0.869267 0.494343i \(-0.835409\pi\)
0.675379 + 0.737471i \(0.263980\pi\)
\(500\) −2.89141 12.6681i −0.129308 0.566535i
\(501\) 13.5586 6.52949i 0.605755 0.291716i
\(502\) 5.04286 2.42851i 0.225074 0.108390i
\(503\) −5.90822 + 25.8856i −0.263434 + 1.15418i 0.654063 + 0.756440i \(0.273063\pi\)
−0.917497 + 0.397742i \(0.869794\pi\)
\(504\) −2.40292 1.15719i −0.107035 0.0515452i
\(505\) −2.81790 −0.125395
\(506\) −0.295154 0.142139i −0.0131212 0.00631884i
\(507\) 5.33610 6.69126i 0.236985 0.297169i
\(508\) −1.51550 + 1.90038i −0.0672395 + 0.0843156i
\(509\) 1.24379 + 0.598977i 0.0551299 + 0.0265492i 0.461246 0.887273i \(-0.347403\pi\)
−0.406116 + 0.913822i \(0.633117\pi\)
\(510\) 1.87751 0.0831377
\(511\) −36.0727 17.3717i −1.59576 0.768479i
\(512\) −2.95775 + 12.9588i −0.130715 + 0.572702i
\(513\) 3.23690 1.55881i 0.142913 0.0688230i
\(514\) 0.646167 0.311178i 0.0285012 0.0137255i
\(515\) −3.80778 16.6830i −0.167791 0.735140i
\(516\) 0.308304 0.386601i 0.0135723 0.0170191i
\(517\) 12.8126 + 16.0665i 0.563498 + 0.706604i
\(518\) 0.946282 4.14593i 0.0415773 0.182162i
\(519\) −0.0229715 0.100645i −0.00100834 0.00441781i
\(520\) −7.02152 8.80471i −0.307914 0.386112i
\(521\) 8.46722 0.370956 0.185478 0.982648i \(-0.440617\pi\)
0.185478 + 0.982648i \(0.440617\pi\)
\(522\) 0.624896 0.720272i 0.0273510 0.0315255i
\(523\) 4.74716 0.207579 0.103789 0.994599i \(-0.466903\pi\)
0.103789 + 0.994599i \(0.466903\pi\)
\(524\) 4.90437 + 6.14988i 0.214248 + 0.268659i
\(525\) 5.83760 + 25.5762i 0.254774 + 1.11624i
\(526\) 0.563458 2.46867i 0.0245679 0.107639i
\(527\) 8.66206 + 10.8619i 0.377325 + 0.473151i
\(528\) −10.1432 + 12.7192i −0.441426 + 0.553531i
\(529\) 5.07614 + 22.2400i 0.220702 + 0.966958i
\(530\) 6.04009 2.90876i 0.262365 0.126348i
\(531\) 5.46880 2.63363i 0.237326 0.114290i
\(532\) 5.97301 26.1695i 0.258963 1.13459i
\(533\) −8.24643 3.97127i −0.357193 0.172015i
\(534\) −2.47480 −0.107095
\(535\) −35.8723 17.2752i −1.55089 0.746871i
\(536\) 2.30780 2.89389i 0.0996818 0.124997i
\(537\) −2.52461 + 3.16576i −0.108945 + 0.136613i
\(538\) −3.43282 1.65316i −0.148000 0.0712728i
\(539\) −31.5893 −1.36065
\(540\) −6.12176 2.94808i −0.263439 0.126865i
\(541\) −0.543856 + 2.38279i −0.0233822 + 0.102444i −0.985273 0.170992i \(-0.945303\pi\)
0.961890 + 0.273436i \(0.0881601\pi\)
\(542\) 3.15725 1.52045i 0.135615 0.0653089i
\(543\) 10.3812 4.99932i 0.445499 0.214541i
\(544\) 1.42232 + 6.23160i 0.0609816 + 0.267178i
\(545\) −18.6081 + 23.3339i −0.797085 + 0.999513i
\(546\) 1.94547 + 2.43955i 0.0832586 + 0.104403i
\(547\) −1.37369 + 6.01855i −0.0587350 + 0.257335i −0.995768 0.0919072i \(-0.970704\pi\)
0.937033 + 0.349242i \(0.113561\pi\)
\(548\) 7.29548 + 31.9636i 0.311647 + 1.36542i
\(549\) 2.36411 + 2.96450i 0.100898 + 0.126522i
\(550\) −5.22245 −0.222686
\(551\) 17.0687 + 9.10895i 0.727152 + 0.388054i
\(552\) 0.304710 0.0129693
\(553\) −23.7495 29.7810i −1.00993 1.26642i
\(554\) −0.220793 0.967358i −0.00938060 0.0410991i
\(555\) 4.85996 21.2929i 0.206294 0.903832i
\(556\) −10.1522 12.7304i −0.430547 0.539889i
\(557\) −7.76642 + 9.73879i −0.329074 + 0.412646i −0.918653 0.395065i \(-0.870722\pi\)
0.589579 + 0.807710i \(0.299294\pi\)
\(558\) 0.178190 + 0.780699i 0.00754336 + 0.0330496i
\(559\) −1.05075 + 0.506016i −0.0444421 + 0.0214022i
\(560\) −44.9982 + 21.6700i −1.90152 + 0.915724i
\(561\) −2.91674 + 12.7791i −0.123145 + 0.539534i
\(562\) 1.72596 + 0.831179i 0.0728053 + 0.0350612i
\(563\) −3.58213 −0.150969 −0.0754843 0.997147i \(-0.524050\pi\)
−0.0754843 + 0.997147i \(0.524050\pi\)
\(564\) −8.54260 4.11390i −0.359708 0.173226i
\(565\) −16.3235 + 20.4690i −0.686735 + 0.861138i
\(566\) −0.820836 + 1.02930i −0.0345023 + 0.0432645i
\(567\) 3.41937 + 1.64668i 0.143600 + 0.0691541i
\(568\) 4.10124 0.172084
\(569\) 24.2253 + 11.6663i 1.01558 + 0.489076i 0.866197 0.499703i \(-0.166558\pi\)
0.149381 + 0.988780i \(0.452272\pi\)
\(570\) −0.488586 + 2.14063i −0.0204646 + 0.0896613i
\(571\) 27.0389 13.0212i 1.13154 0.544922i 0.228103 0.973637i \(-0.426748\pi\)
0.903440 + 0.428715i \(0.141033\pi\)
\(572\) 35.1383 16.9217i 1.46921 0.707533i
\(573\) −0.347004 1.52033i −0.0144963 0.0635125i
\(574\) 0.825970 1.03573i 0.0344753 0.0432307i
\(575\) −1.86874 2.34333i −0.0779319 0.0977235i
\(576\) 1.61490 7.07533i 0.0672874 0.294805i
\(577\) 0.637724 + 2.79405i 0.0265488 + 0.116318i 0.986466 0.163966i \(-0.0524286\pi\)
−0.959917 + 0.280284i \(0.909571\pi\)
\(578\) −0.834905 1.04694i −0.0347275 0.0435469i
\(579\) 13.3775 0.555949
\(580\) −6.65813 35.9794i −0.276464 1.49396i
\(581\) 26.9390 1.11762
\(582\) −1.58124 1.98281i −0.0655444 0.0821901i
\(583\) 10.4148 + 45.6300i 0.431335 + 1.88980i
\(584\) −1.64967 + 7.22769i −0.0682640 + 0.299084i
\(585\) 9.99165 + 12.5291i 0.413104 + 0.518016i
\(586\) 1.37081 1.71894i 0.0566275 0.0710086i
\(587\) −4.85992 21.2927i −0.200591 0.878844i −0.970578 0.240786i \(-0.922595\pi\)
0.769988 0.638059i \(-0.220262\pi\)
\(588\) 13.1317 6.32390i 0.541543 0.260793i
\(589\) −14.6382 + 7.04940i −0.603158 + 0.290466i
\(590\) −0.825474 + 3.61664i −0.0339842 + 0.148895i
\(591\) 11.5105 + 5.54314i 0.473477 + 0.228014i
\(592\) 24.1275 0.991635
\(593\) −17.9895 8.66330i −0.738741 0.355759i 0.0263741 0.999652i \(-0.491604\pi\)
−0.765116 + 0.643893i \(0.777318\pi\)
\(594\) −0.471060 + 0.590690i −0.0193278 + 0.0242363i
\(595\) −25.0898 + 31.4616i −1.02858 + 1.28980i
\(596\) −16.6522 8.01930i −0.682102 0.328483i
\(597\) 8.82206 0.361063
\(598\) −0.321190 0.154677i −0.0131345 0.00632522i
\(599\) 5.76162 25.2433i 0.235413 1.03141i −0.709657 0.704547i \(-0.751150\pi\)
0.945071 0.326866i \(-0.105993\pi\)
\(600\) 4.37654 2.10763i 0.178671 0.0860436i
\(601\) −21.7322 + 10.4657i −0.886473 + 0.426903i −0.820985 0.570950i \(-0.806575\pi\)
−0.0654886 + 0.997853i \(0.520861\pi\)
\(602\) −0.0375613 0.164567i −0.00153088 0.00670724i
\(603\) −3.28401 + 4.11802i −0.133735 + 0.167699i
\(604\) −24.1353 30.2647i −0.982052 1.23145i
\(605\) 5.53354 24.2440i 0.224970 0.985659i
\(606\) −0.0321699 0.140945i −0.00130681 0.00572552i
\(607\) −3.54000 4.43901i −0.143684 0.180174i 0.704782 0.709424i \(-0.251045\pi\)
−0.848466 + 0.529250i \(0.822473\pi\)
\(608\) −7.47505 −0.303153
\(609\) 3.71896 + 20.0966i 0.150700 + 0.814356i
\(610\) −2.31734 −0.0938262
\(611\) 13.9428 + 17.4838i 0.564067 + 0.707317i
\(612\) −1.34577 5.89620i −0.0543995 0.238340i
\(613\) 9.97427 43.7001i 0.402857 1.76503i −0.212878 0.977079i \(-0.568284\pi\)
0.615735 0.787953i \(-0.288859\pi\)
\(614\) 2.65395 + 3.32794i 0.107105 + 0.134305i
\(615\) 4.24205 5.31937i 0.171056 0.214498i
\(616\) 2.53219 + 11.0942i 0.102025 + 0.447000i
\(617\) 26.1672 12.6015i 1.05345 0.507316i 0.174714 0.984619i \(-0.444100\pi\)
0.878739 + 0.477303i \(0.158386\pi\)
\(618\) 0.790976 0.380914i 0.0318177 0.0153226i
\(619\) 1.69406 7.42218i 0.0680901 0.298322i −0.929405 0.369062i \(-0.879679\pi\)
0.997495 + 0.0707399i \(0.0225360\pi\)
\(620\) 27.6845 + 13.3321i 1.11183 + 0.535431i
\(621\) −0.433603 −0.0173999
\(622\) 4.98625 + 2.40125i 0.199930 + 0.0962813i
\(623\) 33.0715 41.4704i 1.32498 1.66148i
\(624\) −11.0379 + 13.8411i −0.441872 + 0.554089i
\(625\) 10.6143 + 5.11157i 0.424571 + 0.204463i
\(626\) −3.72753 −0.148982
\(627\) −13.8110 6.65101i −0.551557 0.265616i
\(628\) −1.14535 + 5.01811i −0.0457045 + 0.200244i
\(629\) 17.5148 8.43467i 0.698359 0.336312i
\(630\) −2.08976 + 1.00638i −0.0832580 + 0.0400950i
\(631\) −9.73830 42.6663i −0.387676 1.69852i −0.672632 0.739977i \(-0.734836\pi\)
0.284957 0.958540i \(-0.408021\pi\)
\(632\) −4.39757 + 5.51438i −0.174926 + 0.219350i
\(633\) −9.36693 11.7458i −0.372302 0.466852i
\(634\) 0.616705 2.70196i 0.0244925 0.107309i
\(635\) 0.948264 + 4.15462i 0.0376307 + 0.164871i
\(636\) −13.4642 16.8836i −0.533890 0.669476i
\(637\) −34.3758 −1.36202
\(638\) −4.06512 0.168455i −0.160940 0.00666920i
\(639\) −5.83609 −0.230872
\(640\) 11.7201 + 14.6966i 0.463279 + 0.580933i
\(641\) −3.41266 14.9519i −0.134792 0.590563i −0.996532 0.0832123i \(-0.973482\pi\)
0.861740 0.507351i \(-0.169375\pi\)
\(642\) 0.454541 1.99147i 0.0179393 0.0785971i
\(643\) 17.0010 + 21.3185i 0.670453 + 0.840721i 0.994436 0.105342i \(-0.0335937\pi\)
−0.323984 + 0.946063i \(0.605022\pi\)
\(644\) −2.01988 + 2.53285i −0.0795943 + 0.0998082i
\(645\) −0.192909 0.845188i −0.00759577 0.0332793i
\(646\) −1.76081 + 0.847962i −0.0692782 + 0.0333626i
\(647\) 21.7872 10.4921i 0.856542 0.412489i 0.0465402 0.998916i \(-0.485180\pi\)
0.810002 + 0.586428i \(0.199466\pi\)
\(648\) 0.156374 0.685120i 0.00614295 0.0269140i
\(649\) −23.3339 11.2370i −0.915935 0.441091i
\(650\) −5.68313 −0.222911
\(651\) −15.4634 7.44679i −0.606059 0.291863i
\(652\) 0.647837 0.812362i 0.0253713 0.0318146i
\(653\) −15.6696 + 19.6491i −0.613200 + 0.768929i −0.987370 0.158432i \(-0.949356\pi\)
0.374170 + 0.927360i \(0.377928\pi\)
\(654\) −1.37955 0.664354i −0.0539445 0.0259783i
\(655\) 13.7907 0.538846
\(656\) 6.77185 + 3.26115i 0.264396 + 0.127327i
\(657\) 2.34749 10.2850i 0.0915844 0.401257i
\(658\) −2.91615 + 1.40434i −0.113683 + 0.0547471i
\(659\) −8.69220 + 4.18594i −0.338600 + 0.163061i −0.595455 0.803389i \(-0.703028\pi\)
0.256855 + 0.966450i \(0.417314\pi\)
\(660\) 6.45108 + 28.2640i 0.251108 + 1.10018i
\(661\) 9.84536 12.3457i 0.382940 0.480192i −0.552583 0.833458i \(-0.686358\pi\)
0.935523 + 0.353266i \(0.114929\pi\)
\(662\) −2.14839 2.69400i −0.0834996 0.104705i
\(663\) −3.17404 + 13.9064i −0.123269 + 0.540078i
\(664\) −1.10997 4.86309i −0.0430751 0.188724i
\(665\) −29.3416 36.7932i −1.13782 1.42678i
\(666\) 1.12051 0.0434187
\(667\) −1.37903 1.88431i −0.0533962 0.0729607i
\(668\) 29.6260 1.14627
\(669\) 14.9299 + 18.7214i 0.577221 + 0.723813i
\(670\) −0.716303 3.13833i −0.0276732 0.121244i
\(671\) 3.60002 15.7727i 0.138977 0.608898i
\(672\) −4.92334 6.17368i −0.189922 0.238155i
\(673\) −10.1812 + 12.7668i −0.392456 + 0.492124i −0.938329 0.345744i \(-0.887627\pi\)
0.545873 + 0.837868i \(0.316198\pi\)
\(674\) −0.795060 3.48338i −0.0306246 0.134175i
\(675\) −6.22783 + 2.99917i −0.239709 + 0.115438i
\(676\) 15.1800 7.31031i 0.583846 0.281166i
\(677\) −2.52618 + 11.0679i −0.0970889 + 0.425374i −0.999990 0.00447406i \(-0.998576\pi\)
0.902901 + 0.429848i \(0.141433\pi\)
\(678\) −1.21017 0.582787i −0.0464763 0.0223818i
\(679\) 54.3566 2.08602
\(680\) 6.71328 + 3.23295i 0.257443 + 0.123978i
\(681\) −3.21628 + 4.03308i −0.123248 + 0.154548i
\(682\) 2.13028 2.67128i 0.0815725 0.102289i
\(683\) −18.9882 9.14425i −0.726565 0.349895i 0.0337673 0.999430i \(-0.489250\pi\)
−0.760332 + 0.649535i \(0.774964\pi\)
\(684\) 7.07272 0.270432
\(685\) 51.7874 + 24.9395i 1.97870 + 0.952890i
\(686\) 0.0603583 0.264447i 0.00230449 0.0100966i
\(687\) 7.29938 3.51520i 0.278489 0.134113i
\(688\) 0.862863 0.415533i 0.0328963 0.0158420i
\(689\) 11.3335 + 49.6552i 0.431771 + 1.89171i
\(690\) 0.165224 0.207184i 0.00628996 0.00788736i
\(691\) 3.48847 + 4.37440i 0.132708 + 0.166410i 0.843745 0.536744i \(-0.180346\pi\)
−0.711038 + 0.703154i \(0.751774\pi\)
\(692\) 0.0452227 0.198134i 0.00171911 0.00753191i
\(693\) −3.60331 15.7871i −0.136879 0.599704i
\(694\) 0.0870367 + 0.109141i 0.00330387 + 0.00414292i
\(695\) −28.5470 −1.08285
\(696\) 3.47465 1.49940i 0.131706 0.0568345i
\(697\) 6.05592 0.229384
\(698\) 2.31202 + 2.89918i 0.0875113 + 0.109736i
\(699\) −5.45518 23.9007i −0.206334 0.904007i
\(700\) −11.4922 + 50.3504i −0.434363 + 1.90307i
\(701\) −10.7892 13.5292i −0.407502 0.510991i 0.535155 0.844754i \(-0.320253\pi\)
−0.942657 + 0.333762i \(0.891682\pi\)
\(702\) −0.512613 + 0.642796i −0.0193473 + 0.0242608i
\(703\) 5.05886 + 22.1643i 0.190798 + 0.835942i
\(704\) −27.8984 + 13.4352i −1.05146 + 0.506357i
\(705\) −14.9769 + 7.21249i −0.564063 + 0.271638i
\(706\) 1.42196 6.23002i 0.0535162 0.234470i
\(707\) 2.79172 + 1.34442i 0.104994 + 0.0505623i
\(708\) 11.9495 0.449089
\(709\) −16.8452 8.11221i −0.632634 0.304660i 0.0899473 0.995947i \(-0.471330\pi\)
−0.722581 + 0.691286i \(0.757044\pi\)
\(710\) 2.22383 2.78860i 0.0834589 0.104654i
\(711\) 6.25776 7.84699i 0.234684 0.294285i
\(712\) −8.84897 4.26144i −0.331629 0.159704i
\(713\) 1.96089 0.0734357
\(714\) −1.86007 0.895763i −0.0696114 0.0335231i
\(715\) 15.2151 66.6616i 0.569011 2.49300i
\(716\) −7.18195 + 3.45865i −0.268402 + 0.129256i
\(717\) 25.1738 12.1230i 0.940131 0.452743i
\(718\) −0.733788 3.21494i −0.0273847 0.119980i
\(719\) −10.7768 + 13.5137i −0.401908 + 0.503977i −0.941064 0.338229i \(-0.890172\pi\)
0.539156 + 0.842206i \(0.318743\pi\)
\(720\) −8.20500 10.2887i −0.305782 0.383439i
\(721\) −4.18705 + 18.3447i −0.155934 + 0.683192i
\(722\) 0.240063 + 1.05179i 0.00893424 + 0.0391434i
\(723\) 2.47423 + 3.10259i 0.0920177 + 0.115387i
\(724\) 22.6832 0.843015
\(725\) −32.8404 17.5257i −1.21966 0.650890i
\(726\) 1.27581 0.0473496
\(727\) 1.79057 + 2.24531i 0.0664086 + 0.0832738i 0.813926 0.580968i \(-0.197326\pi\)
−0.747518 + 0.664242i \(0.768754\pi\)
\(728\) 2.75556 + 12.0729i 0.102128 + 0.447451i
\(729\) −0.222521 + 0.974928i −0.00824152 + 0.0361084i
\(730\) 4.01988 + 5.04077i 0.148783 + 0.186567i
\(731\) 0.481109 0.603292i 0.0177945 0.0223135i
\(732\) 1.66103 + 7.27744i 0.0613933 + 0.268982i
\(733\) −42.1829 + 20.3142i −1.55806 + 0.750323i −0.996996 0.0774484i \(-0.975323\pi\)
−0.561065 + 0.827771i \(0.689608\pi\)
\(734\) −2.57368 + 1.23942i −0.0949963 + 0.0457478i
\(735\) 5.68610 24.9124i 0.209735 0.918909i
\(736\) 0.812825 + 0.391436i 0.0299611 + 0.0144285i
\(737\) 22.4735 0.827821
\(738\) 0.314492 + 0.151451i 0.0115766 + 0.00557499i
\(739\) 15.6343 19.6048i 0.575116 0.721173i −0.406155 0.913804i \(-0.633131\pi\)
0.981271 + 0.192631i \(0.0617021\pi\)
\(740\) 26.8076 33.6157i 0.985468 1.23574i
\(741\) −15.0293 7.23771i −0.552114 0.265884i
\(742\) −7.37175 −0.270626
\(743\) −25.3667 12.2160i −0.930616 0.448161i −0.0937664 0.995594i \(-0.529891\pi\)
−0.836849 + 0.547433i \(0.815605\pi\)
\(744\) −0.707171 + 3.09832i −0.0259261 + 0.113590i
\(745\) −29.1947 + 14.0594i −1.06961 + 0.515098i
\(746\) −0.181221 + 0.0872714i −0.00663497 + 0.00319523i
\(747\) 1.57949 + 6.92019i 0.0577905 + 0.253197i
\(748\) −16.0888 + 20.1747i −0.588265 + 0.737662i
\(749\) 27.2970 + 34.2294i 0.997412 + 1.25071i
\(750\) 0.260072 1.13945i 0.00949650 0.0416069i
\(751\) 9.07997 + 39.7820i 0.331333 + 1.45166i 0.816552 + 0.577272i \(0.195883\pi\)
−0.485219 + 0.874393i \(0.661260\pi\)
\(752\) −11.4497 14.3574i −0.417526 0.523561i
\(753\) −31.6093 −1.15191
\(754\) −4.42371 0.183315i −0.161102 0.00667593i
\(755\) −67.8664 −2.46991
\(756\) 4.65836 + 5.84139i 0.169423 + 0.212449i
\(757\) −9.07919 39.7785i −0.329989 1.44578i −0.819149 0.573581i \(-0.805554\pi\)
0.489160 0.872194i \(-0.337303\pi\)
\(758\) −1.19182 + 5.22172i −0.0432890 + 0.189662i
\(759\) 1.15350 + 1.44644i 0.0418693 + 0.0525025i
\(760\) −5.43302 + 6.81280i −0.197076 + 0.247126i
\(761\) 9.26200 + 40.5795i 0.335747 + 1.47100i 0.807812 + 0.589441i \(0.200652\pi\)
−0.472064 + 0.881564i \(0.656491\pi\)
\(762\) −0.196979 + 0.0948602i −0.00713581 + 0.00343642i
\(763\) 29.5679 14.2391i 1.07043 0.515492i
\(764\) 0.683128 2.99298i 0.0247147 0.108282i