Properties

Label 87.2.g.a.82.1
Level $87$
Weight $2$
Character 87.82
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 82.1
Root \(0.491931 - 2.15529i\) of defining polynomial
Character \(\chi\) \(=\) 87.82
Dual form 87.2.g.a.52.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.754870 - 0.946578i) q^{2} +(-0.222521 - 0.974928i) q^{3} +(0.118862 - 0.520769i) q^{4} +(1.12131 + 1.40607i) q^{5} +(-0.754870 + 0.946578i) q^{6} +(-0.951706 - 4.16970i) q^{7} +(-2.76431 + 1.33122i) q^{8} +(-0.900969 + 0.433884i) q^{9} +O(q^{10})\) \(q+(-0.754870 - 0.946578i) q^{2} +(-0.222521 - 0.974928i) q^{3} +(0.118862 - 0.520769i) q^{4} +(1.12131 + 1.40607i) q^{5} +(-0.754870 + 0.946578i) q^{6} +(-0.951706 - 4.16970i) q^{7} +(-2.76431 + 1.33122i) q^{8} +(-0.900969 + 0.433884i) q^{9} +(0.484517 - 2.12281i) q^{10} +(-0.951656 - 0.458293i) q^{11} -0.534161 q^{12} +(4.75885 + 2.29174i) q^{13} +(-3.22853 + 4.04845i) q^{14} +(1.12131 - 1.40607i) q^{15} +(2.38428 + 1.14821i) q^{16} +5.61769 q^{17} +(1.09082 + 0.525311i) q^{18} +(-1.42675 + 6.25099i) q^{19} +(0.865520 - 0.416812i) q^{20} +(-3.85338 + 1.85569i) q^{21} +(0.284567 + 1.24677i) q^{22} +(1.27587 - 1.59988i) q^{23} +(1.91296 + 2.39878i) q^{24} +(0.392890 - 1.72136i) q^{25} +(-1.42300 - 6.23459i) q^{26} +(0.623490 + 0.781831i) q^{27} -2.28457 q^{28} +(-4.54927 + 2.88169i) q^{29} -2.17740 q^{30} +(2.38467 + 2.99028i) q^{31} +(0.652504 + 2.85881i) q^{32} +(-0.235040 + 1.02978i) q^{33} +(-4.24063 - 5.31758i) q^{34} +(4.79575 - 6.01368i) q^{35} +(0.118862 + 0.520769i) q^{36} +(0.315606 - 0.151988i) q^{37} +(6.99406 - 3.36816i) q^{38} +(1.17534 - 5.14950i) q^{39} +(-4.97144 - 2.39412i) q^{40} -3.62240 q^{41} +(4.66536 + 2.24672i) q^{42} +(1.09049 - 1.36743i) q^{43} +(-0.351781 + 0.441119i) q^{44} +(-1.62033 - 0.780312i) q^{45} -2.47753 q^{46} +(-6.28881 - 3.02853i) q^{47} +(0.588868 - 2.58000i) q^{48} +(-10.1739 + 4.89947i) q^{49} +(-1.92598 + 0.927505i) q^{50} +(-1.25005 - 5.47684i) q^{51} +(1.75911 - 2.20586i) q^{52} +(-4.87488 - 6.11290i) q^{53} +(0.269410 - 1.18036i) q^{54} +(-0.422703 - 1.85198i) q^{55} +(8.18161 + 10.2594i) q^{56} +6.41175 q^{57} +(6.16185 + 2.13093i) q^{58} +0.382668 q^{59} +(-0.598958 - 0.751070i) q^{60} +(1.21640 + 5.32939i) q^{61} +(1.03041 - 4.51454i) q^{62} +(2.66662 + 3.34384i) q^{63} +(5.51347 - 6.91367i) q^{64} +(2.11377 + 9.26104i) q^{65} +(1.15219 - 0.554864i) q^{66} +(-7.03806 + 3.38935i) q^{67} +(0.667730 - 2.92552i) q^{68} +(-1.84368 - 0.887869i) q^{69} -9.31258 q^{70} +(14.0654 + 6.77356i) q^{71} +(1.91296 - 2.39878i) q^{72} +(-1.58547 + 1.98811i) q^{73} +(-0.382110 - 0.184015i) q^{74} -1.76563 q^{75} +(3.08574 + 1.48601i) q^{76} +(-1.00525 + 4.40428i) q^{77} +(-5.76163 + 2.77465i) q^{78} +(-9.25113 + 4.45511i) q^{79} +(1.05904 + 4.63996i) q^{80} +(0.623490 - 0.781831i) q^{81} +(2.73445 + 3.42889i) q^{82} +(-0.338541 + 1.48324i) q^{83} +(0.508365 + 2.22729i) q^{84} +(6.29915 + 7.89888i) q^{85} -2.11755 q^{86} +(3.82175 + 3.79397i) q^{87} +3.24076 q^{88} +(-11.1881 - 14.0295i) q^{89} +(0.484517 + 2.12281i) q^{90} +(5.02684 - 22.0240i) q^{91} +(-0.681518 - 0.854597i) q^{92} +(2.38467 - 2.99028i) q^{93} +(1.88050 + 8.23899i) q^{94} +(-10.3892 + 5.00316i) q^{95} +(2.64194 - 1.27229i) q^{96} +(1.51530 - 6.63895i) q^{97} +(12.3177 + 5.93188i) q^{98} +1.05626 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.754870 0.946578i −0.533774 0.669331i 0.439696 0.898147i \(-0.355086\pi\)
−0.973470 + 0.228815i \(0.926515\pi\)
\(3\) −0.222521 0.974928i −0.128473 0.562875i
\(4\) 0.118862 0.520769i 0.0594310 0.260384i
\(5\) 1.12131 + 1.40607i 0.501463 + 0.628815i 0.966559 0.256445i \(-0.0825514\pi\)
−0.465095 + 0.885261i \(0.653980\pi\)
\(6\) −0.754870 + 0.946578i −0.308175 + 0.386439i
\(7\) −0.951706 4.16970i −0.359711 1.57600i −0.753913 0.656974i \(-0.771836\pi\)
0.394202 0.919024i \(-0.371021\pi\)
\(8\) −2.76431 + 1.33122i −0.977332 + 0.470658i
\(9\) −0.900969 + 0.433884i −0.300323 + 0.144628i
\(10\) 0.484517 2.12281i 0.153218 0.671290i
\(11\) −0.951656 0.458293i −0.286935 0.138181i 0.284880 0.958563i \(-0.408046\pi\)
−0.571815 + 0.820383i \(0.693761\pi\)
\(12\) −0.534161 −0.154199
\(13\) 4.75885 + 2.29174i 1.31987 + 0.635615i 0.955321 0.295570i \(-0.0955096\pi\)
0.364547 + 0.931185i \(0.381224\pi\)
\(14\) −3.22853 + 4.04845i −0.862860 + 1.08199i
\(15\) 1.12131 1.40607i 0.289520 0.363047i
\(16\) 2.38428 + 1.14821i 0.596069 + 0.287052i
\(17\) 5.61769 1.36249 0.681245 0.732056i \(-0.261439\pi\)
0.681245 + 0.732056i \(0.261439\pi\)
\(18\) 1.09082 + 0.525311i 0.257109 + 0.123817i
\(19\) −1.42675 + 6.25099i −0.327319 + 1.43408i 0.496902 + 0.867807i \(0.334471\pi\)
−0.824220 + 0.566269i \(0.808386\pi\)
\(20\) 0.865520 0.416812i 0.193536 0.0932021i
\(21\) −3.85338 + 1.85569i −0.840877 + 0.404945i
\(22\) 0.284567 + 1.24677i 0.0606698 + 0.265812i
\(23\) 1.27587 1.59988i 0.266036 0.333599i −0.630813 0.775935i \(-0.717279\pi\)
0.896850 + 0.442336i \(0.145850\pi\)
\(24\) 1.91296 + 2.39878i 0.390482 + 0.489649i
\(25\) 0.392890 1.72136i 0.0785779 0.344272i
\(26\) −1.42300 6.23459i −0.279074 1.22270i
\(27\) 0.623490 + 0.781831i 0.119991 + 0.150464i
\(28\) −2.28457 −0.431743
\(29\) −4.54927 + 2.88169i −0.844778 + 0.535117i
\(30\) −2.17740 −0.397537
\(31\) 2.38467 + 2.99028i 0.428299 + 0.537069i 0.948417 0.317025i \(-0.102684\pi\)
−0.520119 + 0.854094i \(0.674112\pi\)
\(32\) 0.652504 + 2.85881i 0.115348 + 0.505371i
\(33\) −0.235040 + 1.02978i −0.0409151 + 0.179261i
\(34\) −4.24063 5.31758i −0.727261 0.911957i
\(35\) 4.79575 6.01368i 0.810629 1.01650i
\(36\) 0.118862 + 0.520769i 0.0198103 + 0.0867948i
\(37\) 0.315606 0.151988i 0.0518854 0.0249867i −0.407761 0.913089i \(-0.633690\pi\)
0.459647 + 0.888102i \(0.347976\pi\)
\(38\) 6.99406 3.36816i 1.13459 0.546388i
\(39\) 1.17534 5.14950i 0.188205 0.824579i
\(40\) −4.97144 2.39412i −0.786053 0.378543i
\(41\) −3.62240 −0.565725 −0.282862 0.959161i \(-0.591284\pi\)
−0.282862 + 0.959161i \(0.591284\pi\)
\(42\) 4.66536 + 2.24672i 0.719880 + 0.346676i
\(43\) 1.09049 1.36743i 0.166298 0.208530i −0.691699 0.722186i \(-0.743138\pi\)
0.857997 + 0.513655i \(0.171709\pi\)
\(44\) −0.351781 + 0.441119i −0.0530329 + 0.0665012i
\(45\) −1.62033 0.780312i −0.241545 0.116322i
\(46\) −2.47753 −0.365292
\(47\) −6.28881 3.02853i −0.917317 0.441756i −0.0852043 0.996363i \(-0.527154\pi\)
−0.832112 + 0.554607i \(0.812869\pi\)
\(48\) 0.588868 2.58000i 0.0849958 0.372391i
\(49\) −10.1739 + 4.89947i −1.45341 + 0.699924i
\(50\) −1.92598 + 0.927505i −0.272375 + 0.131169i
\(51\) −1.25005 5.47684i −0.175042 0.766911i
\(52\) 1.75911 2.20586i 0.243945 0.305898i
\(53\) −4.87488 6.11290i −0.669616 0.839672i 0.324736 0.945805i \(-0.394724\pi\)
−0.994352 + 0.106133i \(0.966153\pi\)
\(54\) 0.269410 1.18036i 0.0366621 0.160627i
\(55\) −0.422703 1.85198i −0.0569973 0.249722i
\(56\) 8.18161 + 10.2594i 1.09331 + 1.37097i
\(57\) 6.41175 0.849257
\(58\) 6.16185 + 2.13093i 0.809091 + 0.279805i
\(59\) 0.382668 0.0498191 0.0249096 0.999690i \(-0.492070\pi\)
0.0249096 + 0.999690i \(0.492070\pi\)
\(60\) −0.598958 0.751070i −0.0773252 0.0969627i
\(61\) 1.21640 + 5.32939i 0.155744 + 0.682358i 0.991152 + 0.132729i \(0.0423740\pi\)
−0.835409 + 0.549629i \(0.814769\pi\)
\(62\) 1.03041 4.51454i 0.130863 0.573347i
\(63\) 2.66662 + 3.34384i 0.335963 + 0.421284i
\(64\) 5.51347 6.91367i 0.689184 0.864209i
\(65\) 2.11377 + 9.26104i 0.262181 + 1.14869i
\(66\) 1.15219 0.554864i 0.141824 0.0682990i
\(67\) −7.03806 + 3.38935i −0.859836 + 0.414075i −0.811219 0.584742i \(-0.801196\pi\)
−0.0486169 + 0.998818i \(0.515481\pi\)
\(68\) 0.667730 2.92552i 0.0809742 0.354771i
\(69\) −1.84368 0.887869i −0.221953 0.106887i
\(70\) −9.31258 −1.11307
\(71\) 14.0654 + 6.77356i 1.66926 + 0.803874i 0.998038 + 0.0626189i \(0.0199452\pi\)
0.671224 + 0.741255i \(0.265769\pi\)
\(72\) 1.91296 2.39878i 0.225445 0.282699i
\(73\) −1.58547 + 1.98811i −0.185565 + 0.232691i −0.865909 0.500202i \(-0.833259\pi\)
0.680344 + 0.732893i \(0.261830\pi\)
\(74\) −0.382110 0.184015i −0.0444194 0.0213913i
\(75\) −1.76563 −0.203877
\(76\) 3.08574 + 1.48601i 0.353958 + 0.170457i
\(77\) −1.00525 + 4.40428i −0.114559 + 0.501914i
\(78\) −5.76163 + 2.77465i −0.652376 + 0.314168i
\(79\) −9.25113 + 4.45511i −1.04083 + 0.501239i −0.874599 0.484847i \(-0.838875\pi\)
−0.166235 + 0.986086i \(0.553161\pi\)
\(80\) 1.05904 + 4.63996i 0.118404 + 0.518764i
\(81\) 0.623490 0.781831i 0.0692766 0.0868702i
\(82\) 2.73445 + 3.42889i 0.301969 + 0.378657i
\(83\) −0.338541 + 1.48324i −0.0371597 + 0.162807i −0.990103 0.140340i \(-0.955180\pi\)
0.952944 + 0.303148i \(0.0980375\pi\)
\(84\) 0.508365 + 2.22729i 0.0554672 + 0.243017i
\(85\) 6.29915 + 7.89888i 0.683239 + 0.856754i
\(86\) −2.11755 −0.228341
\(87\) 3.82175 + 3.79397i 0.409735 + 0.406756i
\(88\) 3.24076 0.345467
\(89\) −11.1881 14.0295i −1.18594 1.48712i −0.834587 0.550876i \(-0.814294\pi\)
−0.351351 0.936244i \(-0.614278\pi\)
\(90\) 0.484517 + 2.12281i 0.0510725 + 0.223763i
\(91\) 5.02684 22.0240i 0.526956 2.30875i
\(92\) −0.681518 0.854597i −0.0710532 0.0890979i
\(93\) 2.38467 2.99028i 0.247278 0.310077i
\(94\) 1.88050 + 8.23899i 0.193958 + 0.849787i
\(95\) −10.3892 + 5.00316i −1.06591 + 0.513314i
\(96\) 2.64194 1.27229i 0.269641 0.129852i
\(97\) 1.51530 6.63895i 0.153855 0.674083i −0.837888 0.545842i \(-0.816210\pi\)
0.991743 0.128241i \(-0.0409331\pi\)
\(98\) 12.3177 + 5.93188i 1.24427 + 0.599210i
\(99\) 1.05626 0.106158
\(100\) −0.849732 0.409209i −0.0849732 0.0409209i
\(101\) 2.94644 3.69472i 0.293182 0.367639i −0.613324 0.789831i \(-0.710168\pi\)
0.906506 + 0.422193i \(0.138739\pi\)
\(102\) −4.24063 + 5.31758i −0.419885 + 0.526519i
\(103\) −3.14881 1.51639i −0.310261 0.149414i 0.272273 0.962220i \(-0.412225\pi\)
−0.582534 + 0.812806i \(0.697939\pi\)
\(104\) −16.2058 −1.58911
\(105\) −6.93006 3.33734i −0.676304 0.325691i
\(106\) −2.10644 + 9.22890i −0.204595 + 0.896390i
\(107\) 4.43449 2.13554i 0.428699 0.206450i −0.207076 0.978325i \(-0.566395\pi\)
0.635775 + 0.771874i \(0.280681\pi\)
\(108\) 0.481263 0.231764i 0.0463095 0.0223015i
\(109\) 3.31215 + 14.5115i 0.317246 + 1.38995i 0.842360 + 0.538915i \(0.181166\pi\)
−0.525114 + 0.851032i \(0.675977\pi\)
\(110\) −1.43396 + 1.79813i −0.136723 + 0.171445i
\(111\) −0.218406 0.273873i −0.0207302 0.0259949i
\(112\) 2.51855 11.0345i 0.237980 1.04266i
\(113\) 1.41140 + 6.18375i 0.132773 + 0.581718i 0.996916 + 0.0784718i \(0.0250041\pi\)
−0.864143 + 0.503246i \(0.832139\pi\)
\(114\) −4.84004 6.06922i −0.453311 0.568434i
\(115\) 3.68019 0.343180
\(116\) 0.959961 + 2.71164i 0.0891301 + 0.251770i
\(117\) −5.28193 −0.488314
\(118\) −0.288865 0.362225i −0.0265922 0.0333455i
\(119\) −5.34639 23.4241i −0.490103 2.14728i
\(120\) −1.22784 + 5.37953i −0.112086 + 0.491082i
\(121\) −6.16277 7.72787i −0.560252 0.702534i
\(122\) 4.12646 5.17441i 0.373592 0.468469i
\(123\) 0.806061 + 3.53158i 0.0726801 + 0.318432i
\(124\) 1.84069 0.886429i 0.165299 0.0796037i
\(125\) 10.9626 5.27930i 0.980523 0.472195i
\(126\) 1.15225 5.04833i 0.102650 0.449741i
\(127\) 4.02345 + 1.93759i 0.357023 + 0.171933i 0.603794 0.797141i \(-0.293655\pi\)
−0.246770 + 0.969074i \(0.579369\pi\)
\(128\) −4.84163 −0.427944
\(129\) −1.57580 0.758864i −0.138741 0.0668143i
\(130\) 7.17067 8.99173i 0.628909 0.788627i
\(131\) 0.00620961 0.00778660i 0.000542536 0.000680318i −0.781560 0.623830i \(-0.785576\pi\)
0.782103 + 0.623150i \(0.214147\pi\)
\(132\) 0.508338 + 0.244803i 0.0442451 + 0.0213073i
\(133\) 27.4226 2.37784
\(134\) 8.52111 + 4.10355i 0.736112 + 0.354493i
\(135\) −0.400190 + 1.75334i −0.0344428 + 0.150904i
\(136\) −15.5290 + 7.47839i −1.33160 + 0.641267i
\(137\) −11.0039 + 5.29921i −0.940129 + 0.452742i −0.840215 0.542254i \(-0.817571\pi\)
−0.0999140 + 0.994996i \(0.531857\pi\)
\(138\) 0.551302 + 2.41541i 0.0469299 + 0.205613i
\(139\) 3.08354 3.86663i 0.261542 0.327964i −0.633670 0.773603i \(-0.718452\pi\)
0.895212 + 0.445640i \(0.147024\pi\)
\(140\) −2.56170 3.21227i −0.216503 0.271487i
\(141\) −1.55321 + 6.80504i −0.130804 + 0.573088i
\(142\) −4.20589 18.4272i −0.352950 1.54638i
\(143\) −3.47850 4.36190i −0.290887 0.364760i
\(144\) −2.64635 −0.220529
\(145\) −9.15299 3.16534i −0.760115 0.262868i
\(146\) 3.07873 0.254797
\(147\) 7.04053 + 8.82854i 0.580693 + 0.728166i
\(148\) −0.0416370 0.182424i −0.00342254 0.0149951i
\(149\) −3.11840 + 13.6626i −0.255470 + 1.11929i 0.670566 + 0.741850i \(0.266051\pi\)
−0.926036 + 0.377436i \(0.876806\pi\)
\(150\) 1.33282 + 1.67131i 0.108824 + 0.136462i
\(151\) 1.82927 2.29383i 0.148864 0.186669i −0.701809 0.712366i \(-0.747624\pi\)
0.850672 + 0.525697i \(0.176195\pi\)
\(152\) −4.37749 19.1790i −0.355061 1.55562i
\(153\) −5.06136 + 2.43742i −0.409187 + 0.197054i
\(154\) 4.92782 2.37311i 0.397095 0.191231i
\(155\) −1.53061 + 6.70603i −0.122941 + 0.538641i
\(156\) −2.54199 1.22416i −0.203522 0.0980112i
\(157\) 16.1919 1.29226 0.646128 0.763229i \(-0.276387\pi\)
0.646128 + 0.763229i \(0.276387\pi\)
\(158\) 11.2005 + 5.39388i 0.891065 + 0.429114i
\(159\) −4.87488 + 6.11290i −0.386603 + 0.484785i
\(160\) −3.28804 + 4.12307i −0.259942 + 0.325957i
\(161\) −7.88529 3.79735i −0.621448 0.299273i
\(162\) −1.21072 −0.0951230
\(163\) −12.2292 5.88927i −0.957865 0.461284i −0.111428 0.993772i \(-0.535543\pi\)
−0.846437 + 0.532489i \(0.821257\pi\)
\(164\) −0.430567 + 1.88644i −0.0336216 + 0.147306i
\(165\) −1.71149 + 0.824211i −0.133239 + 0.0641647i
\(166\) 1.65956 0.799202i 0.128807 0.0620301i
\(167\) 3.64080 + 15.9514i 0.281734 + 1.23436i 0.895569 + 0.444922i \(0.146769\pi\)
−0.613836 + 0.789434i \(0.710374\pi\)
\(168\) 8.18161 10.2594i 0.631225 0.791531i
\(169\) 9.28921 + 11.6483i 0.714555 + 0.896024i
\(170\) 2.72186 11.9253i 0.208757 0.914626i
\(171\) −1.42675 6.25099i −0.109106 0.478025i
\(172\) −0.582495 0.730426i −0.0444149 0.0556945i
\(173\) −4.46374 −0.339372 −0.169686 0.985498i \(-0.554275\pi\)
−0.169686 + 0.985498i \(0.554275\pi\)
\(174\) 0.706362 6.48154i 0.0535491 0.491364i
\(175\) −7.55148 −0.570838
\(176\) −1.74280 2.18540i −0.131368 0.164730i
\(177\) −0.0851516 0.373074i −0.00640039 0.0280419i
\(178\) −4.83439 + 21.1808i −0.362353 + 1.58757i
\(179\) 2.12026 + 2.65872i 0.158476 + 0.198722i 0.854730 0.519073i \(-0.173723\pi\)
−0.696254 + 0.717795i \(0.745151\pi\)
\(180\) −0.598958 + 0.751070i −0.0446437 + 0.0559815i
\(181\) −1.47339 6.45532i −0.109516 0.479820i −0.999706 0.0242319i \(-0.992286\pi\)
0.890190 0.455589i \(-0.150571\pi\)
\(182\) −24.6421 + 11.8670i −1.82659 + 0.879640i
\(183\) 4.92510 2.37180i 0.364074 0.175329i
\(184\) −1.39709 + 6.12104i −0.102995 + 0.451249i
\(185\) 0.567598 + 0.273341i 0.0417306 + 0.0200964i
\(186\) −4.63064 −0.339535
\(187\) −5.34610 2.57455i −0.390946 0.188270i
\(188\) −2.32466 + 2.91504i −0.169544 + 0.212601i
\(189\) 2.66662 3.34384i 0.193968 0.243228i
\(190\) 12.5784 + 6.05742i 0.912531 + 0.439452i
\(191\) 17.6196 1.27491 0.637454 0.770489i \(-0.279988\pi\)
0.637454 + 0.770489i \(0.279988\pi\)
\(192\) −7.96720 3.83680i −0.574983 0.276897i
\(193\) 2.98147 13.0627i 0.214611 0.940273i −0.746776 0.665075i \(-0.768399\pi\)
0.961388 0.275198i \(-0.0887434\pi\)
\(194\) −7.42813 + 3.57720i −0.533309 + 0.256828i
\(195\) 8.55849 4.12155i 0.612886 0.295150i
\(196\) 1.34221 + 5.88059i 0.0958719 + 0.420042i
\(197\) −5.11558 + 6.41474i −0.364470 + 0.457031i −0.929926 0.367748i \(-0.880129\pi\)
0.565455 + 0.824779i \(0.308700\pi\)
\(198\) −0.797338 0.999830i −0.0566643 0.0710548i
\(199\) −5.45073 + 23.8812i −0.386392 + 1.69290i 0.290551 + 0.956860i \(0.406162\pi\)
−0.676943 + 0.736036i \(0.736696\pi\)
\(200\) 1.20545 + 5.28141i 0.0852379 + 0.373452i
\(201\) 4.87049 + 6.10740i 0.343538 + 0.430783i
\(202\) −5.72153 −0.402565
\(203\) 16.3454 + 16.2266i 1.14722 + 1.13888i
\(204\) −3.00075 −0.210095
\(205\) −4.06182 5.09337i −0.283690 0.355736i
\(206\) 0.941565 + 4.12527i 0.0656019 + 0.287421i
\(207\) −0.455351 + 1.99502i −0.0316491 + 0.138664i
\(208\) 8.71503 + 10.9283i 0.604278 + 0.757741i
\(209\) 4.22256 5.29492i 0.292081 0.366258i
\(210\) 2.07224 + 9.07909i 0.142998 + 0.626517i
\(211\) 1.99243 0.959502i 0.137164 0.0660549i −0.364043 0.931382i \(-0.618604\pi\)
0.501207 + 0.865327i \(0.332890\pi\)
\(212\) −3.76285 + 1.81209i −0.258433 + 0.124455i
\(213\) 3.47388 15.2201i 0.238026 1.04286i
\(214\) −5.36892 2.58554i −0.367012 0.176744i
\(215\) 3.14547 0.214519
\(216\) −2.76431 1.33122i −0.188088 0.0905782i
\(217\) 10.1990 12.7892i 0.692356 0.868187i
\(218\) 11.2360 14.0895i 0.760997 0.954260i
\(219\) 2.29107 + 1.10332i 0.154816 + 0.0745554i
\(220\) −1.01470 −0.0684110
\(221\) 26.7337 + 12.8743i 1.79831 + 0.866018i
\(222\) −0.0943735 + 0.413477i −0.00633393 + 0.0277508i
\(223\) −2.43655 + 1.17338i −0.163164 + 0.0785755i −0.513683 0.857980i \(-0.671719\pi\)
0.350519 + 0.936555i \(0.386005\pi\)
\(224\) 11.2994 5.44149i 0.754971 0.363575i
\(225\) 0.392890 + 1.72136i 0.0261926 + 0.114757i
\(226\) 4.78798 6.00393i 0.318491 0.399376i
\(227\) 8.99231 + 11.2760i 0.596840 + 0.748414i 0.984882 0.173228i \(-0.0554197\pi\)
−0.388041 + 0.921642i \(0.626848\pi\)
\(228\) 0.762114 3.33904i 0.0504722 0.221133i
\(229\) −5.72917 25.1011i −0.378594 1.65873i −0.701779 0.712394i \(-0.747611\pi\)
0.323185 0.946336i \(-0.395246\pi\)
\(230\) −2.77807 3.48359i −0.183180 0.229701i
\(231\) 4.51754 0.297232
\(232\) 8.73942 14.0220i 0.573771 0.920589i
\(233\) −22.6039 −1.48083 −0.740417 0.672148i \(-0.765372\pi\)
−0.740417 + 0.672148i \(0.765372\pi\)
\(234\) 3.98717 + 4.99975i 0.260649 + 0.326844i
\(235\) −2.79334 12.2384i −0.182218 0.798347i
\(236\) 0.0454847 0.199282i 0.00296080 0.0129721i
\(237\) 6.40198 + 8.02783i 0.415853 + 0.521464i
\(238\) −18.1369 + 22.7429i −1.17564 + 1.47420i
\(239\) −5.21218 22.8361i −0.337148 1.47714i −0.804968 0.593318i \(-0.797818\pi\)
0.467820 0.883824i \(-0.345040\pi\)
\(240\) 4.28797 2.06498i 0.276787 0.133294i
\(241\) −20.1661 + 9.71147i −1.29901 + 0.625570i −0.950205 0.311625i \(-0.899127\pi\)
−0.348805 + 0.937195i \(0.613413\pi\)
\(242\) −2.66294 + 11.6671i −0.171180 + 0.749989i
\(243\) −0.900969 0.433884i −0.0577972 0.0278337i
\(244\) 2.91996 0.186932
\(245\) −18.2970 8.81138i −1.16895 0.562939i
\(246\) 2.73445 3.42889i 0.174342 0.218618i
\(247\) −21.1153 + 26.4778i −1.34354 + 1.68474i
\(248\) −10.5727 5.09154i −0.671366 0.323313i
\(249\) 1.52139 0.0964141
\(250\) −13.2726 6.39175i −0.839433 0.404250i
\(251\) 1.32618 5.81039i 0.0837079 0.366748i −0.915673 0.401924i \(-0.868342\pi\)
0.999381 + 0.0351751i \(0.0111989\pi\)
\(252\) 2.05833 0.991238i 0.129662 0.0624421i
\(253\) −1.94740 + 0.937819i −0.122432 + 0.0589602i
\(254\) −1.20310 5.27114i −0.0754894 0.330741i
\(255\) 6.29915 7.89888i 0.394468 0.494647i
\(256\) −7.37214 9.24437i −0.460759 0.577773i
\(257\) 3.35390 14.6944i 0.209211 0.916612i −0.755883 0.654707i \(-0.772792\pi\)
0.965094 0.261905i \(-0.0843508\pi\)
\(258\) 0.471199 + 2.06446i 0.0293356 + 0.128528i
\(259\) −0.934109 1.17134i −0.0580427 0.0727832i
\(260\) 5.07411 0.314683
\(261\) 2.84843 4.57017i 0.176313 0.282886i
\(262\) −0.0120581 −0.000744950
\(263\) −11.6750 14.6400i −0.719911 0.902740i 0.278422 0.960459i \(-0.410189\pi\)
−0.998333 + 0.0577193i \(0.981617\pi\)
\(264\) −0.721138 3.15951i −0.0443830 0.194454i
\(265\) 3.12896 13.7089i 0.192210 0.842129i
\(266\) −20.7005 25.9576i −1.26923 1.59156i
\(267\) −11.1881 + 14.0295i −0.684702 + 0.858589i
\(268\) 0.928510 + 4.06807i 0.0567178 + 0.248497i
\(269\) 20.8357 10.0340i 1.27038 0.611781i 0.327477 0.944859i \(-0.393802\pi\)
0.942899 + 0.333078i \(0.108087\pi\)
\(270\) 1.96177 0.944738i 0.119389 0.0574949i
\(271\) −4.75012 + 20.8116i −0.288549 + 1.26422i 0.597967 + 0.801521i \(0.295975\pi\)
−0.886517 + 0.462697i \(0.846882\pi\)
\(272\) 13.3941 + 6.45027i 0.812138 + 0.391105i
\(273\) −22.5904 −1.36723
\(274\) 13.3227 + 6.41585i 0.804851 + 0.387596i
\(275\) −1.16278 + 1.45809i −0.0701185 + 0.0879258i
\(276\) −0.681518 + 0.854597i −0.0410226 + 0.0514407i
\(277\) 7.49769 + 3.61070i 0.450493 + 0.216946i 0.645352 0.763885i \(-0.276711\pi\)
−0.194859 + 0.980831i \(0.562425\pi\)
\(278\) −5.98774 −0.359121
\(279\) −3.44594 1.65948i −0.206303 0.0993503i
\(280\) −5.25140 + 23.0079i −0.313831 + 1.37498i
\(281\) 26.0562 12.5480i 1.55438 0.748552i 0.557709 0.830037i \(-0.311681\pi\)
0.996675 + 0.0814850i \(0.0259663\pi\)
\(282\) 7.61397 3.66670i 0.453405 0.218349i
\(283\) −6.67116 29.2282i −0.396559 1.73744i −0.640785 0.767721i \(-0.721391\pi\)
0.244226 0.969718i \(-0.421466\pi\)
\(284\) 5.19931 6.51973i 0.308522 0.386875i
\(285\) 7.18953 + 9.01539i 0.425871 + 0.534026i
\(286\) −1.50306 + 6.58534i −0.0888778 + 0.389399i
\(287\) 3.44747 + 15.1043i 0.203497 + 0.891581i
\(288\) −1.82828 2.29259i −0.107732 0.135092i
\(289\) 14.5584 0.856378
\(290\) 3.91308 + 11.0534i 0.229784 + 0.649081i
\(291\) −6.80968 −0.399191
\(292\) 0.846895 + 1.06197i 0.0495608 + 0.0621473i
\(293\) −1.94796 8.53458i −0.113801 0.498595i −0.999416 0.0341747i \(-0.989120\pi\)
0.885615 0.464421i \(-0.153737\pi\)
\(294\) 3.04221 13.3288i 0.177426 0.777352i
\(295\) 0.429088 + 0.538059i 0.0249825 + 0.0313270i
\(296\) −0.670105 + 0.840285i −0.0389490 + 0.0488405i
\(297\) −0.235040 1.02978i −0.0136384 0.0597536i
\(298\) 15.2867 7.36170i 0.885536 0.426452i
\(299\) 9.73818 4.68966i 0.563173 0.271210i
\(300\) −0.209867 + 0.919485i −0.0121166 + 0.0530865i
\(301\) −6.73958 3.24561i −0.388463 0.187074i
\(302\) −3.55215 −0.204403
\(303\) −4.25773 2.05042i −0.244600 0.117793i
\(304\) −10.5792 + 13.2659i −0.606759 + 0.760852i
\(305\) −6.12956 + 7.68622i −0.350977 + 0.440112i
\(306\) 6.12788 + 2.95103i 0.350308 + 0.168699i
\(307\) −33.9161 −1.93570 −0.967848 0.251536i \(-0.919064\pi\)
−0.967848 + 0.251536i \(0.919064\pi\)
\(308\) 2.17412 + 1.04700i 0.123882 + 0.0596585i
\(309\) −0.777691 + 3.40729i −0.0442413 + 0.193834i
\(310\) 7.50319 3.61334i 0.426152 0.205224i
\(311\) −7.32104 + 3.52563i −0.415138 + 0.199920i −0.629781 0.776773i \(-0.716855\pi\)
0.214643 + 0.976693i \(0.431141\pi\)
\(312\) 3.60612 + 15.7995i 0.204157 + 0.894468i
\(313\) 1.57580 1.97599i 0.0890693 0.111689i −0.735300 0.677742i \(-0.762959\pi\)
0.824369 + 0.566053i \(0.191530\pi\)
\(314\) −12.2228 15.3269i −0.689773 0.864948i
\(315\) −1.71158 + 7.49893i −0.0964367 + 0.422517i
\(316\) 1.22047 + 5.34724i 0.0686570 + 0.300806i
\(317\) 10.3738 + 13.0083i 0.582651 + 0.730621i 0.982562 0.185933i \(-0.0595306\pi\)
−0.399912 + 0.916554i \(0.630959\pi\)
\(318\) 9.46624 0.530840
\(319\) 5.65000 0.657481i 0.316339 0.0368119i
\(320\) 15.9034 0.889028
\(321\) −3.06876 3.84811i −0.171282 0.214780i
\(322\) 2.35788 + 10.3305i 0.131399 + 0.575699i
\(323\) −8.01503 + 35.1161i −0.445968 + 1.95391i
\(324\) −0.333044 0.417624i −0.0185025 0.0232013i
\(325\) 5.81462 7.29130i 0.322537 0.404449i
\(326\) 3.65681 + 16.0215i 0.202532 + 0.887350i
\(327\) 13.4106 6.45821i 0.741609 0.357140i
\(328\) 10.0135 4.82223i 0.552901 0.266263i
\(329\) −6.64296 + 29.1047i −0.366238 + 1.60459i
\(330\) 2.07213 + 0.997887i 0.114067 + 0.0549319i
\(331\) 12.9286 0.710619 0.355309 0.934749i \(-0.384375\pi\)
0.355309 + 0.934749i \(0.384375\pi\)
\(332\) 0.732188 + 0.352603i 0.0401840 + 0.0193516i
\(333\) −0.218406 + 0.273873i −0.0119686 + 0.0150081i
\(334\) 12.3509 15.4875i 0.675811 0.847440i
\(335\) −12.6575 6.09553i −0.691553 0.333034i
\(336\) −11.3182 −0.617461
\(337\) 5.01185 + 2.41358i 0.273013 + 0.131476i 0.565381 0.824830i \(-0.308729\pi\)
−0.292368 + 0.956306i \(0.594443\pi\)
\(338\) 4.01387 17.5859i 0.218326 0.956548i
\(339\) 5.71464 2.75203i 0.310377 0.149470i
\(340\) 4.86222 2.34152i 0.263691 0.126987i
\(341\) −0.898957 3.93859i −0.0486813 0.213286i
\(342\) −4.84004 + 6.06922i −0.261719 + 0.328186i
\(343\) 11.4455 + 14.3522i 0.617998 + 0.774945i
\(344\) −1.19409 + 5.23167i −0.0643813 + 0.282073i
\(345\) −0.818920 3.58792i −0.0440891 0.193167i
\(346\) 3.36955 + 4.22528i 0.181148 + 0.227152i
\(347\) −8.78686 −0.471703 −0.235852 0.971789i \(-0.575788\pi\)
−0.235852 + 0.971789i \(0.575788\pi\)
\(348\) 2.43004 1.53929i 0.130264 0.0825146i
\(349\) 15.1943 0.813332 0.406666 0.913577i \(-0.366691\pi\)
0.406666 + 0.913577i \(0.366691\pi\)
\(350\) 5.70039 + 7.14806i 0.304698 + 0.382080i
\(351\) 1.17534 + 5.14950i 0.0627350 + 0.274860i
\(352\) 0.689213 3.01964i 0.0367352 0.160947i
\(353\) −7.71052 9.66868i −0.410389 0.514612i 0.533083 0.846063i \(-0.321033\pi\)
−0.943473 + 0.331451i \(0.892462\pi\)
\(354\) −0.288865 + 0.362225i −0.0153530 + 0.0192520i
\(355\) 6.24754 + 27.3723i 0.331585 + 1.45277i
\(356\) −8.63595 + 4.15885i −0.457704 + 0.220419i
\(357\) −21.6471 + 10.4247i −1.14569 + 0.551733i
\(358\) 0.916165 4.01398i 0.0484208 0.212146i
\(359\) 14.4303 + 6.94924i 0.761600 + 0.366767i 0.774024 0.633156i \(-0.218241\pi\)
−0.0124248 + 0.999923i \(0.503955\pi\)
\(360\) 5.51788 0.290818
\(361\) −19.9209 9.59340i −1.04847 0.504916i
\(362\) −4.99825 + 6.26761i −0.262702 + 0.329418i
\(363\) −6.16277 + 7.72787i −0.323462 + 0.405608i
\(364\) −10.8719 5.23565i −0.569844 0.274422i
\(365\) −4.57323 −0.239374
\(366\) −5.96290 2.87158i −0.311686 0.150100i
\(367\) 4.94990 21.6869i 0.258383 1.13205i −0.664597 0.747202i \(-0.731397\pi\)
0.922980 0.384847i \(-0.125746\pi\)
\(368\) 4.87902 2.34961i 0.254336 0.122482i
\(369\) 3.26367 1.57170i 0.169900 0.0818196i
\(370\) −0.169725 0.743612i −0.00882356 0.0386585i
\(371\) −20.8495 + 26.1445i −1.08245 + 1.35735i
\(372\) −1.27380 1.59729i −0.0660433 0.0828156i
\(373\) −1.54213 + 6.75653i −0.0798487 + 0.349840i −0.999032 0.0439901i \(-0.985993\pi\)
0.919183 + 0.393830i \(0.128850\pi\)
\(374\) 1.59861 + 7.00395i 0.0826620 + 0.362166i
\(375\) −7.58634 9.51297i −0.391757 0.491248i
\(376\) 21.4159 1.10444
\(377\) −28.2534 + 3.28780i −1.45512 + 0.169330i
\(378\) −5.17816 −0.266336
\(379\) −4.85604 6.08928i −0.249438 0.312785i 0.641311 0.767281i \(-0.278391\pi\)
−0.890749 + 0.454496i \(0.849819\pi\)
\(380\) 1.37061 + 6.00505i 0.0703110 + 0.308052i
\(381\) 0.993710 4.35373i 0.0509093 0.223048i
\(382\) −13.3005 16.6783i −0.680512 0.853335i
\(383\) 15.8756 19.9074i 0.811206 1.01722i −0.188178 0.982135i \(-0.560258\pi\)
0.999384 0.0350856i \(-0.0111704\pi\)
\(384\) 1.07736 + 4.72024i 0.0549790 + 0.240879i
\(385\) −7.31993 + 3.52509i −0.373058 + 0.179655i
\(386\) −14.6155 + 7.03844i −0.743908 + 0.358247i
\(387\) −0.389190 + 1.70515i −0.0197836 + 0.0866778i
\(388\) −3.27725 1.57824i −0.166377 0.0801229i
\(389\) 10.9838 0.556902 0.278451 0.960450i \(-0.410179\pi\)
0.278451 + 0.960450i \(0.410179\pi\)
\(390\) −10.3619 4.99004i −0.524696 0.252680i
\(391\) 7.16741 8.98765i 0.362472 0.454525i
\(392\) 21.6014 27.0873i 1.09104 1.36812i
\(393\) −0.00897314 0.00432124i −0.000452635 0.000217978i
\(394\) 9.93365 0.500450
\(395\) −16.6376 8.01223i −0.837127 0.403139i
\(396\) 0.125549 0.550066i 0.00630908 0.0276419i
\(397\) −4.59536 + 2.21301i −0.230635 + 0.111068i −0.545632 0.838025i \(-0.683711\pi\)
0.314998 + 0.949092i \(0.397996\pi\)
\(398\) 26.7200 12.8677i 1.33935 0.644999i
\(399\) −6.10210 26.7351i −0.305487 1.33843i
\(400\) 2.91324 3.65309i 0.145662 0.182654i
\(401\) −12.1843 15.2786i −0.608455 0.762979i 0.378214 0.925718i \(-0.376538\pi\)
−0.986669 + 0.162740i \(0.947967\pi\)
\(402\) 2.10454 9.22059i 0.104965 0.459881i
\(403\) 4.49533 + 19.6953i 0.223928 + 0.981093i
\(404\) −1.57388 1.97358i −0.0783033 0.0981892i
\(405\) 1.79844 0.0893650
\(406\) 3.02106 27.7211i 0.149933 1.37577i
\(407\) −0.370004 −0.0183404
\(408\) 10.7464 + 13.4756i 0.532028 + 0.667142i
\(409\) 3.98856 + 17.4750i 0.197221 + 0.864083i 0.972581 + 0.232564i \(0.0747114\pi\)
−0.775360 + 0.631520i \(0.782431\pi\)
\(410\) −1.75512 + 7.68966i −0.0866790 + 0.379765i
\(411\) 7.61495 + 9.54885i 0.375618 + 0.471010i
\(412\) −1.16396 + 1.45956i −0.0573442 + 0.0719074i
\(413\) −0.364188 1.59561i −0.0179205 0.0785148i
\(414\) 2.23218 1.07496i 0.109705 0.0528314i
\(415\) −2.46516 + 1.18716i −0.121010 + 0.0582753i
\(416\) −3.44648 + 15.1000i −0.168978 + 0.740339i
\(417\) −4.45584 2.14582i −0.218204 0.105081i
\(418\) −8.19954 −0.401053
\(419\) −3.36801 1.62195i −0.164538 0.0792373i 0.349802 0.936824i \(-0.386249\pi\)
−0.514340 + 0.857586i \(0.671963\pi\)
\(420\) −2.56170 + 3.21227i −0.124998 + 0.156743i
\(421\) 5.16735 6.47965i 0.251841 0.315799i −0.639800 0.768541i \(-0.720983\pi\)
0.891641 + 0.452742i \(0.149554\pi\)
\(422\) −2.41227 1.16169i −0.117427 0.0565500i
\(423\) 6.98005 0.339382
\(424\) 21.6133 + 10.4084i 1.04964 + 0.505478i
\(425\) 2.20713 9.67008i 0.107062 0.469068i
\(426\) −17.0293 + 8.20087i −0.825072 + 0.397334i
\(427\) 21.0643 10.1440i 1.01937 0.490904i
\(428\) −0.585029 2.56318i −0.0282785 0.123896i
\(429\) −3.47850 + 4.36190i −0.167943 + 0.210594i
\(430\) −2.37442 2.97743i −0.114505 0.143584i
\(431\) −4.25670 + 18.6498i −0.205038 + 0.898330i 0.762776 + 0.646663i \(0.223836\pi\)
−0.967814 + 0.251667i \(0.919021\pi\)
\(432\) 0.588868 + 2.58000i 0.0283319 + 0.124130i
\(433\) −10.0699 12.6273i −0.483929 0.606828i 0.478591 0.878038i \(-0.341148\pi\)
−0.962520 + 0.271210i \(0.912576\pi\)
\(434\) −19.8049 −0.950667
\(435\) −1.04925 + 9.62787i −0.0503077 + 0.461621i
\(436\) 7.95081 0.380775
\(437\) 8.18053 + 10.2581i 0.391328 + 0.490710i
\(438\) −0.685081 3.00154i −0.0327344 0.143419i
\(439\) −0.660522 + 2.89393i −0.0315250 + 0.138120i −0.988241 0.152902i \(-0.951138\pi\)
0.956716 + 0.291022i \(0.0939953\pi\)
\(440\) 3.63389 + 4.55675i 0.173239 + 0.217235i
\(441\) 7.04053 8.82854i 0.335263 0.420407i
\(442\) −7.99400 35.0240i −0.380236 1.66592i
\(443\) −9.45260 + 4.55213i −0.449107 + 0.216278i −0.644745 0.764398i \(-0.723036\pi\)
0.195638 + 0.980676i \(0.437322\pi\)
\(444\) −0.168585 + 0.0811861i −0.00800068 + 0.00385292i
\(445\) 7.18114 31.4626i 0.340419 1.49147i
\(446\) 2.94998 + 1.42064i 0.139686 + 0.0672691i
\(447\) 14.0140 0.662839
\(448\) −34.0751 16.4097i −1.60990 0.775287i
\(449\) −2.74538 + 3.44260i −0.129563 + 0.162466i −0.842381 0.538882i \(-0.818847\pi\)
0.712819 + 0.701348i \(0.247418\pi\)
\(450\) 1.33282 1.67131i 0.0628298 0.0787861i
\(451\) 3.44728 + 1.66012i 0.162326 + 0.0781721i
\(452\) 3.38807 0.159361
\(453\) −2.64337 1.27298i −0.124196 0.0598097i
\(454\) 3.88558 17.0238i 0.182359 0.798968i
\(455\) 36.6040 17.6276i 1.71602 0.826394i
\(456\) −17.7241 + 8.53547i −0.830006 + 0.399710i
\(457\) −2.52528 11.0640i −0.118127 0.517550i −0.999021 0.0442360i \(-0.985915\pi\)
0.880894 0.473314i \(-0.156943\pi\)
\(458\) −19.4354 + 24.3712i −0.908156 + 1.13879i
\(459\) 3.50257 + 4.39209i 0.163486 + 0.205005i
\(460\) 0.437435 1.91653i 0.0203955 0.0893586i
\(461\) −4.38570 19.2150i −0.204262 0.894932i −0.968306 0.249767i \(-0.919646\pi\)
0.764044 0.645165i \(-0.223211\pi\)
\(462\) −3.41016 4.27620i −0.158655 0.198947i
\(463\) 0.753315 0.0350095 0.0175048 0.999847i \(-0.494428\pi\)
0.0175048 + 0.999847i \(0.494428\pi\)
\(464\) −14.1555 + 1.64725i −0.657153 + 0.0764718i
\(465\) 6.87849 0.318982
\(466\) 17.0631 + 21.3964i 0.790431 + 0.991169i
\(467\) −2.32424 10.1832i −0.107553 0.471221i −0.999806 0.0196852i \(-0.993734\pi\)
0.892253 0.451535i \(-0.149124\pi\)
\(468\) −0.627821 + 2.75066i −0.0290210 + 0.127149i
\(469\) 20.8307 + 26.1209i 0.961874 + 1.20615i
\(470\) −9.47601 + 11.8825i −0.437096 + 0.548101i
\(471\) −3.60304 15.7860i −0.166020 0.727379i
\(472\) −1.05781 + 0.509416i −0.0486898 + 0.0234478i
\(473\) −1.66445 + 0.801556i −0.0765314 + 0.0368556i
\(474\) 2.76630 12.1199i 0.127060 0.556688i
\(475\) 10.1997 + 4.91190i 0.467993 + 0.225374i
\(476\) −12.8340 −0.588246
\(477\) 7.04440 + 3.39240i 0.322541 + 0.155328i
\(478\) −17.6816 + 22.1720i −0.808737 + 1.01412i
\(479\) −8.71517 + 10.9285i −0.398206 + 0.499335i −0.939999 0.341177i \(-0.889174\pi\)
0.541793 + 0.840512i \(0.317746\pi\)
\(480\) 4.75135 + 2.28813i 0.216869 + 0.104438i
\(481\) 1.85024 0.0843637
\(482\) 24.4154 + 11.7578i 1.11209 + 0.535555i
\(483\) −1.94750 + 8.53258i −0.0886145 + 0.388246i
\(484\) −4.75695 + 2.29083i −0.216225 + 0.104129i
\(485\) 11.0340 5.31367i 0.501026 0.241282i
\(486\) 0.269410 + 1.18036i 0.0122207 + 0.0535424i
\(487\) −0.910473 + 1.14170i −0.0412575 + 0.0517352i −0.802032 0.597281i \(-0.796248\pi\)
0.760775 + 0.649016i \(0.224819\pi\)
\(488\) −10.4571 13.1128i −0.473371 0.593589i
\(489\) −3.02036 + 13.2331i −0.136586 + 0.598420i
\(490\) 5.47123 + 23.9710i 0.247165 + 1.08290i
\(491\) −7.57677 9.50097i −0.341935 0.428773i 0.580896 0.813978i \(-0.302702\pi\)
−0.922831 + 0.385205i \(0.874131\pi\)
\(492\) 1.93495 0.0872342
\(493\) −25.5564 + 16.1885i −1.15100 + 0.729091i
\(494\) 41.0027 1.84480
\(495\) 1.18439 + 1.48518i 0.0532343 + 0.0667537i
\(496\) 2.25225 + 9.86774i 0.101129 + 0.443075i
\(497\) 14.8575 65.0951i 0.666451 2.91991i
\(498\) −1.14845 1.44011i −0.0514633 0.0645330i
\(499\) −22.4256 + 28.1208i −1.00391 + 1.25886i −0.0381883 + 0.999271i \(0.512159\pi\)
−0.965719 + 0.259589i \(0.916413\pi\)
\(500\) −1.44626 6.33648i −0.0646787 0.283376i
\(501\) 14.7413 7.09904i 0.658593 0.317162i
\(502\) −6.50108 + 3.13075i −0.290157 + 0.139732i
\(503\) 3.19420 13.9947i 0.142422 0.623993i −0.852446 0.522815i \(-0.824882\pi\)
0.994868 0.101178i \(-0.0322612\pi\)
\(504\) −11.8228 5.69355i −0.526628 0.253611i
\(505\) 8.49892 0.378197
\(506\) 2.35775 + 1.13543i 0.104815 + 0.0504762i
\(507\) 9.28921 11.6483i 0.412549 0.517319i
\(508\) 1.48727 1.86498i 0.0659871 0.0827452i
\(509\) 27.9345 + 13.4525i 1.23817 + 0.596273i 0.934316 0.356445i \(-0.116011\pi\)
0.303857 + 0.952718i \(0.401725\pi\)
\(510\) −12.2319 −0.541640
\(511\) 9.79873 + 4.71882i 0.433470 + 0.208748i
\(512\) −5.34023 + 23.3971i −0.236007 + 1.03401i
\(513\) −5.77679 + 2.78195i −0.255051 + 0.122826i
\(514\) −16.4412 + 7.91765i −0.725189 + 0.349232i
\(515\) −1.39863 6.12779i −0.0616309 0.270023i
\(516\) −0.582495 + 0.730426i −0.0256429 + 0.0321552i
\(517\) 4.59682 + 5.76423i 0.202168 + 0.253511i
\(518\) −0.403629 + 1.76841i −0.0177344 + 0.0776996i
\(519\) 0.993276 + 4.35182i 0.0436000 + 0.191024i
\(520\) −18.1716 22.7865i −0.796879 0.999254i
\(521\) −14.9084 −0.653150 −0.326575 0.945171i \(-0.605895\pi\)
−0.326575 + 0.945171i \(0.605895\pi\)
\(522\) −6.47622 + 0.753627i −0.283456 + 0.0329853i
\(523\) −12.9505 −0.566284 −0.283142 0.959078i \(-0.591377\pi\)
−0.283142 + 0.959078i \(0.591377\pi\)
\(524\) −0.00331693 0.00415930i −0.000144901 0.000181700i
\(525\) 1.68036 + 7.36215i 0.0733370 + 0.321310i
\(526\) −5.04477 + 22.1026i −0.219962 + 0.963718i
\(527\) 13.3963 + 16.7984i 0.583552 + 0.731751i
\(528\) −1.74280 + 2.18540i −0.0758454 + 0.0951072i
\(529\) 4.18618 + 18.3409i 0.182008 + 0.797429i
\(530\) −15.3385 + 7.38662i −0.666260 + 0.320854i
\(531\) −0.344772 + 0.166033i −0.0149618 + 0.00720524i
\(532\) 3.25951 14.2808i 0.141318 0.619153i
\(533\) −17.2385 8.30162i −0.746682 0.359583i
\(534\) 21.7256 0.940157
\(535\) 7.97515 + 3.84063i 0.344796 + 0.166045i
\(536\) 14.9434 18.7385i 0.645457 0.809378i
\(537\) 2.12026 2.65872i 0.0914960 0.114732i
\(538\) −25.2262 12.1483i −1.08758 0.523750i
\(539\) 11.9274 0.513750
\(540\) 0.865520 + 0.416812i 0.0372461 + 0.0179368i
\(541\) −2.41951 + 10.6006i −0.104023 + 0.455754i 0.895911 + 0.444234i \(0.146524\pi\)
−0.999934 + 0.0115201i \(0.996333\pi\)
\(542\) 23.2856 11.2137i 1.00020 0.481671i
\(543\) −5.96562 + 2.87289i −0.256009 + 0.123287i
\(544\) 3.66557 + 16.0599i 0.157160 + 0.688562i
\(545\) −16.6903 + 20.9289i −0.714932 + 0.896497i
\(546\) 17.0528 + 21.3836i 0.729794 + 0.915133i
\(547\) 5.14692 22.5501i 0.220066 0.964174i −0.737361 0.675499i \(-0.763928\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(548\) 1.45171 + 6.36038i 0.0620142 + 0.271702i
\(549\) −3.40827 4.27384i −0.145462 0.182403i
\(550\) 2.25794 0.0962790
\(551\) −11.5228 32.5489i −0.490887 1.38663i
\(552\) 6.27846 0.267229
\(553\) 27.3808 + 34.3345i 1.16435 + 1.46005i
\(554\) −2.24198 9.82275i −0.0952526 0.417329i
\(555\) 0.140185 0.614191i 0.00595052 0.0260709i
\(556\) −1.64711 2.06541i −0.0698529 0.0875928i
\(557\) −26.8909 + 33.7201i −1.13940 + 1.42877i −0.252029 + 0.967720i \(0.581098\pi\)
−0.887375 + 0.461048i \(0.847474\pi\)
\(558\) 1.03041 + 4.51454i 0.0436209 + 0.191116i
\(559\) 8.32325 4.00826i 0.352036 0.169532i
\(560\) 18.3393 8.83176i 0.774979 0.373210i
\(561\) −1.32038 + 5.78496i −0.0557464 + 0.244241i
\(562\) −31.5467 15.1921i −1.33072 0.640840i
\(563\) 34.1036 1.43729 0.718647 0.695375i \(-0.244762\pi\)
0.718647 + 0.695375i \(0.244762\pi\)
\(564\) 3.35924 + 1.61772i 0.141449 + 0.0681185i
\(565\) −7.11219 + 8.91841i −0.299212 + 0.375200i
\(566\) −22.6309 + 28.3783i −0.951250 + 1.19283i
\(567\) −3.85338 1.85569i −0.161827 0.0779317i
\(568\) −47.8984 −2.00977
\(569\) 17.1914 + 8.27893i 0.720700 + 0.347071i 0.758019 0.652233i \(-0.226167\pi\)
−0.0373190 + 0.999303i \(0.511882\pi\)
\(570\) 3.10660 13.6109i 0.130121 0.570098i
\(571\) 5.91613 2.84906i 0.247582 0.119229i −0.305978 0.952039i \(-0.598983\pi\)
0.553560 + 0.832809i \(0.313269\pi\)
\(572\) −2.68500 + 1.29303i −0.112266 + 0.0540642i
\(573\) −3.92072 17.1778i −0.163791 0.717613i
\(574\) 11.6950 14.6651i 0.488141 0.612110i
\(575\) −2.25271 2.82480i −0.0939444 0.117803i
\(576\) −1.96773 + 8.62121i −0.0819890 + 0.359217i
\(577\) 4.57508 + 20.0447i 0.190463 + 0.834474i 0.976366 + 0.216124i \(0.0693415\pi\)
−0.785903 + 0.618350i \(0.787801\pi\)
\(578\) −10.9897 13.7807i −0.457112 0.573200i
\(579\) −13.3986 −0.556828
\(580\) −2.73636 + 4.39036i −0.113621 + 0.182300i
\(581\) 6.50687 0.269951
\(582\) 5.14043 + 6.44589i 0.213078 + 0.267191i
\(583\) 1.83770 + 8.05150i 0.0761098 + 0.333459i
\(584\) 1.73611 7.60637i 0.0718406 0.314754i
\(585\) −5.92266 7.42678i −0.244872 0.307059i
\(586\) −6.60818 + 8.28640i −0.272981 + 0.342308i
\(587\) 2.15654 + 9.44844i 0.0890101 + 0.389979i 0.999735 0.0230356i \(-0.00733309\pi\)
−0.910725 + 0.413014i \(0.864476\pi\)
\(588\) 5.43448 2.61711i 0.224114 0.107928i
\(589\) −22.0945 + 10.6402i −0.910389 + 0.438420i
\(590\) 0.185409 0.812330i 0.00763317 0.0334431i
\(591\) 7.39223 + 3.55991i 0.304076 + 0.146435i
\(592\) 0.927007 0.0380997
\(593\) 11.8757 + 5.71902i 0.487675 + 0.234852i 0.661529 0.749919i \(-0.269908\pi\)
−0.173854 + 0.984771i \(0.555622\pi\)
\(594\) −0.797338 + 0.999830i −0.0327152 + 0.0410235i
\(595\) 26.9410 33.7830i 1.10447 1.38497i
\(596\) 6.74441 + 3.24794i 0.276262 + 0.133041i
\(597\) 24.4954 1.00253
\(598\) −11.7902 5.67786i −0.482137 0.232185i
\(599\) 3.21314 14.0777i 0.131285 0.575198i −0.865900 0.500218i \(-0.833253\pi\)
0.997185 0.0749808i \(-0.0238895\pi\)
\(600\) 4.88075 2.35045i 0.199256 0.0959566i
\(601\) −4.40415 + 2.12093i −0.179649 + 0.0865143i −0.521546 0.853223i \(-0.674645\pi\)
0.341898 + 0.939737i \(0.388930\pi\)
\(602\) 2.01529 + 8.82955i 0.0821369 + 0.359865i
\(603\) 4.87049 6.10740i 0.198342 0.248713i
\(604\) −0.977124 1.22527i −0.0397586 0.0498557i
\(605\) 3.95560 17.3306i 0.160818 0.704590i
\(606\) 1.27316 + 5.57808i 0.0517186 + 0.226594i
\(607\) −7.82778 9.81573i −0.317720 0.398408i 0.597168 0.802116i \(-0.296293\pi\)
−0.914888 + 0.403708i \(0.867721\pi\)
\(608\) −18.8014 −0.762496
\(609\) 12.1825 19.5463i 0.493661 0.792056i
\(610\) 11.9026 0.481923
\(611\) −22.9869 28.8246i −0.929950 1.16612i
\(612\) 0.667730 + 2.92552i 0.0269914 + 0.118257i
\(613\) −0.778292 + 3.40992i −0.0314349 + 0.137725i −0.988210 0.153102i \(-0.951074\pi\)
0.956775 + 0.290828i \(0.0939307\pi\)
\(614\) 25.6023 + 32.1042i 1.03322 + 1.29562i
\(615\) −4.06182 + 5.09337i −0.163789 + 0.205384i
\(616\) −3.08426 13.5130i −0.124268 0.544455i
\(617\) 24.5871 11.8405i 0.989838 0.476681i 0.132360 0.991202i \(-0.457745\pi\)
0.857478 + 0.514521i \(0.172030\pi\)
\(618\) 3.81232 1.83592i 0.153354 0.0738514i
\(619\) 5.68340 24.9006i 0.228435 1.00084i −0.722481 0.691391i \(-0.756998\pi\)
0.950916 0.309449i \(-0.100145\pi\)
\(620\) 3.31036 + 1.59419i 0.132947 + 0.0640240i
\(621\) 2.04633 0.0821164
\(622\) 8.86372 + 4.26854i 0.355403 + 0.171153i
\(623\) −47.8508 + 60.0030i −1.91710 + 2.40397i
\(624\) 8.71503 10.9283i 0.348880 0.437482i
\(625\) 11.7616 + 5.66409i 0.470464 + 0.226564i
\(626\) −3.05995 −0.122300
\(627\) −6.10178 2.93846i −0.243682 0.117351i
\(628\) 1.92461 8.43225i 0.0768002 0.336484i
\(629\) 1.77298 0.853821i 0.0706933 0.0340441i
\(630\) 8.39035 4.04058i 0.334279 0.160980i
\(631\) −4.62745 20.2742i −0.184216 0.807102i −0.979594 0.200988i \(-0.935585\pi\)
0.795378 0.606114i \(-0.207272\pi\)
\(632\) 19.6423 24.6306i 0.781328 0.979754i
\(633\) −1.37880 1.72896i −0.0548025 0.0687201i
\(634\) 4.48252 19.6392i 0.178024 0.779973i
\(635\) 1.78712 + 7.82990i 0.0709198 + 0.310720i
\(636\) 2.60397 + 3.26528i 0.103254 + 0.129477i
\(637\) −59.6442 −2.36319
\(638\) −4.88737 4.85185i −0.193493 0.192086i
\(639\) −15.6115 −0.617580
\(640\) −5.42895 6.80769i −0.214598 0.269097i
\(641\) 3.14628 + 13.7848i 0.124271 + 0.544466i 0.998284 + 0.0585631i \(0.0186519\pi\)
−0.874013 + 0.485903i \(0.838491\pi\)
\(642\) −1.32601 + 5.80965i −0.0523336 + 0.229288i
\(643\) 22.1303 + 27.7505i 0.872734 + 1.09437i 0.994800 + 0.101852i \(0.0324768\pi\)
−0.122066 + 0.992522i \(0.538952\pi\)
\(644\) −2.91481 + 3.65505i −0.114859 + 0.144029i
\(645\) −0.699933 3.06661i −0.0275598 0.120747i
\(646\) 39.2905 18.9213i 1.54586 0.744448i
\(647\) 18.0758 8.70484i 0.710633 0.342223i −0.0434016 0.999058i \(-0.513819\pi\)
0.754034 + 0.656835i \(0.228105\pi\)
\(648\) −0.682729 + 2.99123i −0.0268201 + 0.117507i
\(649\) −0.364168 0.175374i −0.0142948 0.00688404i
\(650\) −11.2911 −0.442872
\(651\) −14.7380 7.09747i −0.577630 0.278172i
\(652\) −4.52054 + 5.66858i −0.177038 + 0.221999i
\(653\) 8.32587 10.4403i 0.325816 0.408561i −0.591764 0.806111i \(-0.701568\pi\)
0.917580 + 0.397550i \(0.130140\pi\)
\(654\) −16.2365 7.81907i −0.634896 0.305750i
\(655\) 0.0179114 0.000699856
\(656\) −8.63682 4.15927i −0.337211 0.162392i
\(657\) 0.565847 2.47914i 0.0220758 0.0967203i
\(658\) 32.5644 15.6822i 1.26949 0.611356i
\(659\) −10.2522 + 4.93720i −0.399369 + 0.192326i −0.622778 0.782399i \(-0.713996\pi\)
0.223408 + 0.974725i \(0.428282\pi\)
\(660\) 0.225792 + 0.989259i 0.00878893 + 0.0385068i
\(661\) −23.0877 + 28.9510i −0.898007 + 1.12606i 0.0934495 + 0.995624i \(0.470211\pi\)
−0.991456 + 0.130441i \(0.958361\pi\)
\(662\) −9.75940 12.2379i −0.379310 0.475640i
\(663\) 6.60269 28.9283i 0.256427 1.12348i
\(664\) −1.03870 4.55082i −0.0403092 0.176606i
\(665\) 30.7491 + 38.5582i 1.19240 + 1.49522i
\(666\) 0.424110 0.0164339
\(667\) −1.19388 + 10.9550i −0.0462271 + 0.424178i
\(668\) 8.73974 0.338151
\(669\) 1.68615 + 2.11436i 0.0651903 + 0.0817460i
\(670\) 3.78488 + 16.5826i 0.146223 + 0.640643i
\(671\) 1.28483 5.62921i 0.0496003 0.217313i
\(672\) −7.81941 9.80523i −0.301640 0.378245i
\(673\) 23.2210 29.1182i 0.895103 1.12242i −0.0967842 0.995305i \(-0.530856\pi\)
0.991888 0.127119i \(-0.0405729\pi\)
\(674\) −1.49866 6.56604i −0.0577261 0.252915i
\(675\) 1.59078 0.766078i 0.0612291 0.0294864i
\(676\) 7.17021 3.45299i 0.275777 0.132807i
\(677\) −9.99898 + 43.8084i −0.384292 + 1.68369i 0.299564 + 0.954076i \(0.403159\pi\)
−0.683856 + 0.729617i \(0.739698\pi\)
\(678\) −6.91882 3.33193i −0.265716 0.127962i
\(679\) −29.1245 −1.11770
\(680\) −27.9280 13.4494i −1.07099 0.515761i
\(681\) 8.99231 11.2760i 0.344586 0.432097i
\(682\) −3.04958 + 3.82406i −0.116775 + 0.146431i
\(683\) −20.3639 9.80672i −0.779201 0.375244i 0.00161933 0.999999i \(-0.499485\pi\)
−0.780821 + 0.624755i \(0.785199\pi\)
\(684\) −3.42491 −0.130955
\(685\) −19.7898 9.53029i −0.756131 0.364134i
\(686\) 4.94560 21.6681i 0.188824 0.827291i
\(687\) −23.1969 + 11.1711i −0.885019 + 0.426202i
\(688\) 4.17011 2.00822i 0.158984 0.0765626i
\(689\) −9.18962 40.2623i −0.350097 1.53387i
\(690\) −2.77807 + 3.48359i −0.105759 + 0.132618i
\(691\) −24.2367 30.3919i −0.922009 1.15616i −0.987391 0.158302i \(-0.949398\pi\)
0.0653818 0.997860i \(-0.479173\pi\)
\(692\) −0.530569 + 2.32458i −0.0201692 + 0.0883671i
\(693\) −1.00525 4.40428i −0.0381862 0.167305i
\(694\) 6.63294 + 8.31744i 0.251783 + 0.315726i
\(695\) 8.89436 0.337382
\(696\) −15.6151 5.40012i −0.591890 0.204691i
\(697\) −20.3495 −0.770794
\(698\) −11.4697 14.3826i −0.434135 0.544388i
\(699\) 5.02985 + 22.0372i 0.190246 + 0.833524i
\(700\) −0.897584 + 3.93257i −0.0339255 + 0.148637i
\(701\) −24.5921 30.8375i −0.928831 1.16472i −0.986066 0.166357i \(-0.946800\pi\)
0.0572342 0.998361i \(-0.481772\pi\)
\(702\) 3.98717 4.99975i 0.150486 0.188704i
\(703\) 0.499785 + 2.18970i 0.0188498 + 0.0825862i
\(704\) −8.41541 + 4.05265i −0.317168 + 0.152740i
\(705\) −11.3100 + 5.44661i −0.425960 + 0.205131i
\(706\) −3.33172 + 14.5972i −0.125391 + 0.549373i
\(707\) −18.2100 8.76949i −0.684859 0.329811i
\(708\) −0.204406 −0.00768207
\(709\) 3.67038 + 1.76756i 0.137844 + 0.0663823i 0.501534 0.865138i \(-0.332769\pi\)
−0.363690 + 0.931520i \(0.618483\pi\)
\(710\) 21.1939 26.5763i 0.795393 0.997391i
\(711\) 6.40198 8.02783i 0.240093 0.301067i
\(712\) 49.6038 + 23.8879i 1.85898 + 0.895238i
\(713\) 7.82661 0.293109
\(714\) 26.2085 + 12.6214i 0.980829 + 0.472343i
\(715\) 2.23269 9.78204i 0.0834978 0.365828i
\(716\) 1.63660 0.788144i 0.0611625 0.0294543i
\(717\) −21.1037 + 10.1630i −0.788132 + 0.379544i
\(718\) −4.31497 18.9051i −0.161033 0.705533i
\(719\) −11.4911 + 14.4094i −0.428546 + 0.537380i −0.948484 0.316824i \(-0.897384\pi\)
0.519938 + 0.854204i \(0.325955\pi\)
\(720\) −2.96737 3.72096i −0.110587 0.138672i
\(721\) −3.32613 + 14.5727i −0.123872 + 0.542717i
\(722\) 5.95680 + 26.0985i 0.221689 + 0.971284i
\(723\) 13.9554 + 17.4995i 0.519005 + 0.650812i
\(724\) −3.53686 −0.131446
\(725\) 3.17308 + 8.96313i 0.117845 + 0.332882i
\(726\) 11.9671 0.444142
\(727\) 10.9828 + 13.7720i 0.407330 + 0.510775i 0.942608 0.333900i \(-0.108365\pi\)
−0.535279 + 0.844675i \(0.679793\pi\)
\(728\) 15.4231 + 67.5732i 0.571619 + 2.50443i
\(729\) −0.222521 + 0.974928i −0.00824152 + 0.0361084i
\(730\) 3.45219 + 4.32891i 0.127771 + 0.160220i
\(731\) 6.12601 7.68177i 0.226579 0.284121i
\(732\) −0.649753 2.84675i −0.0240156 0.105219i
\(733\) 7.41249 3.56967i 0.273786 0.131849i −0.291953 0.956433i \(-0.594305\pi\)
0.565739 + 0.824584i \(0.308591\pi\)
\(734\) −24.2649 + 11.6854i −0.895634 + 0.431315i
\(735\) −4.51899 + 19.7990i −0.166686 + 0.730297i
\(736\) 5.40627 + 2.60352i 0.199278 + 0.0959671i
\(737\) 8.25113 0.303934
\(738\) −3.95139 1.90289i −0.145453 0.0700463i
\(739\) 22.3350 28.0072i 0.821607 1.03026i −0.177329 0.984152i \(-0.556746\pi\)
0.998936 0.0461112i \(-0.0146829\pi\)
\(740\) 0.209813 0.263097i 0.00771288 0.00967165i
\(741\) 30.5126 + 14.6941i 1.12091 + 0.539800i
\(742\) 40.4864 1.48630
\(743\) −8.37415 4.03278i −0.307218 0.147948i 0.273922 0.961752i \(-0.411679\pi\)
−0.581140 + 0.813803i \(0.697393\pi\)
\(744\) −2.61124 + 11.4406i −0.0957326 + 0.419432i
\(745\) −22.7073 + 10.9353i −0.831933 + 0.400638i
\(746\) 7.55969 3.64056i 0.276780 0.133290i
\(747\) −0.338541 1.48324i −0.0123866 0.0542691i
\(748\) −1.97619 + 2.47807i −0.0722568 + 0.0906071i
\(749\) −13.1249 16.4581i −0.479573 0.601366i
\(750\) −3.27806 + 14.3621i −0.119698 + 0.524431i
\(751\) 9.98479 + 43.7462i 0.364350 + 1.59632i 0.742017 + 0.670381i \(0.233869\pi\)
−0.377667 + 0.925941i \(0.623274\pi\)
\(752\) −11.5169 14.4417i −0.419977 0.526635i
\(753\) −5.95981 −0.217188
\(754\) 24.4398 + 24.2622i 0.890045 + 0.883576i
\(755\) 5.27646 0.192030
\(756\) −1.42441 1.78615i −0.0518052 0.0649616i
\(757\) −4.81041 21.0758i −0.174837 0.766012i −0.983962 0.178376i \(-0.942916\pi\)
0.809125 0.587636i \(-0.199941\pi\)
\(758\) −2.09830 + 9.19323i −0.0762135 + 0.333913i
\(759\) 1.34764 + 1.68989i 0.0489163 + 0.0613392i
\(760\) 22.0586 27.6606i 0.800150 1.00336i
\(761\) 8.76193 + 38.3885i 0.317620 + 1.39158i 0.841714 + 0.539923i \(0.181547\pi\)
−0.524094 + 0.851660i \(0.675596\pi\)
\(762\) −4.87126 + 2.34588i −0.176467 + 0.0849822i
\(763\) 57.3563 27.6213i 2.07644 0.999959i
\(764\) 2.09430 9.17572i 0.0757691 0.331966i
\(765\) −9.10253