Properties

Label 87.2.g.a.7.1
Level $87$
Weight $2$
Character 87.7
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 7.1
Root \(-1.38228 + 0.665671i\) of defining polynomial
Character \(\chi\) \(=\) 87.7
Dual form 87.2.g.a.25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.563916 - 2.47068i) q^{2} +(-0.900969 - 0.433884i) q^{3} +(-3.98431 + 1.91874i) q^{4} +(-0.242440 - 1.06220i) q^{5} +(-0.563916 + 2.47068i) q^{6} +(-1.55919 - 0.750867i) q^{7} +(3.82730 + 4.79928i) q^{8} +(0.623490 + 0.781831i) q^{9} +O(q^{10})\) \(q+(-0.563916 - 2.47068i) q^{2} +(-0.900969 - 0.433884i) q^{3} +(-3.98431 + 1.91874i) q^{4} +(-0.242440 - 1.06220i) q^{5} +(-0.563916 + 2.47068i) q^{6} +(-1.55919 - 0.750867i) q^{7} +(3.82730 + 4.79928i) q^{8} +(0.623490 + 0.781831i) q^{9} +(-2.48764 + 1.19798i) q^{10} +(3.92495 - 4.92173i) q^{11} +4.42225 q^{12} +(-0.797744 + 1.00034i) q^{13} +(-0.975897 + 4.27568i) q^{14} +(-0.242440 + 1.06220i) q^{15} +(4.18475 - 5.24750i) q^{16} -5.08291 q^{17} +(1.58006 - 1.98133i) q^{18} +(5.88048 - 2.83189i) q^{19} +(3.00404 + 3.76695i) q^{20} +(1.07899 + 1.35302i) q^{21} +(-14.3734 - 6.92184i) q^{22} +(1.00672 - 4.41072i) q^{23} +(-1.36595 - 5.98461i) q^{24} +(3.43536 - 1.65438i) q^{25} +(2.92138 + 1.40686i) q^{26} +(-0.222521 - 0.974928i) q^{27} +7.65302 q^{28} +(-1.89363 + 5.04125i) q^{29} +2.76107 q^{30} +(1.52535 + 6.68301i) q^{31} +(-4.26353 - 2.05321i) q^{32} +(-5.67172 + 2.73136i) q^{33} +(2.86633 + 12.5582i) q^{34} +(-0.419560 + 1.83821i) q^{35} +(-3.98431 - 1.91874i) q^{36} +(3.84958 + 4.82721i) q^{37} +(-10.3128 - 12.9318i) q^{38} +(1.15277 - 0.555147i) q^{39} +(4.16990 - 5.22889i) q^{40} +4.04550 q^{41} +(2.73440 - 3.42883i) q^{42} +(-0.407490 + 1.78533i) q^{43} +(-6.19468 + 27.1407i) q^{44} +(0.679302 - 0.851817i) q^{45} -11.4652 q^{46} +(0.945516 - 1.18564i) q^{47} +(-6.04713 + 2.91215i) q^{48} +(-2.49715 - 3.13133i) q^{49} +(-6.02469 - 7.55473i) q^{50} +(4.57954 + 2.20539i) q^{51} +(1.25907 - 5.51633i) q^{52} +(0.839814 + 3.67947i) q^{53} +(-2.28325 + 1.09956i) q^{54} +(-6.17942 - 2.97585i) q^{55} +(-2.36387 - 10.3568i) q^{56} -6.52684 q^{57} +(13.5231 + 1.83571i) q^{58} -8.72197 q^{59} +(-1.07213 - 4.69731i) q^{60} +(2.78187 + 1.33968i) q^{61} +(15.6514 - 7.53731i) q^{62} +(-0.385088 - 1.68718i) q^{63} +(0.318497 - 1.39543i) q^{64} +(1.25596 + 0.604841i) q^{65} +(9.94667 + 12.4727i) q^{66} +(-1.49443 - 1.87396i) q^{67} +(20.2519 - 9.75280i) q^{68} +(-2.82076 + 3.53712i) q^{69} +4.77822 q^{70} +(5.82579 - 7.30531i) q^{71} +(-1.36595 + 5.98461i) q^{72} +(0.400049 - 1.75273i) q^{73} +(9.75566 - 12.2332i) q^{74} -3.81296 q^{75} +(-17.9960 + 22.5663i) q^{76} +(-9.81531 + 4.72681i) q^{77} +(-2.02166 - 2.53508i) q^{78} +(-1.78668 - 2.24043i) q^{79} +(-6.58844 - 3.17283i) q^{80} +(-0.222521 + 0.974928i) q^{81} +(-2.28132 - 9.99513i) q^{82} +(-5.94056 + 2.86082i) q^{83} +(-6.89514 - 3.32052i) q^{84} +(1.23230 + 5.39906i) q^{85} +4.64077 q^{86} +(3.89342 - 3.72039i) q^{87} +38.6427 q^{88} +(-0.744447 - 3.26164i) q^{89} +(-2.48764 - 1.19798i) q^{90} +(1.99496 - 0.960721i) q^{91} +(4.45196 + 19.5053i) q^{92} +(1.52535 - 6.68301i) q^{93} +(-3.46252 - 1.66746i) q^{94} +(-4.43370 - 5.55968i) q^{95} +(2.95045 + 3.69975i) q^{96} +(-2.04297 + 0.983843i) q^{97} +(-6.32833 + 7.93547i) q^{98} +6.29513 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{3}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.563916 2.47068i −0.398749 1.74703i −0.632333 0.774697i \(-0.717903\pi\)
0.233584 0.972337i \(-0.424955\pi\)
\(3\) −0.900969 0.433884i −0.520175 0.250503i
\(4\) −3.98431 + 1.91874i −1.99216 + 0.959372i
\(5\) −0.242440 1.06220i −0.108422 0.475030i −0.999765 0.0216985i \(-0.993093\pi\)
0.891342 0.453331i \(-0.149765\pi\)
\(6\) −0.563916 + 2.47068i −0.230218 + 1.00865i
\(7\) −1.55919 0.750867i −0.589319 0.283801i 0.115364 0.993323i \(-0.463196\pi\)
−0.704683 + 0.709522i \(0.748911\pi\)
\(8\) 3.82730 + 4.79928i 1.35315 + 1.69680i
\(9\) 0.623490 + 0.781831i 0.207830 + 0.260610i
\(10\) −2.48764 + 1.19798i −0.786659 + 0.378835i
\(11\) 3.92495 4.92173i 1.18342 1.48396i 0.345279 0.938500i \(-0.387784\pi\)
0.838138 0.545458i \(-0.183644\pi\)
\(12\) 4.42225 1.27659
\(13\) −0.797744 + 1.00034i −0.221255 + 0.277444i −0.880053 0.474875i \(-0.842493\pi\)
0.658799 + 0.752319i \(0.271065\pi\)
\(14\) −0.975897 + 4.27568i −0.260819 + 1.14272i
\(15\) −0.242440 + 1.06220i −0.0625977 + 0.274259i
\(16\) 4.18475 5.24750i 1.04619 1.31188i
\(17\) −5.08291 −1.23279 −0.616393 0.787439i \(-0.711407\pi\)
−0.616393 + 0.787439i \(0.711407\pi\)
\(18\) 1.58006 1.98133i 0.372423 0.467004i
\(19\) 5.88048 2.83189i 1.34908 0.649680i 0.386903 0.922121i \(-0.373545\pi\)
0.962173 + 0.272440i \(0.0878307\pi\)
\(20\) 3.00404 + 3.76695i 0.671724 + 0.842316i
\(21\) 1.07899 + 1.35302i 0.235456 + 0.295252i
\(22\) −14.3734 6.92184i −3.06441 1.47574i
\(23\) 1.00672 4.41072i 0.209915 0.919699i −0.754707 0.656062i \(-0.772221\pi\)
0.964622 0.263637i \(-0.0849220\pi\)
\(24\) −1.36595 5.98461i −0.278823 1.22160i
\(25\) 3.43536 1.65438i 0.687071 0.330876i
\(26\) 2.92138 + 1.40686i 0.572930 + 0.275908i
\(27\) −0.222521 0.974928i −0.0428242 0.187625i
\(28\) 7.65302 1.44629
\(29\) −1.89363 + 5.04125i −0.351638 + 0.936136i
\(30\) 2.76107 0.504100
\(31\) 1.52535 + 6.68301i 0.273961 + 1.20030i 0.905292 + 0.424790i \(0.139652\pi\)
−0.631331 + 0.775514i \(0.717491\pi\)
\(32\) −4.26353 2.05321i −0.753692 0.362959i
\(33\) −5.67172 + 2.73136i −0.987319 + 0.475468i
\(34\) 2.86633 + 12.5582i 0.491572 + 2.15372i
\(35\) −0.419560 + 1.83821i −0.0709185 + 0.310714i
\(36\) −3.98431 1.91874i −0.664052 0.319791i
\(37\) 3.84958 + 4.82721i 0.632866 + 0.793589i 0.990091 0.140429i \(-0.0448483\pi\)
−0.357224 + 0.934019i \(0.616277\pi\)
\(38\) −10.3128 12.9318i −1.67296 2.09782i
\(39\) 1.15277 0.555147i 0.184592 0.0888946i
\(40\) 4.16990 5.22889i 0.659319 0.826760i
\(41\) 4.04550 0.631801 0.315901 0.948792i \(-0.397693\pi\)
0.315901 + 0.948792i \(0.397693\pi\)
\(42\) 2.73440 3.42883i 0.421928 0.529080i
\(43\) −0.407490 + 1.78533i −0.0621417 + 0.272260i −0.996448 0.0842108i \(-0.973163\pi\)
0.934306 + 0.356471i \(0.116020\pi\)
\(44\) −6.19468 + 27.1407i −0.933884 + 4.09161i
\(45\) 0.679302 0.851817i 0.101264 0.126981i
\(46\) −11.4652 −1.69045
\(47\) 0.945516 1.18564i 0.137918 0.172943i −0.708076 0.706136i \(-0.750437\pi\)
0.845994 + 0.533193i \(0.179008\pi\)
\(48\) −6.04713 + 2.91215i −0.872828 + 0.420332i
\(49\) −2.49715 3.13133i −0.356736 0.447333i
\(50\) −6.02469 7.55473i −0.852020 1.06840i
\(51\) 4.57954 + 2.20539i 0.641264 + 0.308817i
\(52\) 1.25907 5.51633i 0.174601 0.764978i
\(53\) 0.839814 + 3.67947i 0.115357 + 0.505414i 0.999286 + 0.0377912i \(0.0120322\pi\)
−0.883928 + 0.467622i \(0.845111\pi\)
\(54\) −2.28325 + 1.09956i −0.310711 + 0.149631i
\(55\) −6.17942 2.97585i −0.833233 0.401264i
\(56\) −2.36387 10.3568i −0.315885 1.38398i
\(57\) −6.52684 −0.864502
\(58\) 13.5231 + 1.83571i 1.77568 + 0.241041i
\(59\) −8.72197 −1.13550 −0.567752 0.823200i \(-0.692187\pi\)
−0.567752 + 0.823200i \(0.692187\pi\)
\(60\) −1.07213 4.69731i −0.138411 0.606420i
\(61\) 2.78187 + 1.33968i 0.356182 + 0.171528i 0.603414 0.797428i \(-0.293807\pi\)
−0.247232 + 0.968956i \(0.579521\pi\)
\(62\) 15.6514 7.53731i 1.98773 0.957240i
\(63\) −0.385088 1.68718i −0.0485166 0.212565i
\(64\) 0.318497 1.39543i 0.0398121 0.174428i
\(65\) 1.25596 + 0.604841i 0.155783 + 0.0750213i
\(66\) 9.94667 + 12.4727i 1.22435 + 1.53529i
\(67\) −1.49443 1.87396i −0.182574 0.228941i 0.682119 0.731241i \(-0.261059\pi\)
−0.864693 + 0.502300i \(0.832487\pi\)
\(68\) 20.2519 9.75280i 2.45590 1.18270i
\(69\) −2.82076 + 3.53712i −0.339580 + 0.425820i
\(70\) 4.77822 0.571107
\(71\) 5.82579 7.30531i 0.691394 0.866980i −0.304954 0.952367i \(-0.598641\pi\)
0.996348 + 0.0853867i \(0.0272126\pi\)
\(72\) −1.36595 + 5.98461i −0.160978 + 0.705293i
\(73\) 0.400049 1.75273i 0.0468222 0.205142i −0.946106 0.323857i \(-0.895020\pi\)
0.992928 + 0.118715i \(0.0378775\pi\)
\(74\) 9.75566 12.2332i 1.13407 1.42208i
\(75\) −3.81296 −0.440282
\(76\) −17.9960 + 22.5663i −2.06428 + 2.58853i
\(77\) −9.81531 + 4.72681i −1.11856 + 0.538669i
\(78\) −2.02166 2.53508i −0.228908 0.287041i
\(79\) −1.78668 2.24043i −0.201018 0.252068i 0.671097 0.741369i \(-0.265823\pi\)
−0.872115 + 0.489301i \(0.837252\pi\)
\(80\) −6.58844 3.17283i −0.736610 0.354733i
\(81\) −0.222521 + 0.974928i −0.0247245 + 0.108325i
\(82\) −2.28132 9.99513i −0.251930 1.10378i
\(83\) −5.94056 + 2.86082i −0.652061 + 0.314016i −0.730510 0.682902i \(-0.760717\pi\)
0.0784490 + 0.996918i \(0.475003\pi\)
\(84\) −6.89514 3.32052i −0.752321 0.362299i
\(85\) 1.23230 + 5.39906i 0.133662 + 0.585610i
\(86\) 4.64077 0.500427
\(87\) 3.89342 3.72039i 0.417418 0.398868i
\(88\) 38.6427 4.11933
\(89\) −0.744447 3.26164i −0.0789113 0.345733i 0.920024 0.391861i \(-0.128169\pi\)
−0.998936 + 0.0461286i \(0.985312\pi\)
\(90\) −2.48764 1.19798i −0.262220 0.126278i
\(91\) 1.99496 0.960721i 0.209128 0.100711i
\(92\) 4.45196 + 19.5053i 0.464149 + 2.03357i
\(93\) 1.52535 6.68301i 0.158172 0.692996i
\(94\) −3.46252 1.66746i −0.357132 0.171986i
\(95\) −4.43370 5.55968i −0.454888 0.570411i
\(96\) 2.95045 + 3.69975i 0.301129 + 0.377604i
\(97\) −2.04297 + 0.983843i −0.207432 + 0.0998941i −0.534715 0.845032i \(-0.679581\pi\)
0.327283 + 0.944926i \(0.393867\pi\)
\(98\) −6.32833 + 7.93547i −0.639257 + 0.801604i
\(99\) 6.29513 0.632685
\(100\) −10.5132 + 13.1831i −1.05132 + 1.31831i
\(101\) −2.79423 + 12.2423i −0.278036 + 1.21816i 0.622237 + 0.782829i \(0.286224\pi\)
−0.900273 + 0.435326i \(0.856633\pi\)
\(102\) 2.86633 12.5582i 0.283809 1.24345i
\(103\) 1.73041 2.16986i 0.170502 0.213803i −0.689237 0.724536i \(-0.742054\pi\)
0.859740 + 0.510732i \(0.170626\pi\)
\(104\) −7.85412 −0.770160
\(105\) 1.17558 1.47413i 0.114725 0.143860i
\(106\) 8.61719 4.14982i 0.836976 0.403066i
\(107\) 6.20858 + 7.78532i 0.600206 + 0.752635i 0.985410 0.170197i \(-0.0544403\pi\)
−0.385204 + 0.922832i \(0.625869\pi\)
\(108\) 2.75723 + 3.45746i 0.265314 + 0.332694i
\(109\) 4.25748 + 2.05029i 0.407793 + 0.196383i 0.626523 0.779403i \(-0.284477\pi\)
−0.218731 + 0.975785i \(0.570192\pi\)
\(110\) −3.86770 + 16.9455i −0.368771 + 1.61569i
\(111\) −1.37390 6.01944i −0.130405 0.571340i
\(112\) −10.4650 + 5.03967i −0.988849 + 0.476205i
\(113\) 0.494143 + 0.237967i 0.0464851 + 0.0223860i 0.456982 0.889476i \(-0.348930\pi\)
−0.410497 + 0.911862i \(0.634645\pi\)
\(114\) 3.68059 + 16.1257i 0.344719 + 1.51031i
\(115\) −4.92913 −0.459644
\(116\) −2.12804 23.7193i −0.197584 2.20228i
\(117\) −1.27948 −0.118288
\(118\) 4.91846 + 21.5492i 0.452781 + 1.98376i
\(119\) 7.92522 + 3.81659i 0.726504 + 0.349866i
\(120\) −6.02568 + 2.90181i −0.550067 + 0.264898i
\(121\) −6.37048 27.9109i −0.579135 2.53735i
\(122\) 1.74117 7.62857i 0.157638 0.690659i
\(123\) −3.64487 1.75528i −0.328647 0.158268i
\(124\) −18.9005 23.7004i −1.69731 2.12836i
\(125\) −5.98666 7.50703i −0.535463 0.671449i
\(126\) −3.95133 + 1.90286i −0.352012 + 0.169520i
\(127\) 8.88268 11.1385i 0.788211 0.988385i −0.211728 0.977329i \(-0.567909\pi\)
0.999939 0.0110562i \(-0.00351937\pi\)
\(128\) −13.0916 −1.15714
\(129\) 1.14176 1.43172i 0.100527 0.126056i
\(130\) 0.786108 3.44416i 0.0689462 0.302073i
\(131\) −1.52161 + 6.66661i −0.132944 + 0.582464i 0.863941 + 0.503593i \(0.167989\pi\)
−0.996885 + 0.0788714i \(0.974868\pi\)
\(132\) 17.3571 21.7651i 1.51074 1.89441i
\(133\) −11.2952 −0.979415
\(134\) −3.78722 + 4.74902i −0.327166 + 0.410253i
\(135\) −0.981619 + 0.472723i −0.0844843 + 0.0406855i
\(136\) −19.4538 24.3943i −1.66815 2.09179i
\(137\) 8.40101 + 10.5345i 0.717746 + 0.900026i 0.998208 0.0598397i \(-0.0190590\pi\)
−0.280462 + 0.959865i \(0.590488\pi\)
\(138\) 10.3298 + 4.97455i 0.879328 + 0.423462i
\(139\) −2.62174 + 11.4866i −0.222373 + 0.974278i 0.733313 + 0.679891i \(0.237973\pi\)
−0.955686 + 0.294388i \(0.904884\pi\)
\(140\) −1.85540 8.12903i −0.156810 0.687028i
\(141\) −1.36631 + 0.657980i −0.115064 + 0.0554119i
\(142\) −21.3343 10.2741i −1.79034 0.862180i
\(143\) 1.79230 + 7.85257i 0.149879 + 0.656665i
\(144\) 6.71181 0.559317
\(145\) 5.81390 + 0.789213i 0.482818 + 0.0655405i
\(146\) −4.55603 −0.377060
\(147\) 0.891224 + 3.90471i 0.0735069 + 0.322055i
\(148\) −24.6001 11.8468i −2.02212 0.973799i
\(149\) −0.686505 + 0.330603i −0.0562406 + 0.0270841i −0.461793 0.886988i \(-0.652794\pi\)
0.405552 + 0.914072i \(0.367079\pi\)
\(150\) 2.15019 + 9.42059i 0.175562 + 0.769188i
\(151\) −4.10254 + 17.9744i −0.333860 + 1.46274i 0.477730 + 0.878507i \(0.341460\pi\)
−0.811589 + 0.584228i \(0.801397\pi\)
\(152\) 36.0974 + 17.3836i 2.92789 + 1.41000i
\(153\) −3.16914 3.97398i −0.256210 0.321277i
\(154\) 17.2134 + 21.5850i 1.38710 + 1.73937i
\(155\) 6.72887 3.24046i 0.540476 0.260280i
\(156\) −3.52783 + 4.42376i −0.282452 + 0.354184i
\(157\) 10.9681 0.875353 0.437676 0.899133i \(-0.355802\pi\)
0.437676 + 0.899133i \(0.355802\pi\)
\(158\) −4.52784 + 5.67773i −0.360216 + 0.451696i
\(159\) 0.839814 3.67947i 0.0666016 0.291801i
\(160\) −1.14726 + 5.02649i −0.0906991 + 0.397379i
\(161\) −4.88153 + 6.12125i −0.384719 + 0.482422i
\(162\) 2.53422 0.199107
\(163\) 14.8705 18.6470i 1.16475 1.46055i 0.303155 0.952941i \(-0.401960\pi\)
0.861590 0.507604i \(-0.169469\pi\)
\(164\) −16.1185 + 7.76228i −1.25865 + 0.606132i
\(165\) 4.27629 + 5.36230i 0.332909 + 0.417455i
\(166\) 10.4181 + 13.0639i 0.808605 + 1.01396i
\(167\) 12.9629 + 6.24261i 1.00310 + 0.483068i 0.861990 0.506926i \(-0.169218\pi\)
0.141111 + 0.989994i \(0.454932\pi\)
\(168\) −2.36387 + 10.3568i −0.182376 + 0.799043i
\(169\) 2.52849 + 11.0780i 0.194499 + 0.852156i
\(170\) 12.6444 6.08923i 0.969783 0.467023i
\(171\) 5.88048 + 2.83189i 0.449692 + 0.216560i
\(172\) −1.80202 7.89518i −0.137403 0.602002i
\(173\) −3.94904 −0.300240 −0.150120 0.988668i \(-0.547966\pi\)
−0.150120 + 0.988668i \(0.547966\pi\)
\(174\) −11.3874 7.52139i −0.863280 0.570195i
\(175\) −6.59859 −0.498807
\(176\) −9.40189 41.1924i −0.708694 3.10499i
\(177\) 7.85822 + 3.78432i 0.590660 + 0.284447i
\(178\) −7.63865 + 3.67858i −0.572541 + 0.275721i
\(179\) −3.65240 16.0022i −0.272993 1.19606i −0.906460 0.422291i \(-0.861226\pi\)
0.633467 0.773770i \(-0.281631\pi\)
\(180\) −1.07213 + 4.69731i −0.0799119 + 0.350117i
\(181\) 15.0941 + 7.26893i 1.12193 + 0.540295i 0.900489 0.434878i \(-0.143208\pi\)
0.221445 + 0.975173i \(0.428923\pi\)
\(182\) −3.49862 4.38713i −0.259335 0.325196i
\(183\) −1.92511 2.41402i −0.142309 0.178449i
\(184\) 25.0213 12.0496i 1.84460 0.888310i
\(185\) 4.19417 5.25932i 0.308362 0.386673i
\(186\) −17.3717 −1.27376
\(187\) −19.9502 + 25.0167i −1.45890 + 1.82940i
\(188\) −1.49229 + 6.53816i −0.108837 + 0.476844i
\(189\) −0.385088 + 1.68718i −0.0280111 + 0.122724i
\(190\) −11.2359 + 14.0894i −0.815141 + 1.02215i
\(191\) −2.95004 −0.213457 −0.106729 0.994288i \(-0.534038\pi\)
−0.106729 + 0.994288i \(0.534038\pi\)
\(192\) −0.892409 + 1.11905i −0.0644041 + 0.0807601i
\(193\) 4.39974 2.11880i 0.316700 0.152515i −0.268780 0.963202i \(-0.586620\pi\)
0.585480 + 0.810687i \(0.300906\pi\)
\(194\) 3.58282 + 4.49272i 0.257232 + 0.322559i
\(195\) −0.869155 1.08989i −0.0622415 0.0780483i
\(196\) 15.9577 + 7.68480i 1.13983 + 0.548914i
\(197\) 0.560429 2.45540i 0.0399289 0.174940i −0.951032 0.309094i \(-0.899974\pi\)
0.990961 + 0.134153i \(0.0428315\pi\)
\(198\) −3.54993 15.5532i −0.252282 1.10532i
\(199\) −23.0213 + 11.0865i −1.63193 + 0.785898i −0.631994 + 0.774974i \(0.717763\pi\)
−0.999940 + 0.0109244i \(0.996523\pi\)
\(200\) 21.0880 + 10.1554i 1.49114 + 0.718097i
\(201\) 0.533357 + 2.33679i 0.0376201 + 0.164825i
\(202\) 31.8225 2.23903
\(203\) 6.73784 6.43840i 0.472903 0.451887i
\(204\) −22.4779 −1.57377
\(205\) −0.980791 4.29713i −0.0685014 0.300124i
\(206\) −6.33684 3.05166i −0.441509 0.212619i
\(207\) 4.07612 1.96296i 0.283310 0.136435i
\(208\) 1.91093 + 8.37234i 0.132499 + 0.580517i
\(209\) 9.14279 40.0572i 0.632420 2.77081i
\(210\) −4.30503 2.07319i −0.297075 0.143064i
\(211\) −1.15041 1.44257i −0.0791974 0.0993104i 0.740654 0.671886i \(-0.234516\pi\)
−0.819852 + 0.572576i \(0.805944\pi\)
\(212\) −10.4060 13.0488i −0.714689 0.896192i
\(213\) −8.41851 + 4.05414i −0.576827 + 0.277785i
\(214\) 15.7339 19.7297i 1.07555 1.34869i
\(215\) 1.99517 0.136069
\(216\) 3.82730 4.79928i 0.260415 0.326550i
\(217\) 2.63973 11.5654i 0.179197 0.785112i
\(218\) 2.66476 11.6751i 0.180480 0.790735i
\(219\) −1.12091 + 1.40558i −0.0757443 + 0.0949803i
\(220\) 30.3306 2.04489
\(221\) 4.05486 5.08464i 0.272760 0.342030i
\(222\) −14.0973 + 6.78892i −0.946151 + 0.455642i
\(223\) −14.9944 18.8024i −1.00410 1.25910i −0.965652 0.259840i \(-0.916330\pi\)
−0.0384478 0.999261i \(-0.512241\pi\)
\(224\) 5.10597 + 6.40268i 0.341157 + 0.427797i
\(225\) 3.43536 + 1.65438i 0.229024 + 0.110292i
\(226\) 0.309284 1.35506i 0.0205733 0.0901374i
\(227\) 5.03786 + 22.0723i 0.334374 + 1.46499i 0.810565 + 0.585648i \(0.199160\pi\)
−0.476191 + 0.879342i \(0.657983\pi\)
\(228\) 26.0050 12.5233i 1.72222 0.829378i
\(229\) 12.4353 + 5.98852i 0.821747 + 0.395733i 0.797013 0.603962i \(-0.206412\pi\)
0.0247336 + 0.999694i \(0.492126\pi\)
\(230\) 2.77962 + 12.1783i 0.183283 + 0.803013i
\(231\) 10.8942 0.716784
\(232\) −31.4418 + 10.2063i −2.06426 + 0.670076i
\(233\) −6.69816 −0.438811 −0.219405 0.975634i \(-0.570412\pi\)
−0.219405 + 0.975634i \(0.570412\pi\)
\(234\) 0.721521 + 3.16119i 0.0471673 + 0.206653i
\(235\) −1.48861 0.716879i −0.0971065 0.0467640i
\(236\) 34.7511 16.7352i 2.26210 1.08937i
\(237\) 0.637660 + 2.79377i 0.0414205 + 0.181475i
\(238\) 4.96040 21.7329i 0.321535 1.40874i
\(239\) −10.9580 5.27711i −0.708816 0.341348i 0.0444976 0.999009i \(-0.485831\pi\)
−0.753313 + 0.657662i \(0.771546\pi\)
\(240\) 4.55934 + 5.71723i 0.294304 + 0.369046i
\(241\) 1.65610 + 2.07668i 0.106679 + 0.133771i 0.832305 0.554319i \(-0.187021\pi\)
−0.725626 + 0.688089i \(0.758450\pi\)
\(242\) −65.3664 + 31.4788i −4.20191 + 2.02353i
\(243\) 0.623490 0.781831i 0.0399969 0.0501545i
\(244\) −13.6543 −0.874129
\(245\) −2.72069 + 3.41163i −0.173818 + 0.217961i
\(246\) −2.28132 + 9.99513i −0.145452 + 0.637266i
\(247\) −1.85827 + 8.14161i −0.118239 + 0.518038i
\(248\) −26.2356 + 32.8985i −1.66597 + 2.08905i
\(249\) 6.59352 0.417847
\(250\) −15.1715 + 19.0244i −0.959529 + 1.20321i
\(251\) 20.5109 9.87755i 1.29464 0.623465i 0.345529 0.938408i \(-0.387700\pi\)
0.949111 + 0.314943i \(0.101985\pi\)
\(252\) 4.77158 + 5.98337i 0.300581 + 0.376917i
\(253\) −17.7571 22.2667i −1.11638 1.39989i
\(254\) −32.5288 15.6651i −2.04104 0.982913i
\(255\) 1.23230 5.39906i 0.0771696 0.338102i
\(256\) 6.74555 + 29.5542i 0.421597 + 1.84714i
\(257\) −6.94501 + 3.34454i −0.433218 + 0.208627i −0.637767 0.770230i \(-0.720142\pi\)
0.204549 + 0.978856i \(0.434427\pi\)
\(258\) −4.18119 2.01355i −0.260309 0.125358i
\(259\) −2.37763 10.4171i −0.147739 0.647285i
\(260\) −6.16469 −0.382318
\(261\) −5.12206 + 1.66267i −0.317048 + 0.102916i
\(262\) 17.3291 1.07060
\(263\) 0.171243 + 0.750263i 0.0105593 + 0.0462632i 0.979933 0.199327i \(-0.0638755\pi\)
−0.969374 + 0.245590i \(0.921018\pi\)
\(264\) −34.8159 16.7665i −2.14277 1.03190i
\(265\) 3.70472 1.78410i 0.227579 0.109596i
\(266\) 6.36953 + 27.9067i 0.390541 + 1.71107i
\(267\) −0.744447 + 3.26164i −0.0455594 + 0.199609i
\(268\) 9.54994 + 4.59901i 0.583356 + 0.280929i
\(269\) 9.56842 + 11.9984i 0.583397 + 0.731556i 0.982688 0.185268i \(-0.0593152\pi\)
−0.399291 + 0.916824i \(0.630744\pi\)
\(270\) 1.72150 + 2.15869i 0.104767 + 0.131374i
\(271\) −14.1724 + 6.82505i −0.860910 + 0.414592i −0.811616 0.584192i \(-0.801412\pi\)
−0.0492945 + 0.998784i \(0.515697\pi\)
\(272\) −21.2707 + 26.6726i −1.28972 + 1.61726i
\(273\) −2.21424 −0.134012
\(274\) 21.2900 26.6968i 1.28617 1.61281i
\(275\) 5.34118 23.4013i 0.322086 1.41115i
\(276\) 4.45196 19.5053i 0.267977 1.17408i
\(277\) −14.1068 + 17.6894i −0.847595 + 1.06285i 0.149655 + 0.988738i \(0.452184\pi\)
−0.997250 + 0.0741120i \(0.976388\pi\)
\(278\) 29.8581 1.79077
\(279\) −4.27394 + 5.35936i −0.255874 + 0.320856i
\(280\) −10.4279 + 5.02180i −0.623184 + 0.300110i
\(281\) −13.7451 17.2358i −0.819965 1.02820i −0.999015 0.0443636i \(-0.985874\pi\)
0.179051 0.983840i \(-0.442697\pi\)
\(282\) 2.39614 + 3.00467i 0.142688 + 0.178925i
\(283\) −4.66832 2.24815i −0.277503 0.133638i 0.289956 0.957040i \(-0.406359\pi\)
−0.567459 + 0.823402i \(0.692074\pi\)
\(284\) −9.19474 + 40.2848i −0.545608 + 2.39046i
\(285\) 1.58237 + 6.93280i 0.0937314 + 0.410664i
\(286\) 18.3905 8.85638i 1.08745 0.523689i
\(287\) −6.30771 3.03763i −0.372332 0.179306i
\(288\) −1.05300 4.61351i −0.0620488 0.271854i
\(289\) 8.83596 0.519762
\(290\) −1.32866 14.8093i −0.0780216 0.869633i
\(291\) 2.26753 0.132925
\(292\) 1.76912 + 7.75102i 0.103530 + 0.453594i
\(293\) −3.38919 1.63215i −0.197999 0.0953511i 0.332257 0.943189i \(-0.392190\pi\)
−0.530256 + 0.847838i \(0.677904\pi\)
\(294\) 9.14470 4.40385i 0.533330 0.256838i
\(295\) 2.11455 + 9.26447i 0.123114 + 0.539398i
\(296\) −8.43369 + 36.9504i −0.490198 + 2.14770i
\(297\) −5.67172 2.73136i −0.329106 0.158489i
\(298\) 1.20395 + 1.50970i 0.0697427 + 0.0874545i
\(299\) 3.60912 + 4.52569i 0.208721 + 0.261727i
\(300\) 15.1920 7.31609i 0.877111 0.422394i
\(301\) 1.97590 2.47770i 0.113889 0.142812i
\(302\) 46.7224 2.68857
\(303\) 7.82925 9.81757i 0.449779 0.564005i
\(304\) 9.74796 42.7086i 0.559084 2.44951i
\(305\) 0.748568 3.27969i 0.0428629 0.187795i
\(306\) −8.03129 + 10.0709i −0.459118 + 0.575716i
\(307\) −4.15007 −0.236857 −0.118428 0.992963i \(-0.537786\pi\)
−0.118428 + 0.992963i \(0.537786\pi\)
\(308\) 30.0377 37.6661i 1.71156 2.14623i
\(309\) −2.50051 + 1.20418i −0.142249 + 0.0685036i
\(310\) −11.8006 14.7975i −0.670232 0.840444i
\(311\) −5.11268 6.41109i −0.289913 0.363540i 0.615451 0.788175i \(-0.288974\pi\)
−0.905365 + 0.424635i \(0.860402\pi\)
\(312\) 7.07632 + 3.40777i 0.400618 + 0.192927i
\(313\) 1.29402 5.66946i 0.0731421 0.320457i −0.925100 0.379723i \(-0.876019\pi\)
0.998242 + 0.0592668i \(0.0188763\pi\)
\(314\) −6.18511 27.0987i −0.349046 1.52927i
\(315\) −1.69876 + 0.818081i −0.0957144 + 0.0460936i
\(316\) 11.4175 + 5.49839i 0.642285 + 0.309308i
\(317\) 2.46889 + 10.8169i 0.138666 + 0.607537i 0.995729 + 0.0923249i \(0.0294299\pi\)
−0.857062 + 0.515212i \(0.827713\pi\)
\(318\) −9.56436 −0.536343
\(319\) 17.3793 + 29.1066i 0.973052 + 1.62966i
\(320\) −1.55944 −0.0871752
\(321\) −2.21582 9.70813i −0.123675 0.541855i
\(322\) 17.8764 + 8.60882i 0.996213 + 0.479751i
\(323\) −29.8900 + 14.3942i −1.66312 + 0.800917i
\(324\) −0.984044 4.31138i −0.0546691 0.239521i
\(325\) −1.08559 + 4.75630i −0.0602179 + 0.263832i
\(326\) −54.4564 26.2248i −3.01606 1.45246i
\(327\) −2.94627 3.69450i −0.162929 0.204307i
\(328\) 15.4833 + 19.4155i 0.854925 + 1.07204i
\(329\) −2.36450 + 1.13868i −0.130359 + 0.0627775i
\(330\) 10.8371 13.5892i 0.596560 0.748063i
\(331\) 16.7926 0.923002 0.461501 0.887140i \(-0.347311\pi\)
0.461501 + 0.887140i \(0.347311\pi\)
\(332\) 18.1798 22.7968i 0.997749 1.25114i
\(333\) −1.37390 + 6.01944i −0.0752891 + 0.329863i
\(334\) 8.11349 35.5475i 0.443950 1.94507i
\(335\) −1.62821 + 2.04171i −0.0889585 + 0.111550i
\(336\) 11.6153 0.633665
\(337\) 13.1418 16.4793i 0.715880 0.897685i −0.282217 0.959351i \(-0.591070\pi\)
0.998097 + 0.0616653i \(0.0196411\pi\)
\(338\) 25.9444 12.4942i 1.41119 0.679593i
\(339\) −0.341958 0.428801i −0.0185726 0.0232893i
\(340\) −15.2693 19.1471i −0.828093 1.03840i
\(341\) 38.8789 + 18.7231i 2.10541 + 1.01391i
\(342\) 3.68059 16.1257i 0.199024 0.871980i
\(343\) 4.23794 + 18.5676i 0.228828 + 1.00256i
\(344\) −10.1279 + 4.87734i −0.546059 + 0.262968i
\(345\) 4.44099 + 2.13867i 0.239095 + 0.115142i
\(346\) 2.22693 + 9.75680i 0.119720 + 0.524529i
\(347\) −31.0309 −1.66583 −0.832914 0.553402i \(-0.813329\pi\)
−0.832914 + 0.553402i \(0.813329\pi\)
\(348\) −8.37411 + 22.2937i −0.448900 + 1.19507i
\(349\) −35.7539 −1.91386 −0.956931 0.290315i \(-0.906240\pi\)
−0.956931 + 0.290315i \(0.906240\pi\)
\(350\) 3.72105 + 16.3030i 0.198899 + 0.871432i
\(351\) 1.15277 + 0.555147i 0.0615305 + 0.0296315i
\(352\) −26.8395 + 12.9252i −1.43055 + 0.688915i
\(353\) 1.34141 + 5.87712i 0.0713962 + 0.312807i 0.997999 0.0632352i \(-0.0201418\pi\)
−0.926602 + 0.376042i \(0.877285\pi\)
\(354\) 4.91846 21.5492i 0.261413 1.14533i
\(355\) −9.17209 4.41705i −0.486804 0.234432i
\(356\) 9.22436 + 11.5670i 0.488890 + 0.613048i
\(357\) −5.48443 6.87725i −0.290267 0.363983i
\(358\) −37.4766 + 18.0478i −1.98070 + 0.953856i
\(359\) −3.56260 + 4.46736i −0.188027 + 0.235778i −0.866906 0.498472i \(-0.833895\pi\)
0.678879 + 0.734250i \(0.262466\pi\)
\(360\) 6.68800 0.352489
\(361\) 14.7142 18.4510i 0.774430 0.971104i
\(362\) 9.44738 41.3917i 0.496543 2.17550i
\(363\) −6.37048 + 27.9109i −0.334364 + 1.46494i
\(364\) −6.10516 + 7.65562i −0.319997 + 0.401264i
\(365\) −1.95874 −0.102525
\(366\) −4.87866 + 6.11764i −0.255011 + 0.319774i
\(367\) −24.6356 + 11.8639i −1.28597 + 0.619290i −0.946917 0.321478i \(-0.895820\pi\)
−0.339051 + 0.940768i \(0.610106\pi\)
\(368\) −18.9324 23.7405i −0.986921 1.23756i
\(369\) 2.52233 + 3.16290i 0.131307 + 0.164654i
\(370\) −15.3593 7.39663i −0.798490 0.384532i
\(371\) 1.45336 6.36758i 0.0754546 0.330588i
\(372\) 6.74549 + 29.5539i 0.349738 + 1.53230i
\(373\) 11.3717 5.47631i 0.588803 0.283552i −0.115665 0.993288i \(-0.536900\pi\)
0.704468 + 0.709736i \(0.251186\pi\)
\(374\) 73.0585 + 35.1831i 3.77776 + 1.81927i
\(375\) 2.13661 + 9.36111i 0.110334 + 0.483406i
\(376\) 9.30899 0.480074
\(377\) −3.53233 5.91590i −0.181924 0.304684i
\(378\) 4.38564 0.225573
\(379\) 0.734451 + 3.21784i 0.0377262 + 0.165289i 0.990282 0.139075i \(-0.0444130\pi\)
−0.952556 + 0.304365i \(0.901556\pi\)
\(380\) 28.3328 + 13.6444i 1.45344 + 0.699941i
\(381\) −12.8358 + 6.18142i −0.657600 + 0.316684i
\(382\) 1.66357 + 7.28859i 0.0851158 + 0.372917i
\(383\) −2.14467 + 9.39639i −0.109587 + 0.480133i 0.890115 + 0.455736i \(0.150624\pi\)
−0.999702 + 0.0243974i \(0.992233\pi\)
\(384\) 11.7951 + 5.68022i 0.601916 + 0.289867i
\(385\) 7.40043 + 9.27984i 0.377161 + 0.472945i
\(386\) −7.71596 9.67551i −0.392732 0.492470i
\(387\) −1.64989 + 0.794547i −0.0838688 + 0.0403891i
\(388\) 6.25209 7.83988i 0.317402 0.398009i
\(389\) 10.7987 0.547518 0.273759 0.961798i \(-0.411733\pi\)
0.273759 + 0.961798i \(0.411733\pi\)
\(390\) −2.20263 + 2.76201i −0.111534 + 0.139860i
\(391\) −5.11706 + 22.4193i −0.258781 + 1.13379i
\(392\) 5.47079 23.9691i 0.276316 1.21062i
\(393\) 4.26346 5.34620i 0.215063 0.269680i
\(394\) −6.38254 −0.321548
\(395\) −1.94662 + 2.44098i −0.0979450 + 0.122819i
\(396\) −25.0818 + 12.0787i −1.26041 + 0.606980i
\(397\) 18.5378 + 23.2457i 0.930385 + 1.16667i 0.985753 + 0.168200i \(0.0537955\pi\)
−0.0553677 + 0.998466i \(0.517633\pi\)
\(398\) 40.3731 + 50.6263i 2.02372 + 2.53767i
\(399\) 10.1766 + 4.90079i 0.509467 + 0.245346i
\(400\) 5.69472 24.9502i 0.284736 1.24751i
\(401\) −2.54450 11.1482i −0.127066 0.556713i −0.997879 0.0650982i \(-0.979264\pi\)
0.870813 0.491615i \(-0.163593\pi\)
\(402\) 5.47269 2.63551i 0.272953 0.131447i
\(403\) −7.90212 3.80546i −0.393633 0.189564i
\(404\) −12.3568 54.1386i −0.614773 2.69350i
\(405\) 1.08952 0.0541384
\(406\) −19.7068 13.0163i −0.978032 0.645988i
\(407\) 38.8677 1.92660
\(408\) 6.94298 + 30.4192i 0.343729 + 1.50597i
\(409\) −26.9918 12.9985i −1.33466 0.642737i −0.375820 0.926693i \(-0.622639\pi\)
−0.958837 + 0.283956i \(0.908353\pi\)
\(410\) −10.0637 + 4.84644i −0.497012 + 0.239349i
\(411\) −2.99828 13.1363i −0.147894 0.647968i
\(412\) −2.73108 + 11.9656i −0.134550 + 0.589504i
\(413\) 13.5992 + 6.54904i 0.669174 + 0.322257i
\(414\) −7.14842 8.96384i −0.351326 0.440549i
\(415\) 4.47899 + 5.61647i 0.219865 + 0.275702i
\(416\) 5.45511 2.62704i 0.267459 0.128801i
\(417\) 7.34594 9.21152i 0.359732 0.451090i
\(418\) −104.124 −5.09288
\(419\) −12.7136 + 15.9424i −0.621101 + 0.778836i −0.988499 0.151228i \(-0.951677\pi\)
0.367398 + 0.930064i \(0.380249\pi\)
\(420\) −1.85540 + 8.12903i −0.0905342 + 0.396656i
\(421\) 5.11531 22.4116i 0.249305 1.09228i −0.682948 0.730467i \(-0.739302\pi\)
0.932253 0.361808i \(-0.117840\pi\)
\(422\) −2.91539 + 3.65578i −0.141919 + 0.177960i
\(423\) 1.51649 0.0737342
\(424\) −14.4446 + 18.1129i −0.701491 + 0.879641i
\(425\) −17.4616 + 8.40906i −0.847012 + 0.407899i
\(426\) 14.7638 + 18.5132i 0.715309 + 0.896969i
\(427\) −3.33155 4.17763i −0.161225 0.202170i
\(428\) −39.6750 19.1065i −1.91776 0.923545i
\(429\) 1.79230 7.85257i 0.0865329 0.379126i
\(430\) −1.12511 4.92942i −0.0542575 0.237718i
\(431\) 3.64629 1.75596i 0.175636 0.0845817i −0.344000 0.938970i \(-0.611782\pi\)
0.519636 + 0.854388i \(0.326068\pi\)
\(432\) −6.04713 2.91215i −0.290943 0.140111i
\(433\) −0.585130 2.56362i −0.0281196 0.123200i 0.958920 0.283676i \(-0.0915541\pi\)
−0.987040 + 0.160476i \(0.948697\pi\)
\(434\) −30.0630 −1.44307
\(435\) −4.89571 3.23361i −0.234731 0.155040i
\(436\) −20.8971 −1.00079
\(437\) −6.57069 28.7881i −0.314319 1.37712i
\(438\) 4.10484 + 1.97679i 0.196137 + 0.0944545i
\(439\) 23.4338 11.2851i 1.11843 0.538609i 0.219025 0.975719i \(-0.429712\pi\)
0.899408 + 0.437110i \(0.143998\pi\)
\(440\) −9.36854 41.0463i −0.446628 1.95680i
\(441\) 0.891224 3.90471i 0.0424392 0.185938i
\(442\) −14.8491 7.15095i −0.706300 0.340136i
\(443\) 11.7311 + 14.7103i 0.557360 + 0.698907i 0.978067 0.208290i \(-0.0667896\pi\)
−0.420708 + 0.907196i \(0.638218\pi\)
\(444\) 17.0238 + 21.3472i 0.807913 + 1.01309i
\(445\) −3.28402 + 1.58150i −0.155678 + 0.0749704i
\(446\) −37.9991 + 47.6493i −1.79931 + 2.25626i
\(447\) 0.761963 0.0360396
\(448\) −1.54438 + 1.93659i −0.0729650 + 0.0914952i
\(449\) −2.75254 + 12.0597i −0.129900 + 0.569130i 0.867523 + 0.497396i \(0.165710\pi\)
−0.997424 + 0.0717342i \(0.977147\pi\)
\(450\) 2.15019 9.42059i 0.101361 0.444091i
\(451\) 15.8784 19.9109i 0.747684 0.937567i
\(452\) −2.42542 −0.114082
\(453\) 11.4951 14.4143i 0.540085 0.677245i
\(454\) 51.6926 24.8939i 2.42606 1.16833i
\(455\) −1.50413 1.88612i −0.0705149 0.0884229i
\(456\) −24.9802 31.3242i −1.16980 1.46689i
\(457\) 18.1340 + 8.73289i 0.848275 + 0.408508i 0.806937 0.590638i \(-0.201124\pi\)
0.0413378 + 0.999145i \(0.486838\pi\)
\(458\) 7.78324 34.1006i 0.363687 1.59342i
\(459\) 1.13105 + 4.95547i 0.0527931 + 0.231301i
\(460\) 19.6392 9.45774i 0.915682 0.440969i
\(461\) −17.8198 8.58155i −0.829950 0.399683i −0.0298534 0.999554i \(-0.509504\pi\)
−0.800096 + 0.599872i \(0.795218\pi\)
\(462\) −6.14340 26.9160i −0.285817 1.25225i
\(463\) 2.22268 0.103297 0.0516484 0.998665i \(-0.483552\pi\)
0.0516484 + 0.998665i \(0.483552\pi\)
\(464\) 18.5296 + 31.0332i 0.860215 + 1.44068i
\(465\) −7.46849 −0.346343
\(466\) 3.77720 + 16.5490i 0.174975 + 0.766617i
\(467\) −4.17491 2.01053i −0.193192 0.0930362i 0.334787 0.942294i \(-0.391336\pi\)
−0.527979 + 0.849258i \(0.677050\pi\)
\(468\) 5.09786 2.45500i 0.235649 0.113482i
\(469\) 0.923013 + 4.04398i 0.0426208 + 0.186734i
\(470\) −0.931724 + 4.08215i −0.0429772 + 0.188295i
\(471\) −9.88195 4.75890i −0.455336 0.219278i
\(472\) −33.3816 41.8592i −1.53651 1.92673i
\(473\) 7.18754 + 9.01289i 0.330484 + 0.414413i
\(474\) 6.54292 3.15091i 0.300526 0.144726i
\(475\) 15.5165 19.4571i 0.711947 0.892753i
\(476\) −38.8996 −1.78296
\(477\) −2.35311 + 2.95070i −0.107741 + 0.135103i
\(478\) −6.85863 + 30.0496i −0.313706 + 1.37444i
\(479\) 2.11528 9.26766i 0.0966498 0.423450i −0.903335 0.428935i \(-0.858889\pi\)
0.999985 + 0.00548500i \(0.00174594\pi\)
\(480\) 3.21456 4.03093i 0.146724 0.183986i
\(481\) −7.89983 −0.360201
\(482\) 4.19691 5.26276i 0.191164 0.239712i
\(483\) 7.05402 3.39704i 0.320969 0.154570i
\(484\) 78.9358 + 98.9824i 3.58799 + 4.49920i
\(485\) 1.54033 + 1.93152i 0.0699430 + 0.0877057i
\(486\) −2.28325 1.09956i −0.103570 0.0498768i
\(487\) −1.69061 + 7.40706i −0.0766090 + 0.335646i −0.998679 0.0513764i \(-0.983639\pi\)
0.922070 + 0.387022i \(0.126496\pi\)
\(488\) 4.21756 + 18.4783i 0.190920 + 0.836475i
\(489\) −21.4885 + 10.3483i −0.971742 + 0.467966i
\(490\) 9.96328 + 4.79807i 0.450095 + 0.216754i
\(491\) 5.01175 + 21.9579i 0.226177 + 0.990947i 0.952726 + 0.303832i \(0.0982662\pi\)
−0.726548 + 0.687115i \(0.758877\pi\)
\(492\) 17.8902 0.806554
\(493\) 9.62515 25.6242i 0.433495 1.15406i
\(494\) 21.1632 0.952177
\(495\) −1.52619 6.68668i −0.0685972 0.300544i
\(496\) 41.4523 + 19.9624i 1.86126 + 0.896338i
\(497\) −14.5688 + 7.01598i −0.653501 + 0.314710i
\(498\) −3.71819 16.2905i −0.166616 0.729993i
\(499\) 6.40406 28.0580i 0.286685 1.25605i −0.602358 0.798226i \(-0.705772\pi\)
0.889043 0.457823i \(-0.151371\pi\)
\(500\) 38.2568 + 18.4235i 1.71089 + 0.823923i
\(501\) −8.97062 11.2488i −0.400778 0.502559i
\(502\) −35.9707 45.1058i −1.60545 2.01317i
\(503\) 4.50964 2.17173i 0.201075 0.0968325i −0.330637 0.943758i \(-0.607263\pi\)
0.531711 + 0.846926i \(0.321549\pi\)
\(504\) 6.62341 8.30550i 0.295030 0.369956i
\(505\) 13.6812 0.608805
\(506\) −45.0003 + 56.4285i −2.00051 + 2.50855i
\(507\) 2.52849 11.0780i 0.112294 0.491993i
\(508\) −14.0194 + 61.4230i −0.622010 + 2.72520i
\(509\) 3.10581 3.89456i 0.137663 0.172623i −0.708221 0.705990i \(-0.750502\pi\)
0.845884 + 0.533367i \(0.179074\pi\)
\(510\) −14.0342 −0.621447
\(511\) −1.93982 + 2.43246i −0.0858126 + 0.107606i
\(512\) 45.6248 21.9717i 2.01635 0.971023i
\(513\) −4.06942 5.10289i −0.179669 0.225298i
\(514\) 12.1797 + 15.2728i 0.537223 + 0.673657i
\(515\) −2.72435 1.31198i −0.120049 0.0578126i
\(516\) −1.80202 + 7.89518i −0.0793297 + 0.347566i
\(517\) −2.12430 9.30715i −0.0934264 0.409328i
\(518\) −24.3964 + 11.7487i −1.07192 + 0.516209i
\(519\) 3.55796 + 1.71342i 0.156177 + 0.0752109i
\(520\) 1.90415 + 8.34263i 0.0835026 + 0.365849i
\(521\) 4.54404 0.199078 0.0995389 0.995034i \(-0.468263\pi\)
0.0995389 + 0.995034i \(0.468263\pi\)
\(522\) 6.99633 + 11.7174i 0.306221 + 0.512855i
\(523\) −3.08967 −0.135102 −0.0675510 0.997716i \(-0.521519\pi\)
−0.0675510 + 0.997716i \(0.521519\pi\)
\(524\) −6.72894 29.4814i −0.293955 1.28790i
\(525\) 5.94513 + 2.86302i 0.259467 + 0.124953i
\(526\) 1.75709 0.846171i 0.0766129 0.0368948i
\(527\) −7.75323 33.9691i −0.337736 1.47972i
\(528\) −9.40189 + 41.1924i −0.409165 + 1.79267i
\(529\) 2.28130 + 1.09862i 0.0991869 + 0.0477659i
\(530\) −6.49709 8.14709i −0.282215 0.353887i
\(531\) −5.43806 6.81911i −0.235992 0.295924i
\(532\) 45.0035 21.6725i 1.95115 0.939623i
\(533\) −3.22728 + 4.04688i −0.139789 + 0.175290i
\(534\) 8.47826 0.366890
\(535\) 6.76434 8.48222i 0.292448 0.366718i
\(536\) 3.27402 14.3444i 0.141416 0.619585i
\(537\) −3.65240 + 16.0022i −0.157613 + 0.690546i
\(538\) 24.2484 30.4066i 1.04542 1.31092i
\(539\) −25.2128 −1.08599
\(540\) 3.00404 3.76695i 0.129273 0.162104i
\(541\) −19.3355 + 9.31147i −0.831297 + 0.400331i −0.800601 0.599197i \(-0.795486\pi\)
−0.0306954 + 0.999529i \(0.509772\pi\)
\(542\) 24.8545 + 31.1666i 1.06759 + 1.33872i
\(543\) −10.4454 13.0982i −0.448256 0.562095i
\(544\) 21.6711 + 10.4363i 0.929141 + 0.447451i
\(545\) 1.14564 5.01936i 0.0490737 0.215006i
\(546\) 1.24864 + 5.47067i 0.0534370 + 0.234123i
\(547\) 13.0776 6.29785i 0.559158 0.269276i −0.132886 0.991131i \(-0.542424\pi\)
0.692045 + 0.721855i \(0.256710\pi\)
\(548\) −53.6853 25.8535i −2.29332 1.10441i
\(549\) 0.687065 + 3.01023i 0.0293232 + 0.128473i
\(550\) −60.8290 −2.59376
\(551\) 3.14080 + 35.0075i 0.133803 + 1.49137i
\(552\) −27.7716 −1.18204
\(553\) 1.10352 + 4.83482i 0.0469263 + 0.205597i
\(554\) 51.6597 + 24.8780i 2.19481 + 1.05697i
\(555\) −6.06075 + 2.91870i −0.257265 + 0.123892i
\(556\) −11.5940 50.7965i −0.491694 2.15425i
\(557\) −5.37517 + 23.5502i −0.227753 + 0.997852i 0.723714 + 0.690100i \(0.242434\pi\)
−0.951467 + 0.307752i \(0.900423\pi\)
\(558\) 15.6514 + 7.53731i 0.662576 + 0.319080i
\(559\) −1.46086 1.83187i −0.0617880 0.0774797i
\(560\) 7.89027 + 9.89408i 0.333425 + 0.418101i
\(561\) 28.8288 13.8832i 1.21715 0.586150i
\(562\) −34.8331 + 43.6793i −1.46935 + 1.84250i
\(563\) −7.54185 −0.317851 −0.158926 0.987291i \(-0.550803\pi\)
−0.158926 + 0.987291i \(0.550803\pi\)
\(564\) 4.18131 5.24319i 0.176065 0.220778i
\(565\) 0.132968 0.582571i 0.00559400 0.0245089i
\(566\) −2.92190 + 12.8017i −0.122817 + 0.538095i
\(567\) 1.07899 1.35302i 0.0453135 0.0568213i
\(568\) 57.3572 2.40666
\(569\) −12.5014 + 15.6763i −0.524086 + 0.657183i −0.971471 0.237159i \(-0.923784\pi\)
0.447385 + 0.894341i \(0.352355\pi\)
\(570\) 16.2364 7.81904i 0.680068 0.327504i
\(571\) −2.84040 3.56175i −0.118867 0.149054i 0.718838 0.695178i \(-0.244674\pi\)
−0.837705 + 0.546123i \(0.816103\pi\)
\(572\) −22.2081 27.8481i −0.928569 1.16439i
\(573\) 2.65789 + 1.27997i 0.111035 + 0.0534716i
\(574\) −3.94799 + 17.2973i −0.164786 + 0.721975i
\(575\) −3.83857 16.8179i −0.160080 0.701355i
\(576\) 1.28957 0.621023i 0.0537320 0.0258760i
\(577\) −17.6920 8.52003i −0.736528 0.354693i 0.0277198 0.999616i \(-0.491175\pi\)
−0.764248 + 0.644922i \(0.776890\pi\)
\(578\) −4.98274 21.8308i −0.207255 0.908042i
\(579\) −4.88334 −0.202945
\(580\) −24.6787 + 8.01091i −1.02473 + 0.332635i
\(581\) 11.4106 0.473390
\(582\) −1.27870 5.60233i −0.0530036 0.232224i
\(583\) 21.4056 + 10.3084i 0.886529 + 0.426930i
\(584\) 9.94295 4.78827i 0.411442 0.198140i
\(585\) 0.310198 + 1.35906i 0.0128251 + 0.0561904i
\(586\) −2.12129 + 9.29399i −0.0876298 + 0.383931i
\(587\) 36.2181 + 17.4417i 1.49488 + 0.719897i 0.989705 0.143120i \(-0.0457135\pi\)
0.505176 + 0.863017i \(0.331428\pi\)
\(588\) −11.0430 13.8475i −0.455407 0.571063i
\(589\) 27.8954 + 34.9797i 1.14941 + 1.44131i
\(590\) 21.6971 10.4488i 0.893255 0.430169i
\(591\) −1.57029 + 1.96908i −0.0645930 + 0.0809971i
\(592\) 41.4403 1.70319
\(593\) 28.6572 35.9350i 1.17681 1.47567i 0.329834 0.944039i \(-0.393007\pi\)
0.846975 0.531633i \(-0.178421\pi\)
\(594\) −3.54993 + 15.5532i −0.145655 + 0.638157i
\(595\) 2.13258 9.34346i 0.0874274 0.383044i
\(596\) 2.10091 2.63445i 0.0860564 0.107911i
\(597\) 25.5517 1.04576
\(598\) 9.14628 11.4691i 0.374019 0.469005i
\(599\) 9.05961 4.36288i 0.370166 0.178262i −0.239547 0.970885i \(-0.576999\pi\)
0.609713 + 0.792622i \(0.291285\pi\)
\(600\) −14.5933 18.2995i −0.595770 0.747072i
\(601\) −0.763319 0.957172i −0.0311364 0.0390439i 0.766019 0.642817i \(-0.222235\pi\)
−0.797156 + 0.603773i \(0.793663\pi\)
\(602\) −7.23584 3.48460i −0.294911 0.142022i
\(603\) 0.533357 2.33679i 0.0217200 0.0951615i
\(604\) −18.1425 79.4873i −0.738206 3.23429i
\(605\) −28.1025 + 13.5334i −1.14253 + 0.550212i
\(606\) −28.6711 13.8073i −1.16468 0.560882i
\(607\) −6.84845 30.0050i −0.277970 1.21787i −0.900355 0.435155i \(-0.856693\pi\)
0.622385 0.782711i \(-0.286164\pi\)
\(608\) −30.8860 −1.25259
\(609\) −8.86410 + 2.87736i −0.359191 + 0.116597i
\(610\) −8.52519 −0.345175
\(611\) 0.431762 + 1.89167i 0.0174672 + 0.0765289i
\(612\) 20.2519 + 9.75280i 0.818634 + 0.394233i
\(613\) 7.12528 3.43135i 0.287787 0.138591i −0.284421 0.958700i \(-0.591801\pi\)
0.572208 + 0.820109i \(0.306087\pi\)
\(614\) 2.34029 + 10.2535i 0.0944464 + 0.413797i
\(615\) −0.980791 + 4.29713i −0.0395493 + 0.173277i
\(616\) −60.2514 29.0155i −2.42760 1.16907i
\(617\) −7.98066 10.0074i −0.321289 0.402884i 0.594790 0.803881i \(-0.297235\pi\)
−0.916079 + 0.400997i \(0.868664\pi\)
\(618\) 4.38523 + 5.49891i 0.176400 + 0.221198i
\(619\) 38.2518 18.4211i 1.53747 0.740406i 0.542449 0.840089i \(-0.317497\pi\)
0.995019 + 0.0996833i \(0.0317830\pi\)
\(620\) −20.5923 + 25.8220i −0.827008 + 1.03704i
\(621\) −4.52415 −0.181548
\(622\) −12.9566 + 16.2471i −0.519513 + 0.651449i
\(623\) −1.28832 + 5.64450i −0.0516154 + 0.226142i
\(624\) 1.91093 8.37234i 0.0764985 0.335162i
\(625\) 5.36415 6.72643i 0.214566 0.269057i
\(626\) −14.7371 −0.589014
\(627\) −25.6175 + 32.1234i −1.02307 + 1.28288i
\(628\) −43.7005 + 21.0450i −1.74384 + 0.839789i
\(629\) −19.5670 24.5363i −0.780189 0.978326i
\(630\) 2.97917 + 3.73577i 0.118693 + 0.148836i
\(631\) −39.7014 19.1192i −1.58049 0.761123i −0.581850 0.813296i \(-0.697671\pi\)
−0.998638 + 0.0521737i \(0.983385\pi\)
\(632\) 3.91428 17.1496i 0.155702 0.682174i
\(633\) 0.410576 + 1.79885i 0.0163189 + 0.0714979i
\(634\) 25.3328 12.1996i 1.00610 0.484510i
\(635\) −13.9848 6.73475i −0.554972 0.267260i
\(636\) 3.71387 + 16.2715i 0.147265 + 0.645208i
\(637\) 5.12449 0.203040
\(638\) 62.1126 59.3522i 2.45906 2.34978i
\(639\) 9.34384 0.369636
\(640\) 3.17392 + 13.9058i 0.125460 + 0.549677i
\(641\) 36.3896 + 17.5243i 1.43730 + 0.692168i 0.980339 0.197318i \(-0.0632233\pi\)
0.456962 + 0.889486i \(0.348938\pi\)
\(642\) −22.7361 + 10.9491i −0.897324 + 0.432128i
\(643\) −1.71136 7.49794i −0.0674893 0.295690i 0.929908 0.367792i \(-0.119886\pi\)
−0.997397 + 0.0721025i \(0.977029\pi\)
\(644\) 7.70444 33.7554i 0.303597 1.33015i
\(645\) −1.79758 0.865671i −0.0707798 0.0340858i
\(646\) 52.4190 + 65.7313i 2.06240 + 2.58616i
\(647\) −15.3144 19.2037i −0.602072 0.754975i 0.383627 0.923488i \(-0.374675\pi\)
−0.985699 + 0.168513i \(0.946103\pi\)
\(648\) −5.53061 + 2.66340i −0.217263 + 0.104628i
\(649\) −34.2333 + 42.9272i −1.34377 + 1.68504i
\(650\) 12.3635 0.484935
\(651\) −7.39636 + 9.27475i −0.289886 + 0.363506i
\(652\) −23.4698 + 102.828i −0.919150 + 4.02706i
\(653\) −5.93369 + 25.9972i −0.232203 + 1.01735i 0.715604 + 0.698506i \(0.246152\pi\)
−0.947807 + 0.318843i \(0.896706\pi\)
\(654\) −7.46648 + 9.36267i −0.291963 + 0.366109i
\(655\) 7.45016 0.291102
\(656\) 16.9294 21.2288i 0.660982 0.828845i
\(657\) 1.61977 0.780038i 0.0631931 0.0304322i
\(658\) 4.14669 + 5.19979i 0.161655 + 0.202709i
\(659\) −7.62974 9.56739i −0.297212 0.372693i 0.610693 0.791867i \(-0.290891\pi\)
−0.907906 + 0.419175i \(0.862319\pi\)
\(660\) −27.3270 13.1600i −1.06370 0.512251i
\(661\) −8.99484 + 39.4090i −0.349859 + 1.53283i 0.427641 + 0.903949i \(0.359345\pi\)
−0.777500 + 0.628883i \(0.783512\pi\)
\(662\) −9.46959 41.4890i −0.368046 1.61252i
\(663\) −5.85945 + 2.82176i −0.227562 + 0.109588i
\(664\) −36.4662 17.5612i −1.41516 0.681506i
\(665\) 2.73840 + 11.9977i 0.106191 + 0.465251i
\(666\) 15.6469 0.606303
\(667\) 20.3292 + 13.4274i 0.787149 + 0.519911i
\(668\) −63.6263 −2.46178
\(669\) 5.35144 + 23.4462i 0.206899 + 0.906482i
\(670\) 5.96258 + 2.87143i 0.230355 + 0.110933i
\(671\) 17.5122 8.43345i 0.676053 0.325570i
\(672\) −1.82230 7.98401i −0.0702967 0.307990i
\(673\) −10.7198 + 46.9663i −0.413216 + 1.81042i 0.155443 + 0.987845i \(0.450320\pi\)
−0.568659 + 0.822573i \(0.692538\pi\)
\(674\) −48.1260 23.1762i −1.85374 0.892715i
\(675\) −2.37734 2.98109i −0.0915038 0.114742i
\(676\) −31.3302 39.2868i −1.20501 1.51103i
\(677\) −2.03915 + 0.982003i −0.0783709 + 0.0377415i −0.472659 0.881246i \(-0.656706\pi\)
0.394288 + 0.918987i \(0.370991\pi\)
\(678\) −0.866594 + 1.08668i −0.0332814 + 0.0417335i
\(679\) 3.92412 0.150594
\(680\) −21.1952 + 26.5780i −0.812800 + 1.01922i
\(681\) 5.03786 22.0723i 0.193051 0.845812i
\(682\) 24.3343 106.616i 0.931808 4.08252i
\(683\) −17.4383 + 21.8669i −0.667258 + 0.836715i −0.994112 0.108360i \(-0.965440\pi\)
0.326854 + 0.945075i \(0.394011\pi\)
\(684\) −28.8633 −1.10362
\(685\) 9.15302 11.4775i 0.349719 0.438534i
\(686\) 43.4848 20.9412i 1.66026 0.799539i
\(687\) −8.60549 10.7909i −0.328320 0.411700i
\(688\) 7.66329 + 9.60946i 0.292160 + 0.366357i
\(689\) −4.35068 2.09517i −0.165748 0.0798198i
\(690\) 2.77962 12.1783i 0.105818 0.463620i
\(691\) 2.65566 + 11.6352i 0.101026 + 0.442623i 0.999989 + 0.00459992i \(0.00146421\pi\)
−0.898964 + 0.438024i \(0.855679\pi\)
\(692\) 15.7342 7.57719i 0.598124 0.288041i
\(693\) −9.81531 4.72681i −0.372853 0.179556i
\(694\) 17.4988 + 76.6675i 0.664247 + 2.91026i
\(695\) 12.8366 0.486921
\(696\) 32.7565 + 4.44656i 1.24163 + 0.168546i
\(697\) −20.5629 −0.778876
\(698\) 20.1622 + 88.3364i 0.763151 + 3.34358i
\(699\) 6.03483 + 2.90622i 0.228258 + 0.109923i
\(700\) 26.2909 12.6610i 0.993701 0.478541i
\(701\) 0.764903 + 3.35126i 0.0288900 + 0.126575i 0.987317 0.158764i \(-0.0507509\pi\)
−0.958427 + 0.285339i \(0.907894\pi\)
\(702\) 0.721521 3.16119i 0.0272321 0.119311i
\(703\) 36.3075 + 17.4848i 1.36936 + 0.659451i
\(704\) −5.61783 7.04454i −0.211730 0.265501i
\(705\) 1.03015 + 1.29177i 0.0387978 + 0.0486509i
\(706\) 13.7640 6.62840i 0.518016 0.249463i
\(707\) 13.5491 16.9900i 0.509566 0.638975i
\(708\) −38.5708 −1.44958
\(709\) −16.5529 + 20.7566i −0.621656 + 0.779532i −0.988576 0.150721i \(-0.951841\pi\)
0.366921 + 0.930252i \(0.380412\pi\)
\(710\) −5.74081 + 25.1521i −0.215449 + 0.943942i
\(711\) 0.637660 2.79377i 0.0239141 0.104775i
\(712\) 12.8043 16.0561i 0.479861 0.601727i
\(713\) 31.0125 1.16143
\(714\) −13.8987 + 17.4284i −0.520147 + 0.652243i
\(715\) 7.90646 3.80755i 0.295685 0.142394i
\(716\) 45.2564 + 56.7497i 1.69131 + 2.12084i
\(717\) 7.58319 + 9.50902i 0.283199 + 0.355121i
\(718\) 13.0464 + 6.28282i 0.486888 + 0.234473i
\(719\) 6.93957 30.4043i 0.258802 1.13389i −0.663731 0.747971i \(-0.731028\pi\)
0.922534 0.385916i \(-0.126115\pi\)
\(720\) −1.62721 7.12928i −0.0606426 0.265692i
\(721\) −4.32732 + 2.08393i −0.161158 + 0.0776095i
\(722\) −53.8840 25.9492i −2.00535 0.965728i
\(723\) −0.591055 2.58958i −0.0219816 0.0963075i
\(724\) −74.0867 −2.75341
\(725\) 1.83484 + 20.4513i 0.0681443 + 0.759541i
\(726\) 72.5513 2.69263
\(727\) −3.81660 16.7216i −0.141550 0.620170i −0.995076 0.0991196i \(-0.968397\pi\)
0.853526 0.521051i \(-0.174460\pi\)
\(728\) 12.2461 + 5.89740i 0.453870 + 0.218572i
\(729\) −0.900969 + 0.433884i −0.0333692 + 0.0160698i
\(730\) 1.10456 + 4.83941i 0.0408817 + 0.179114i
\(731\) 2.07124 9.07467i 0.0766074 0.335639i
\(732\) 12.3021 + 5.92440i 0.454700 + 0.218972i
\(733\) 13.3386 + 16.7261i 0.492673 + 0.617792i 0.964559 0.263867i \(-0.0849982\pi\)
−0.471886 + 0.881659i \(0.656427\pi\)
\(734\) 43.2042 + 54.1764i 1.59470 + 1.99969i
\(735\) 3.93151 1.89331i 0.145016 0.0698359i
\(736\) −13.3483 + 16.7382i −0.492024 + 0.616979i
\(737\) −15.0887 −0.555800
\(738\) 6.39213 8.01548i 0.235297 0.295054i
\(739\) 3.85619 16.8951i 0.141852 0.621495i −0.853152 0.521662i \(-0.825312\pi\)
0.995004 0.0998329i \(-0.0318308\pi\)
\(740\) −6.61959 + 29.0023i −0.243341 + 1.06615i
\(741\) 5.20675 6.52906i 0.191275 0.239851i
\(742\) −16.5518 −0.607636
\(743\) −32.5068 + 40.7623i −1.19256 + 1.49542i −0.367831 + 0.929893i \(0.619900\pi\)
−0.824728 + 0.565529i \(0.808672\pi\)
\(744\) 37.9116 18.2573i 1.38991 0.669344i
\(745\) 0.517602 + 0.649053i 0.0189635 + 0.0237795i
\(746\) −19.9429 25.0076i −0.730160 0.915592i
\(747\) −5.94056 2.86082i −0.217354 0.104672i
\(748\) 31.4870 137.954i 1.15128 5.04408i
\(749\) −3.83463 16.8006i −0.140114 0.613881i
\(750\) 21.9234 10.5578i 0.800530 0.385515i
\(751\) −21.6113 10.4075i −0.788607 0.379773i −0.00417787 0.999991i \(-0.501330\pi\)
−0.784430 + 0.620218i \(0.787044\pi\)
\(752\) −2.26490 9.92319i −0.0825926 0.361862i
\(753\) −22.7654 −0.829618
\(754\) −12.6244 + 12.0633i −0.459752 + 0.439320i
\(755\) 20.0870 0.731041
\(756\) −1.70296 7.46115i −0.0619360 0.271359i
\(757\) −42.7511 20.5878i −1.55381 0.748277i −0.557190 0.830385i \(-0.688120\pi\)
−0.996623 + 0.0821079i \(0.973835\pi\)
\(758\) 7.53608 3.62918i 0.273723 0.131818i
\(759\) 6.33743 + 27.7661i 0.230034 + 1.00784i
\(760\) 9.71338 42.5571i 0.352341 1.54371i
\(761\) −34.8798 16.7972i −1.26439 0.608899i −0.323059 0.946379i \(-0.604711\pi\)
−0.941333 + 0.337480i \(0.890425\pi\)
\(762\) 22.5106 + 28.2274i 0.815474 + 1.02257i
\(763\) −5.09873 6.39360i −0.184586 0.231464i
\(764\) 11.7539 5.66036i 0.425240 0.204785i
\(765\) −3.45283 + 4.32971i −0.124837 + 0.156541i