Properties

Label 87.2.g.a.52.3
Level $87$
Weight $2$
Character 87.52
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 52.3
Root \(-0.353498 - 1.54877i\) of defining polynomial
Character \(\chi\) \(=\) 87.52
Dual form 87.2.g.a.82.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61397 - 2.02385i) q^{2} +(-0.222521 + 0.974928i) q^{3} +(-1.04604 - 4.58301i) q^{4} +(-0.716354 + 0.898279i) q^{5} +(1.61397 + 2.02385i) q^{6} +(-0.615328 + 2.69593i) q^{7} +(-6.29911 - 3.03349i) q^{8} +(-0.900969 - 0.433884i) q^{9} +O(q^{10})\) \(q+(1.61397 - 2.02385i) q^{2} +(-0.222521 + 0.974928i) q^{3} +(-1.04604 - 4.58301i) q^{4} +(-0.716354 + 0.898279i) q^{5} +(1.61397 + 2.02385i) q^{6} +(-0.615328 + 2.69593i) q^{7} +(-6.29911 - 3.03349i) q^{8} +(-0.900969 - 0.433884i) q^{9} +(0.661812 + 2.89959i) q^{10} +(3.92298 - 1.88921i) q^{11} +4.70087 q^{12} +(-5.07168 + 2.44239i) q^{13} +(4.46304 + 5.59648i) q^{14} +(-0.716354 - 0.898279i) q^{15} +(-7.83521 + 3.77324i) q^{16} +2.41516 q^{17} +(-2.33225 + 1.12315i) q^{18} +(-0.416772 - 1.82600i) q^{19} +(4.86616 + 2.34342i) q^{20} +(-2.49141 - 1.19980i) q^{21} +(2.50809 - 10.9886i) q^{22} +(-5.49948 - 6.89613i) q^{23} +(4.35912 - 5.46616i) q^{24} +(0.818862 + 3.58767i) q^{25} +(-3.24249 + 14.2063i) q^{26} +(0.623490 - 0.781831i) q^{27} +12.9991 q^{28} +(4.53581 + 2.90283i) q^{29} -2.97416 q^{30} +(0.972977 - 1.22007i) q^{31} +(-1.89780 + 8.31482i) q^{32} +(0.968895 + 4.24501i) q^{33} +(3.89799 - 4.88793i) q^{34} +(-1.98091 - 2.48398i) q^{35} +(-1.04604 + 4.58301i) q^{36} +(-6.99449 - 3.36837i) q^{37} +(-4.36821 - 2.10362i) q^{38} +(-1.25260 - 5.48800i) q^{39} +(7.23731 - 3.48530i) q^{40} +3.16072 q^{41} +(-6.44928 + 3.10581i) q^{42} +(-0.912772 - 1.14458i) q^{43} +(-12.7618 - 16.0028i) q^{44} +(1.03516 - 0.498507i) q^{45} -22.8327 q^{46} +(-0.321962 + 0.155049i) q^{47} +(-1.93514 - 8.47839i) q^{48} +(-0.582626 - 0.280578i) q^{49} +(8.58252 + 4.13313i) q^{50} +(-0.537424 + 2.35461i) q^{51} +(16.4987 + 20.6887i) q^{52} +(-1.01940 + 1.27828i) q^{53} +(-0.576019 - 2.52370i) q^{54} +(-1.11320 + 4.87727i) q^{55} +(12.0541 - 15.1154i) q^{56} +1.87296 q^{57} +(13.1955 - 4.49474i) q^{58} -4.85026 q^{59} +(-3.36749 + 4.22269i) q^{60} +(-0.346042 + 1.51611i) q^{61} +(-0.898897 - 3.93832i) q^{62} +(1.72411 - 2.16197i) q^{63} +(2.92070 + 3.66245i) q^{64} +(1.43917 - 6.30540i) q^{65} +(10.1550 + 4.89040i) q^{66} +(8.71192 + 4.19544i) q^{67} +(-2.52636 - 11.0687i) q^{68} +(7.94698 - 3.82706i) q^{69} -8.22432 q^{70} +(7.37090 - 3.54964i) q^{71} +(4.35912 + 5.46616i) q^{72} +(7.09446 + 8.89617i) q^{73} +(-18.1060 + 8.71937i) q^{74} -3.67993 q^{75} +(-7.93260 + 3.82014i) q^{76} +(2.67925 + 11.7386i) q^{77} +(-13.1286 - 6.32238i) q^{78} +(7.32556 + 3.52780i) q^{79} +(2.22336 - 9.74119i) q^{80} +(0.623490 + 0.781831i) q^{81} +(5.10130 - 6.39683i) q^{82} +(0.107218 + 0.469754i) q^{83} +(-2.89258 + 12.6732i) q^{84} +(-1.73011 + 2.16949i) q^{85} -3.78965 q^{86} +(-3.83936 + 3.77615i) q^{87} -30.4421 q^{88} +(-1.24461 + 1.56070i) q^{89} +(0.661812 - 2.89959i) q^{90} +(-3.46377 - 15.1758i) q^{91} +(-25.8523 + 32.4178i) q^{92} +(0.972977 + 1.22007i) q^{93} +(-0.205841 + 0.901847i) q^{94} +(1.93881 + 0.933683i) q^{95} +(-7.68405 - 3.70044i) q^{96} +(-1.03142 - 4.51895i) q^{97} +(-1.50819 + 0.726305i) q^{98} -4.35418 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61397 2.02385i 1.14125 1.43108i 0.255563 0.966792i \(-0.417739\pi\)
0.885685 0.464287i \(-0.153689\pi\)
\(3\) −0.222521 + 0.974928i −0.128473 + 0.562875i
\(4\) −1.04604 4.58301i −0.523021 2.29150i
\(5\) −0.716354 + 0.898279i −0.320363 + 0.401723i −0.915771 0.401701i \(-0.868419\pi\)
0.595408 + 0.803424i \(0.296991\pi\)
\(6\) 1.61397 + 2.02385i 0.658900 + 0.826234i
\(7\) −0.615328 + 2.69593i −0.232572 + 1.01897i 0.714925 + 0.699201i \(0.246461\pi\)
−0.947497 + 0.319764i \(0.896396\pi\)
\(8\) −6.29911 3.03349i −2.22707 1.07250i
\(9\) −0.900969 0.433884i −0.300323 0.144628i
\(10\) 0.661812 + 2.89959i 0.209283 + 0.916930i
\(11\) 3.92298 1.88921i 1.18282 0.569617i 0.264090 0.964498i \(-0.414929\pi\)
0.918732 + 0.394881i \(0.129214\pi\)
\(12\) 4.70087 1.35702
\(13\) −5.07168 + 2.44239i −1.40663 + 0.677397i −0.974494 0.224411i \(-0.927954\pi\)
−0.432135 + 0.901809i \(0.642240\pi\)
\(14\) 4.46304 + 5.59648i 1.19280 + 1.49572i
\(15\) −0.716354 0.898279i −0.184962 0.231935i
\(16\) −7.83521 + 3.77324i −1.95880 + 0.943310i
\(17\) 2.41516 0.585763 0.292881 0.956149i \(-0.405386\pi\)
0.292881 + 0.956149i \(0.405386\pi\)
\(18\) −2.33225 + 1.12315i −0.549717 + 0.264730i
\(19\) −0.416772 1.82600i −0.0956141 0.418913i 0.904355 0.426781i \(-0.140353\pi\)
−0.999969 + 0.00786845i \(0.997495\pi\)
\(20\) 4.86616 + 2.34342i 1.08811 + 0.524004i
\(21\) −2.49141 1.19980i −0.543671 0.261818i
\(22\) 2.50809 10.9886i 0.534726 2.34279i
\(23\) −5.49948 6.89613i −1.14672 1.43794i −0.880510 0.474027i \(-0.842800\pi\)
−0.266210 0.963915i \(-0.585771\pi\)
\(24\) 4.35912 5.46616i 0.889801 1.11577i
\(25\) 0.818862 + 3.58767i 0.163772 + 0.717534i
\(26\) −3.24249 + 14.2063i −0.635904 + 2.78608i
\(27\) 0.623490 0.781831i 0.119991 0.150464i
\(28\) 12.9991 2.45660
\(29\) 4.53581 + 2.90283i 0.842279 + 0.539042i
\(30\) −2.97416 −0.543004
\(31\) 0.972977 1.22007i 0.174752 0.219132i −0.686740 0.726903i \(-0.740959\pi\)
0.861492 + 0.507771i \(0.169530\pi\)
\(32\) −1.89780 + 8.31482i −0.335488 + 1.46987i
\(33\) 0.968895 + 4.24501i 0.168663 + 0.738961i
\(34\) 3.89799 4.88793i 0.668500 0.838273i
\(35\) −1.98091 2.48398i −0.334834 0.419869i
\(36\) −1.04604 + 4.58301i −0.174340 + 0.763835i
\(37\) −6.99449 3.36837i −1.14989 0.553756i −0.240887 0.970553i \(-0.577438\pi\)
−0.909000 + 0.416797i \(0.863153\pi\)
\(38\) −4.36821 2.10362i −0.708617 0.341252i
\(39\) −1.25260 5.48800i −0.200577 0.878784i
\(40\) 7.23731 3.48530i 1.14432 0.551075i
\(41\) 3.16072 0.493622 0.246811 0.969064i \(-0.420617\pi\)
0.246811 + 0.969064i \(0.420617\pi\)
\(42\) −6.44928 + 3.10581i −0.995146 + 0.479237i
\(43\) −0.912772 1.14458i −0.139196 0.174547i 0.707347 0.706867i \(-0.249892\pi\)
−0.846543 + 0.532320i \(0.821320\pi\)
\(44\) −12.7618 16.0028i −1.92392 2.41252i
\(45\) 1.03516 0.498507i 0.154313 0.0743131i
\(46\) −22.8327 −3.36650
\(47\) −0.321962 + 0.155049i −0.0469630 + 0.0226162i −0.457218 0.889355i \(-0.651154\pi\)
0.410255 + 0.911971i \(0.365440\pi\)
\(48\) −1.93514 8.47839i −0.279313 1.22375i
\(49\) −0.582626 0.280578i −0.0832323 0.0400826i
\(50\) 8.58252 + 4.13313i 1.21375 + 0.584512i
\(51\) −0.537424 + 2.35461i −0.0752544 + 0.329711i
\(52\) 16.4987 + 20.6887i 2.28796 + 2.86901i
\(53\) −1.01940 + 1.27828i −0.140025 + 0.175586i −0.846899 0.531754i \(-0.821533\pi\)
0.706874 + 0.707339i \(0.250105\pi\)
\(54\) −0.576019 2.52370i −0.0783862 0.343432i
\(55\) −1.11320 + 4.87727i −0.150104 + 0.657651i
\(56\) 12.0541 15.1154i 1.61080 2.01987i
\(57\) 1.87296 0.248079
\(58\) 13.1955 4.49474i 1.73266 0.590188i
\(59\) −4.85026 −0.631450 −0.315725 0.948851i \(-0.602248\pi\)
−0.315725 + 0.948851i \(0.602248\pi\)
\(60\) −3.36749 + 4.22269i −0.434741 + 0.545147i
\(61\) −0.346042 + 1.51611i −0.0443062 + 0.194118i −0.992238 0.124356i \(-0.960313\pi\)
0.947931 + 0.318474i \(0.103171\pi\)
\(62\) −0.898897 3.93832i −0.114160 0.500168i
\(63\) 1.72411 2.16197i 0.217218 0.272382i
\(64\) 2.92070 + 3.66245i 0.365088 + 0.457806i
\(65\) 1.43917 6.30540i 0.178507 0.782088i
\(66\) 10.1550 + 4.89040i 1.25000 + 0.601967i
\(67\) 8.71192 + 4.19544i 1.06433 + 0.512554i 0.882275 0.470734i \(-0.156011\pi\)
0.182055 + 0.983288i \(0.441725\pi\)
\(68\) −2.52636 11.0687i −0.306366 1.34228i
\(69\) 7.94698 3.82706i 0.956703 0.460724i
\(70\) −8.22432 −0.982994
\(71\) 7.37090 3.54964i 0.874765 0.421264i 0.0580551 0.998313i \(-0.481510\pi\)
0.816710 + 0.577049i \(0.195796\pi\)
\(72\) 4.35912 + 5.46616i 0.513727 + 0.644193i
\(73\) 7.09446 + 8.89617i 0.830344 + 1.04122i 0.998461 + 0.0554515i \(0.0176598\pi\)
−0.168117 + 0.985767i \(0.553769\pi\)
\(74\) −18.1060 + 8.71937i −2.10477 + 1.01361i
\(75\) −3.67993 −0.424922
\(76\) −7.93260 + 3.82014i −0.909932 + 0.438200i
\(77\) 2.67925 + 11.7386i 0.305329 + 1.33773i
\(78\) −13.1286 6.32238i −1.48652 0.715869i
\(79\) 7.32556 + 3.52780i 0.824189 + 0.396909i 0.797933 0.602747i \(-0.205927\pi\)
0.0262567 + 0.999655i \(0.491641\pi\)
\(80\) 2.22336 9.74119i 0.248579 1.08910i
\(81\) 0.623490 + 0.781831i 0.0692766 + 0.0868702i
\(82\) 5.10130 6.39683i 0.563345 0.706412i
\(83\) 0.107218 + 0.469754i 0.0117687 + 0.0515622i 0.980471 0.196662i \(-0.0630102\pi\)
−0.968703 + 0.248224i \(0.920153\pi\)
\(84\) −2.89258 + 12.6732i −0.315606 + 1.38276i
\(85\) −1.73011 + 2.16949i −0.187657 + 0.235314i
\(86\) −3.78965 −0.408648
\(87\) −3.83936 + 3.77615i −0.411623 + 0.404846i
\(88\) −30.4421 −3.24514
\(89\) −1.24461 + 1.56070i −0.131929 + 0.165434i −0.843408 0.537274i \(-0.819454\pi\)
0.711479 + 0.702707i \(0.248026\pi\)
\(90\) 0.661812 2.89959i 0.0697611 0.305643i
\(91\) −3.46377 15.1758i −0.363101 1.59085i
\(92\) −25.8523 + 32.4178i −2.69529 + 3.37979i
\(93\) 0.972977 + 1.22007i 0.100893 + 0.126516i
\(94\) −0.205841 + 0.901847i −0.0212309 + 0.0930184i
\(95\) 1.93881 + 0.933683i 0.198918 + 0.0957938i
\(96\) −7.68405 3.70044i −0.784250 0.377675i
\(97\) −1.03142 4.51895i −0.104725 0.458830i −0.999914 0.0131424i \(-0.995817\pi\)
0.895189 0.445687i \(-0.147041\pi\)
\(98\) −1.50819 + 0.726305i −0.152350 + 0.0733679i
\(99\) −4.35418 −0.437611
\(100\) 15.5857 7.50570i 1.55857 0.750570i
\(101\) −1.18405 1.48475i −0.117817 0.147738i 0.719425 0.694570i \(-0.244405\pi\)
−0.837243 + 0.546831i \(0.815834\pi\)
\(102\) 3.89799 + 4.88793i 0.385959 + 0.483977i
\(103\) 7.40706 3.56705i 0.729840 0.351472i −0.0317815 0.999495i \(-0.510118\pi\)
0.761621 + 0.648023i \(0.224404\pi\)
\(104\) 39.3560 3.85917
\(105\) 2.86249 1.37850i 0.279351 0.134528i
\(106\) 0.941781 + 4.12621i 0.0914739 + 0.400773i
\(107\) −4.01632 1.93416i −0.388273 0.186982i 0.229555 0.973296i \(-0.426273\pi\)
−0.617828 + 0.786313i \(0.711987\pi\)
\(108\) −4.23534 2.03963i −0.407545 0.196264i
\(109\) −3.89981 + 17.0862i −0.373534 + 1.63656i 0.343234 + 0.939250i \(0.388478\pi\)
−0.716768 + 0.697311i \(0.754380\pi\)
\(110\) 8.07419 + 10.1247i 0.769844 + 0.965354i
\(111\) 4.84034 6.06959i 0.459424 0.576100i
\(112\) −5.35116 23.4450i −0.505637 2.21534i
\(113\) −1.76485 + 7.73232i −0.166023 + 0.727395i 0.821537 + 0.570155i \(0.193117\pi\)
−0.987560 + 0.157240i \(0.949740\pi\)
\(114\) 3.02289 3.79059i 0.283120 0.355021i
\(115\) 10.1342 0.945021
\(116\) 8.55904 23.8241i 0.794687 2.21202i
\(117\) 5.62914 0.520414
\(118\) −7.82817 + 9.81621i −0.720641 + 0.903655i
\(119\) −1.48612 + 6.51111i −0.136232 + 0.596872i
\(120\) 1.78747 + 7.83141i 0.163173 + 0.714906i
\(121\) 4.96226 6.22247i 0.451114 0.565679i
\(122\) 2.50988 + 3.14729i 0.227234 + 0.284942i
\(123\) −0.703327 + 3.08147i −0.0634168 + 0.277847i
\(124\) −6.60939 3.18291i −0.593541 0.285834i
\(125\) −8.98513 4.32701i −0.803654 0.387020i
\(126\) −1.59284 6.97869i −0.141902 0.621711i
\(127\) 3.02313 1.45586i 0.268259 0.129187i −0.294919 0.955522i \(-0.595293\pi\)
0.563178 + 0.826335i \(0.309578\pi\)
\(128\) −4.93114 −0.435855
\(129\) 1.31899 0.635194i 0.116131 0.0559257i
\(130\) −10.4384 13.0894i −0.915510 1.14801i
\(131\) −5.42012 6.79661i −0.473558 0.593823i 0.486480 0.873692i \(-0.338281\pi\)
−0.960038 + 0.279869i \(0.909709\pi\)
\(132\) 18.4414 8.88091i 1.60512 0.772984i
\(133\) 5.17921 0.449095
\(134\) 22.5517 10.8603i 1.94817 0.938189i
\(135\) 0.255664 + 1.12014i 0.0220040 + 0.0964060i
\(136\) −15.2134 7.32637i −1.30453 0.628231i
\(137\) −2.90456 1.39876i −0.248153 0.119504i 0.305673 0.952137i \(-0.401119\pi\)
−0.553826 + 0.832632i \(0.686833\pi\)
\(138\) 5.08076 22.2603i 0.432503 1.89492i
\(139\) −14.0213 17.5821i −1.18927 1.49130i −0.829726 0.558170i \(-0.811504\pi\)
−0.359544 0.933128i \(-0.617068\pi\)
\(140\) −9.31198 + 11.6768i −0.787006 + 0.986874i
\(141\) −0.0795181 0.348391i −0.00669663 0.0293398i
\(142\) 4.71245 20.6466i 0.395460 1.73262i
\(143\) −15.2819 + 19.1629i −1.27794 + 1.60248i
\(144\) 8.69643 0.724703
\(145\) −5.85680 + 1.99497i −0.486381 + 0.165674i
\(146\) 29.4548 2.43769
\(147\) 0.403190 0.505584i 0.0332545 0.0416999i
\(148\) −8.12073 + 35.5792i −0.667520 + 2.92460i
\(149\) −0.286904 1.25701i −0.0235041 0.102978i 0.961815 0.273700i \(-0.0882474\pi\)
−0.985319 + 0.170721i \(0.945390\pi\)
\(150\) −5.93929 + 7.44764i −0.484941 + 0.608097i
\(151\) 4.08507 + 5.12252i 0.332439 + 0.416865i 0.919755 0.392492i \(-0.128387\pi\)
−0.587317 + 0.809357i \(0.699816\pi\)
\(152\) −2.91385 + 12.7664i −0.236345 + 1.03549i
\(153\) −2.17599 1.04790i −0.175918 0.0847176i
\(154\) 28.0813 + 13.5232i 2.26286 + 1.08973i
\(155\) 0.398972 + 1.74801i 0.0320462 + 0.140404i
\(156\) −23.8413 + 11.4814i −1.90883 + 0.919244i
\(157\) −24.1178 −1.92481 −0.962407 0.271612i \(-0.912443\pi\)
−0.962407 + 0.271612i \(0.912443\pi\)
\(158\) 18.9630 9.13208i 1.50861 0.726509i
\(159\) −1.01940 1.27828i −0.0808434 0.101374i
\(160\) −6.10953 7.66111i −0.483001 0.605664i
\(161\) 21.9755 10.5828i 1.73191 0.834043i
\(162\) 2.58860 0.203380
\(163\) −14.5447 + 7.00435i −1.13923 + 0.548623i −0.905781 0.423747i \(-0.860715\pi\)
−0.233446 + 0.972370i \(0.575000\pi\)
\(164\) −3.30625 14.4856i −0.258174 1.13114i
\(165\) −4.50727 2.17059i −0.350891 0.168980i
\(166\) 1.12376 + 0.541174i 0.0872206 + 0.0420032i
\(167\) 1.20616 5.28454i 0.0933357 0.408930i −0.906578 0.422037i \(-0.861315\pi\)
0.999914 + 0.0131071i \(0.00417224\pi\)
\(168\) 12.0541 + 15.1154i 0.929993 + 1.16617i
\(169\) 11.6513 14.6102i 0.896251 1.12386i
\(170\) 1.59838 + 7.00297i 0.122590 + 0.537104i
\(171\) −0.416772 + 1.82600i −0.0318714 + 0.139638i
\(172\) −4.29082 + 5.38052i −0.327172 + 0.410261i
\(173\) −11.2923 −0.858537 −0.429268 0.903177i \(-0.641229\pi\)
−0.429268 + 0.903177i \(0.641229\pi\)
\(174\) 1.44576 + 13.8649i 0.109603 + 1.05109i
\(175\) −10.1760 −0.769231
\(176\) −23.6089 + 29.6047i −1.77959 + 2.23154i
\(177\) 1.07928 4.72866i 0.0811240 0.355428i
\(178\) 1.14985 + 5.03783i 0.0861851 + 0.377601i
\(179\) −6.64270 + 8.32969i −0.496499 + 0.622590i −0.965436 0.260642i \(-0.916066\pi\)
0.468937 + 0.883232i \(0.344637\pi\)
\(180\) −3.36749 4.22269i −0.250998 0.314741i
\(181\) 2.73554 11.9852i 0.203331 0.890853i −0.765559 0.643365i \(-0.777538\pi\)
0.968891 0.247488i \(-0.0796051\pi\)
\(182\) −36.3039 17.4830i −2.69102 1.29593i
\(183\) −1.40110 0.674732i −0.103572 0.0498777i
\(184\) 13.7225 + 60.1220i 1.01163 + 4.43226i
\(185\) 8.03626 3.87006i 0.590838 0.284533i
\(186\) 4.03961 0.296198
\(187\) 9.47462 4.56274i 0.692853 0.333660i
\(188\) 1.04738 + 1.31337i 0.0763877 + 0.0957872i
\(189\) 1.72411 + 2.16197i 0.125411 + 0.157260i
\(190\) 5.01882 2.41693i 0.364103 0.175343i
\(191\) −1.68311 −0.121786 −0.0608929 0.998144i \(-0.519395\pi\)
−0.0608929 + 0.998144i \(0.519395\pi\)
\(192\) −4.22054 + 2.03250i −0.304591 + 0.146683i
\(193\) −2.35340 10.3109i −0.169402 0.742197i −0.986239 0.165328i \(-0.947132\pi\)
0.816837 0.576869i \(-0.195726\pi\)
\(194\) −10.8104 5.20599i −0.776138 0.373769i
\(195\) 5.82706 + 2.80617i 0.417285 + 0.200954i
\(196\) −0.676440 + 2.96368i −0.0483171 + 0.211691i
\(197\) −7.55361 9.47193i −0.538172 0.674847i 0.436184 0.899858i \(-0.356330\pi\)
−0.974356 + 0.225011i \(0.927758\pi\)
\(198\) −7.02750 + 8.81221i −0.499423 + 0.626256i
\(199\) −1.11170 4.87066i −0.0788060 0.345272i 0.920118 0.391640i \(-0.128092\pi\)
−0.998924 + 0.0463686i \(0.985235\pi\)
\(200\) 5.72505 25.0831i 0.404823 1.77364i
\(201\) −6.02883 + 7.55992i −0.425241 + 0.533235i
\(202\) −4.91594 −0.345884
\(203\) −10.6168 + 10.4420i −0.745156 + 0.732887i
\(204\) 11.3534 0.794894
\(205\) −2.26419 + 2.83921i −0.158138 + 0.198299i
\(206\) 4.73557 20.7479i 0.329943 1.44558i
\(207\) 1.96274 + 8.59933i 0.136420 + 0.597695i
\(208\) 30.5219 38.2733i 2.11632 2.65378i
\(209\) −5.08467 6.37598i −0.351714 0.441036i
\(210\) 1.83008 8.01812i 0.126288 0.553303i
\(211\) 17.3083 + 8.33526i 1.19156 + 0.573823i 0.921257 0.388954i \(-0.127163\pi\)
0.270298 + 0.962777i \(0.412878\pi\)
\(212\) 6.92471 + 3.33476i 0.475591 + 0.229033i
\(213\) 1.82046 + 7.97596i 0.124736 + 0.546504i
\(214\) −10.3967 + 5.00677i −0.710701 + 0.342256i
\(215\) 1.68202 0.114713
\(216\) −6.29911 + 3.03349i −0.428600 + 0.206403i
\(217\) 2.69054 + 3.37383i 0.182645 + 0.229030i
\(218\) 28.2858 + 35.4692i 1.91575 + 2.40228i
\(219\) −10.2518 + 4.93700i −0.692752 + 0.333612i
\(220\) 23.5170 1.58552
\(221\) −12.2489 + 5.89877i −0.823951 + 0.396794i
\(222\) −4.47180 19.5922i −0.300128 1.31495i
\(223\) 19.1403 + 9.21751i 1.28173 + 0.617250i 0.945835 0.324649i \(-0.105246\pi\)
0.335898 + 0.941898i \(0.390960\pi\)
\(224\) −21.2484 10.2327i −1.41972 0.683701i
\(225\) 0.818862 3.58767i 0.0545908 0.239178i
\(226\) 12.8007 + 16.0515i 0.851487 + 1.06773i
\(227\) 12.3176 15.4458i 0.817549 1.02517i −0.181577 0.983377i \(-0.558120\pi\)
0.999126 0.0417977i \(-0.0133085\pi\)
\(228\) −1.95919 8.58378i −0.129751 0.568474i
\(229\) −4.60927 + 20.1945i −0.304589 + 1.33449i 0.558528 + 0.829486i \(0.311366\pi\)
−0.863116 + 0.505005i \(0.831491\pi\)
\(230\) 16.3563 20.5102i 1.07850 1.35240i
\(231\) −12.0404 −0.792202
\(232\) −19.7659 32.0446i −1.29769 2.10383i
\(233\) 20.7745 1.36098 0.680492 0.732756i \(-0.261766\pi\)
0.680492 + 0.732756i \(0.261766\pi\)
\(234\) 9.08525 11.3925i 0.593921 0.744753i
\(235\) 0.0913617 0.400282i 0.00595978 0.0261115i
\(236\) 5.07358 + 22.2288i 0.330262 + 1.44697i
\(237\) −5.06944 + 6.35688i −0.329296 + 0.412924i
\(238\) 10.7790 + 13.5164i 0.698697 + 0.876138i
\(239\) 0.506194 2.21778i 0.0327430 0.143456i −0.955914 0.293646i \(-0.905131\pi\)
0.988657 + 0.150190i \(0.0479885\pi\)
\(240\) 9.00221 + 4.33524i 0.581090 + 0.279838i
\(241\) −10.6119 5.11041i −0.683571 0.329190i 0.0596665 0.998218i \(-0.480996\pi\)
−0.743237 + 0.669028i \(0.766711\pi\)
\(242\) −4.58444 20.0857i −0.294699 1.29116i
\(243\) −0.900969 + 0.433884i −0.0577972 + 0.0278337i
\(244\) 7.31032 0.467995
\(245\) 0.669404 0.322368i 0.0427666 0.0205953i
\(246\) 5.10130 + 6.39683i 0.325247 + 0.407847i
\(247\) 6.57353 + 8.24295i 0.418264 + 0.524486i
\(248\) −9.82997 + 4.73386i −0.624204 + 0.300601i
\(249\) −0.481835 −0.0305350
\(250\) −23.2589 + 11.2009i −1.47102 + 0.708408i
\(251\) 0.317569 + 1.39136i 0.0200448 + 0.0878219i 0.983961 0.178384i \(-0.0570870\pi\)
−0.963916 + 0.266206i \(0.914230\pi\)
\(252\) −11.7118 5.64011i −0.737775 0.355294i
\(253\) −34.6025 16.6637i −2.17544 1.04764i
\(254\) 1.93278 8.46808i 0.121274 0.531334i
\(255\) −1.73011 2.16949i −0.108344 0.135859i
\(256\) −13.8001 + 17.3048i −0.862507 + 1.08155i
\(257\) 6.37412 + 27.9268i 0.397607 + 1.74203i 0.636774 + 0.771051i \(0.280268\pi\)
−0.239167 + 0.970978i \(0.576874\pi\)
\(258\) 0.843276 3.69463i 0.0525001 0.230018i
\(259\) 13.3848 16.7840i 0.831690 1.04291i
\(260\) −30.4031 −1.88552
\(261\) −2.82714 4.58337i −0.174995 0.283704i
\(262\) −22.5032 −1.39025
\(263\) 11.5360 14.4657i 0.711340 0.891993i −0.286473 0.958088i \(-0.592483\pi\)
0.997813 + 0.0660957i \(0.0210543\pi\)
\(264\) 6.77401 29.6789i 0.416911 1.82661i
\(265\) −0.418006 1.83140i −0.0256779 0.112502i
\(266\) 8.35908 10.4820i 0.512528 0.642690i
\(267\) −1.24461 1.56070i −0.0761692 0.0955131i
\(268\) 10.1147 44.3154i 0.617853 2.70699i
\(269\) 25.8645 + 12.4557i 1.57698 + 0.759435i 0.998419 0.0562017i \(-0.0178990\pi\)
0.578564 + 0.815637i \(0.303613\pi\)
\(270\) 2.67962 + 1.29044i 0.163077 + 0.0785336i
\(271\) −0.401519 1.75917i −0.0243905 0.106862i 0.961267 0.275617i \(-0.0888823\pi\)
−0.985658 + 0.168756i \(0.946025\pi\)
\(272\) −18.9233 + 9.11298i −1.14739 + 0.552556i
\(273\) 15.5660 0.942099
\(274\) −7.51875 + 3.62084i −0.454224 + 0.218743i
\(275\) 9.99022 + 12.5273i 0.602433 + 0.755427i
\(276\) −25.8523 32.4178i −1.55613 1.95132i
\(277\) 12.7892 6.15895i 0.768428 0.370055i −0.00823988 0.999966i \(-0.502623\pi\)
0.776667 + 0.629911i \(0.216909\pi\)
\(278\) −58.2136 −3.49142
\(279\) −1.40599 + 0.677091i −0.0841746 + 0.0405363i
\(280\) 4.94281 + 21.6559i 0.295390 + 1.29419i
\(281\) −16.9576 8.16637i −1.01161 0.487165i −0.146746 0.989174i \(-0.546880\pi\)
−0.864862 + 0.502010i \(0.832594\pi\)
\(282\) −0.833432 0.401360i −0.0496302 0.0239006i
\(283\) −4.86946 + 21.3345i −0.289460 + 1.26821i 0.595809 + 0.803126i \(0.296831\pi\)
−0.885269 + 0.465079i \(0.846026\pi\)
\(284\) −23.9783 30.0678i −1.42285 1.78420i
\(285\) −1.34170 + 1.68244i −0.0794754 + 0.0996590i
\(286\) 14.1184 + 61.8566i 0.834836 + 3.65765i
\(287\) −1.94488 + 8.52108i −0.114803 + 0.502983i
\(288\) 5.31753 6.66797i 0.313338 0.392914i
\(289\) −11.1670 −0.656882
\(290\) −5.41515 + 15.0731i −0.317989 + 0.885124i
\(291\) 4.63516 0.271718
\(292\) 33.3501 41.8198i 1.95167 2.44732i
\(293\) −0.00172808 + 0.00757121i −0.000100955 + 0.000442315i −0.974978 0.222300i \(-0.928644\pi\)
0.974877 + 0.222742i \(0.0715008\pi\)
\(294\) −0.372492 1.63199i −0.0217242 0.0951797i
\(295\) 3.47450 4.35689i 0.202293 0.253668i
\(296\) 33.8411 + 42.4354i 1.96697 + 2.46651i
\(297\) 0.968895 4.24501i 0.0562210 0.246320i
\(298\) −3.00706 1.44812i −0.174194 0.0838875i
\(299\) 44.7346 + 21.5431i 2.58707 + 1.24587i
\(300\) 3.84936 + 16.8652i 0.222243 + 0.973710i
\(301\) 3.64736 1.75648i 0.210231 0.101242i
\(302\) 16.9604 0.975961
\(303\) 1.71100 0.823975i 0.0982945 0.0473361i
\(304\) 10.1554 + 12.7345i 0.582454 + 0.730374i
\(305\) −1.11400 1.39691i −0.0637876 0.0799871i
\(306\) −5.63276 + 2.71260i −0.322004 + 0.155069i
\(307\) 0.214941 0.0122673 0.00613367 0.999981i \(-0.498048\pi\)
0.00613367 + 0.999981i \(0.498048\pi\)
\(308\) 50.9953 24.5580i 2.90573 1.39932i
\(309\) 1.82939 + 8.01510i 0.104071 + 0.455963i
\(310\) 4.18164 + 2.01377i 0.237501 + 0.114375i
\(311\) −25.4313 12.2471i −1.44207 0.694467i −0.460876 0.887465i \(-0.652465\pi\)
−0.981199 + 0.192998i \(0.938179\pi\)
\(312\) −8.75753 + 38.3693i −0.495798 + 2.17223i
\(313\) −6.37841 7.99827i −0.360529 0.452089i 0.568177 0.822907i \(-0.307649\pi\)
−0.928706 + 0.370817i \(0.879078\pi\)
\(314\) −38.9254 + 48.8110i −2.19669 + 2.75456i
\(315\) 0.706977 + 3.09747i 0.0398336 + 0.174523i
\(316\) 8.50511 37.2633i 0.478450 2.09622i
\(317\) 14.8259 18.5911i 0.832704 1.04418i −0.165613 0.986191i \(-0.552960\pi\)
0.998317 0.0579872i \(-0.0184683\pi\)
\(318\) −4.23233 −0.237337
\(319\) 23.2779 + 2.81864i 1.30331 + 0.157814i
\(320\) −5.38216 −0.300872
\(321\) 2.77938 3.48523i 0.155130 0.194527i
\(322\) 14.0496 61.5554i 0.782955 3.43035i
\(323\) −1.00657 4.41008i −0.0560072 0.245383i
\(324\) 2.93094 3.67529i 0.162830 0.204183i
\(325\) −12.9155 16.1955i −0.716422 0.898365i
\(326\) −9.29888 + 40.7411i −0.515017 + 2.25644i
\(327\) −15.7900 7.60407i −0.873190 0.420506i
\(328\) −19.9097 9.58801i −1.09933 0.529409i
\(329\) −0.219888 0.963393i −0.0121228 0.0531136i
\(330\) −11.6675 + 5.61879i −0.642277 + 0.309304i
\(331\) −7.07856 −0.389073 −0.194536 0.980895i \(-0.562320\pi\)
−0.194536 + 0.980895i \(0.562320\pi\)
\(332\) 2.04073 0.982764i 0.112000 0.0539362i
\(333\) 4.84034 + 6.06959i 0.265249 + 0.332611i
\(334\) −8.74843 10.9702i −0.478693 0.600261i
\(335\) −10.0095 + 4.82032i −0.546877 + 0.263362i
\(336\) 24.0479 1.31192
\(337\) 6.32843 3.04761i 0.344731 0.166014i −0.253504 0.967334i \(-0.581583\pi\)
0.598235 + 0.801320i \(0.295869\pi\)
\(338\) −10.7642 47.1609i −0.585493 2.56521i
\(339\) −7.14574 3.44121i −0.388103 0.186901i
\(340\) 11.7526 + 5.65973i 0.637372 + 0.306942i
\(341\) 1.51199 6.62448i 0.0818791 0.358736i
\(342\) 3.02289 + 3.79059i 0.163459 + 0.204971i
\(343\) −10.9539 + 13.7357i −0.591453 + 0.741658i
\(344\) 2.27758 + 9.97872i 0.122799 + 0.538016i
\(345\) −2.25508 + 9.88013i −0.121409 + 0.531929i
\(346\) −18.2254 + 22.8539i −0.979803 + 1.22863i
\(347\) 10.0795 0.541094 0.270547 0.962707i \(-0.412795\pi\)
0.270547 + 0.962707i \(0.412795\pi\)
\(348\) 21.3223 + 13.6458i 1.14299 + 0.731492i
\(349\) −1.64246 −0.0879187 −0.0439593 0.999033i \(-0.513997\pi\)
−0.0439593 + 0.999033i \(0.513997\pi\)
\(350\) −16.4237 + 20.5947i −0.877883 + 1.10083i
\(351\) −1.25260 + 5.48800i −0.0668589 + 0.292928i
\(352\) 8.26337 + 36.2042i 0.440439 + 1.92969i
\(353\) 15.0406 18.8603i 0.800530 1.00383i −0.199185 0.979962i \(-0.563830\pi\)
0.999715 0.0238707i \(-0.00759901\pi\)
\(354\) −7.82817 9.81621i −0.416062 0.521726i
\(355\) −2.09161 + 9.16392i −0.111011 + 0.486370i
\(356\) 8.45461 + 4.07153i 0.448093 + 0.215790i
\(357\) −6.01717 2.89771i −0.318462 0.153363i
\(358\) 6.13694 + 26.8877i 0.324347 + 1.42106i
\(359\) 11.6187 5.59526i 0.613210 0.295307i −0.101382 0.994848i \(-0.532326\pi\)
0.714592 + 0.699541i \(0.246612\pi\)
\(360\) −8.03281 −0.423366
\(361\) 13.9578 6.72174i 0.734623 0.353776i
\(362\) −19.8412 24.8801i −1.04283 1.30767i
\(363\) 4.96226 + 6.22247i 0.260451 + 0.326595i
\(364\) −65.9274 + 31.7489i −3.45553 + 1.66410i
\(365\) −13.0734 −0.684293
\(366\) −3.62688 + 1.74661i −0.189580 + 0.0912970i
\(367\) 7.06325 + 30.9461i 0.368699 + 1.61537i 0.730358 + 0.683064i \(0.239353\pi\)
−0.361659 + 0.932310i \(0.617790\pi\)
\(368\) 69.1103 + 33.2818i 3.60262 + 1.73493i
\(369\) −2.84771 1.37139i −0.148246 0.0713915i
\(370\) 5.13784 22.5104i 0.267104 1.17026i
\(371\) −2.81890 3.53478i −0.146350 0.183517i
\(372\) 4.57384 5.73541i 0.237142 0.297367i
\(373\) −1.05811 4.63589i −0.0547869 0.240037i 0.940119 0.340847i \(-0.110714\pi\)
−0.994906 + 0.100810i \(0.967857\pi\)
\(374\) 6.05743 26.5393i 0.313222 1.37232i
\(375\) 6.21790 7.79700i 0.321091 0.402636i
\(376\) 2.49841 0.128846
\(377\) −30.0940 3.64398i −1.54992 0.187675i
\(378\) 7.15816 0.368176
\(379\) 1.32155 1.65717i 0.0678834 0.0851231i −0.746730 0.665127i \(-0.768377\pi\)
0.814614 + 0.580004i \(0.196949\pi\)
\(380\) 2.25100 9.86226i 0.115474 0.505924i
\(381\) 0.746651 + 3.27129i 0.0382521 + 0.167593i
\(382\) −2.71649 + 3.40637i −0.138988 + 0.174285i
\(383\) 9.12830 + 11.4465i 0.466434 + 0.584890i 0.958294 0.285784i \(-0.0922541\pi\)
−0.491860 + 0.870675i \(0.663683\pi\)
\(384\) 1.09728 4.80751i 0.0559954 0.245332i
\(385\) −12.4638 6.00224i −0.635213 0.305903i
\(386\) −24.6661 11.8786i −1.25547 0.604604i
\(387\) 0.325765 + 1.42727i 0.0165596 + 0.0725521i
\(388\) −19.6315 + 9.45401i −0.996636 + 0.479955i
\(389\) 1.93401 0.0980583 0.0490292 0.998797i \(-0.484387\pi\)
0.0490292 + 0.998797i \(0.484387\pi\)
\(390\) 15.0840 7.26405i 0.763806 0.367830i
\(391\) −13.2821 16.6553i −0.671706 0.842293i
\(392\) 2.81889 + 3.53478i 0.142376 + 0.178533i
\(393\) 7.83230 3.77184i 0.395087 0.190264i
\(394\) −31.3611 −1.57995
\(395\) −8.41664 + 4.05324i −0.423487 + 0.203941i
\(396\) 4.55465 + 19.9552i 0.228880 + 1.00279i
\(397\) 27.0463 + 13.0248i 1.35742 + 0.653697i 0.964059 0.265689i \(-0.0855995\pi\)
0.393357 + 0.919386i \(0.371314\pi\)
\(398\) −11.6517 5.61118i −0.584048 0.281263i
\(399\) −1.15248 + 5.04936i −0.0576963 + 0.252784i
\(400\) −19.9531 25.0204i −0.997654 1.25102i
\(401\) 9.79407 12.2814i 0.489093 0.613303i −0.474638 0.880181i \(-0.657421\pi\)
0.963730 + 0.266879i \(0.0859923\pi\)
\(402\) 5.56981 + 24.4029i 0.277797 + 1.21711i
\(403\) −1.95473 + 8.56422i −0.0973719 + 0.426614i
\(404\) −5.56607 + 6.97963i −0.276922 + 0.347249i
\(405\) −1.14894 −0.0570914
\(406\) 3.99791 + 38.3400i 0.198413 + 1.90278i
\(407\) −33.8027 −1.67554
\(408\) 10.5280 13.2017i 0.521212 0.653579i
\(409\) 1.08416 4.75001i 0.0536081 0.234873i −0.941025 0.338337i \(-0.890136\pi\)
0.994633 + 0.103464i \(0.0329928\pi\)
\(410\) 2.09180 + 9.16479i 0.103307 + 0.452617i
\(411\) 2.01002 2.52048i 0.0991468 0.124326i
\(412\) −24.0959 30.2153i −1.18712 1.48860i
\(413\) 2.98450 13.0760i 0.146858 0.643426i
\(414\) 20.5716 + 9.90675i 1.01104 + 0.486890i
\(415\) −0.498776 0.240198i −0.0244840 0.0117909i
\(416\) −10.6830 46.8053i −0.523777 2.29482i
\(417\) 20.2614 9.75736i 0.992203 0.477820i
\(418\) −21.1105 −1.03255
\(419\) −17.1303 + 8.24949i −0.836867 + 0.403014i −0.802686 0.596402i \(-0.796597\pi\)
−0.0341812 + 0.999416i \(0.510882\pi\)
\(420\) −9.31198 11.6768i −0.454378 0.569772i
\(421\) 7.80429 + 9.78627i 0.380358 + 0.476954i 0.934752 0.355300i \(-0.115621\pi\)
−0.554394 + 0.832254i \(0.687050\pi\)
\(422\) 44.8044 21.5767i 2.18105 1.05034i
\(423\) 0.357351 0.0173750
\(424\) 10.2989 4.95971i 0.500161 0.240865i
\(425\) 1.97768 + 8.66480i 0.0959317 + 0.420304i
\(426\) 19.0803 + 9.18860i 0.924445 + 0.445189i
\(427\) −3.87440 1.86581i −0.187495 0.0902929i
\(428\) −4.66303 + 20.4300i −0.225396 + 0.987524i
\(429\) −15.2819 19.1629i −0.737816 0.925193i
\(430\) 2.71473 3.40416i 0.130916 0.164163i
\(431\) −7.87657 34.5095i −0.379401 1.66227i −0.699311 0.714817i \(-0.746510\pi\)
0.319910 0.947448i \(-0.396347\pi\)
\(432\) −1.93514 + 8.47839i −0.0931044 + 0.407917i
\(433\) 3.65050 4.57758i 0.175432 0.219984i −0.686340 0.727281i \(-0.740784\pi\)
0.861772 + 0.507297i \(0.169355\pi\)
\(434\) 11.1706 0.536204
\(435\) −0.641696 6.15388i −0.0307670 0.295056i
\(436\) 82.3856 3.94555
\(437\) −10.3003 + 12.9161i −0.492729 + 0.617863i
\(438\) −6.55430 + 28.7163i −0.313177 + 1.37212i
\(439\) −5.52514 24.2072i −0.263700 1.15535i −0.917202 0.398422i \(-0.869558\pi\)
0.653502 0.756925i \(-0.273299\pi\)
\(440\) 21.8073 27.3455i 1.03962 1.30365i
\(441\) 0.403190 + 0.505584i 0.0191995 + 0.0240754i
\(442\) −7.83113 + 34.3104i −0.372489 + 1.63198i
\(443\) −21.3969 10.3042i −1.01660 0.489568i −0.150060 0.988677i \(-0.547947\pi\)
−0.866539 + 0.499109i \(0.833661\pi\)
\(444\) −32.8802 15.8343i −1.56042 0.751460i
\(445\) −0.510358 2.23602i −0.0241933 0.105998i
\(446\) 49.5468 23.8605i 2.34611 1.12983i
\(447\) 1.28934 0.0609835
\(448\) −11.6709 + 5.62040i −0.551398 + 0.265539i
\(449\) 4.02060 + 5.04167i 0.189744 + 0.237931i 0.867599 0.497264i \(-0.165662\pi\)
−0.677856 + 0.735195i \(0.737091\pi\)
\(450\) −5.93929 7.44764i −0.279981 0.351085i
\(451\) 12.3994 5.97125i 0.583866 0.281175i
\(452\) 37.2834 1.75366
\(453\) −5.90310 + 2.84278i −0.277352 + 0.133566i
\(454\) −11.3798 49.8581i −0.534080 2.33996i
\(455\) 16.1134 + 7.75978i 0.755406 + 0.363784i
\(456\) −11.7980 5.68159i −0.552490 0.266065i
\(457\) 0.584270 2.55985i 0.0273310 0.119745i −0.959422 0.281973i \(-0.909011\pi\)
0.986753 + 0.162228i \(0.0518682\pi\)
\(458\) 33.4315 + 41.9218i 1.56215 + 1.95888i
\(459\) 1.50583 1.88825i 0.0702861 0.0881359i
\(460\) −10.6008 46.4452i −0.494266 2.16552i
\(461\) 1.59279 6.97847i 0.0741837 0.325020i −0.924196 0.381918i \(-0.875264\pi\)
0.998380 + 0.0568978i \(0.0181209\pi\)
\(462\) −19.4329 + 24.3680i −0.904099 + 1.13370i
\(463\) −18.2411 −0.847737 −0.423868 0.905724i \(-0.639328\pi\)
−0.423868 + 0.905724i \(0.639328\pi\)
\(464\) −46.4921 5.62957i −2.15834 0.261346i
\(465\) −1.79296 −0.0831467
\(466\) 33.5294 42.0445i 1.55322 1.94768i
\(467\) −7.89230 + 34.5784i −0.365212 + 1.60010i 0.374534 + 0.927213i \(0.377803\pi\)
−0.739746 + 0.672886i \(0.765054\pi\)
\(468\) −5.88831 25.7984i −0.272187 1.19253i
\(469\) −16.6713 + 20.9051i −0.769809 + 0.965310i
\(470\) −0.662656 0.830944i −0.0305660 0.0383286i
\(471\) 5.36673 23.5132i 0.247286 1.08343i
\(472\) 30.5523 + 14.7132i 1.40628 + 0.677231i
\(473\) −5.74313 2.76575i −0.264070 0.127169i
\(474\) 4.68346 + 20.5196i 0.215119 + 0.942496i
\(475\) 6.20979 2.99048i 0.284925 0.137213i
\(476\) 31.3950 1.43899
\(477\) 1.47307 0.709393i 0.0674472 0.0324809i
\(478\) −3.67148 4.60389i −0.167929 0.210577i
\(479\) 16.2734 + 20.4061i 0.743548 + 0.932380i 0.999410 0.0343330i \(-0.0109307\pi\)
−0.255862 + 0.966713i \(0.582359\pi\)
\(480\) 8.82853 4.25160i 0.402966 0.194058i
\(481\) 43.7006 1.99258
\(482\) −27.4699 + 13.2288i −1.25122 + 0.602556i
\(483\) 5.42749 + 23.7794i 0.246959 + 1.08200i
\(484\) −33.7084 16.2331i −1.53220 0.737868i
\(485\) 4.79814 + 2.31066i 0.217872 + 0.104922i
\(486\) −0.576019 + 2.52370i −0.0261287 + 0.114477i
\(487\) 13.8098 + 17.3170i 0.625783 + 0.784708i 0.989145 0.146940i \(-0.0469426\pi\)
−0.363362 + 0.931648i \(0.618371\pi\)
\(488\) 6.77886 8.50042i 0.306865 0.384796i
\(489\) −3.59224 15.7386i −0.162447 0.711725i
\(490\) 0.427971 1.87507i 0.0193338 0.0847068i
\(491\) −7.32494 + 9.18518i −0.330570 + 0.414521i −0.919144 0.393922i \(-0.871118\pi\)
0.588574 + 0.808443i \(0.299690\pi\)
\(492\) 14.8581 0.669856
\(493\) 10.9547 + 7.01080i 0.493376 + 0.315750i
\(494\) 27.2920 1.22792
\(495\) 3.11913 3.91127i 0.140194 0.175798i
\(496\) −3.01985 + 13.2308i −0.135595 + 0.594082i
\(497\) 5.03405 + 22.0556i 0.225808 + 0.989330i
\(498\) −0.777666 + 0.975162i −0.0348480 + 0.0436980i
\(499\) −10.2098 12.8027i −0.457056 0.573130i 0.498893 0.866664i \(-0.333740\pi\)
−0.955949 + 0.293534i \(0.905169\pi\)
\(500\) −10.4319 + 45.7052i −0.466529 + 2.04400i
\(501\) 4.88365 + 2.35184i 0.218186 + 0.105073i
\(502\) 3.32846 + 1.60290i 0.148556 + 0.0715409i
\(503\) −3.30118 14.4634i −0.147192 0.644892i −0.993658 0.112448i \(-0.964131\pi\)
0.846465 0.532444i \(-0.178726\pi\)
\(504\) −17.4187 + 8.38839i −0.775889 + 0.373648i
\(505\) 2.18192 0.0970942
\(506\) −89.5722 + 43.1357i −3.98197 + 1.91762i
\(507\) 11.6513 + 14.6102i 0.517451 + 0.648863i
\(508\) −9.83454 12.3321i −0.436337 0.547150i
\(509\) −28.4466 + 13.6992i −1.26087 + 0.607204i −0.940405 0.340055i \(-0.889554\pi\)
−0.320467 + 0.947260i \(0.603840\pi\)
\(510\) −7.18307 −0.318072
\(511\) −28.3489 + 13.6521i −1.25408 + 0.603934i
\(512\) 10.5548 + 46.2437i 0.466462 + 2.04370i
\(513\) −1.68748 0.812645i −0.0745039 0.0358792i
\(514\) 66.8074 + 32.1728i 2.94675 + 1.41908i
\(515\) −2.10187 + 9.20888i −0.0926193 + 0.405792i
\(516\) −4.29082 5.38052i −0.188893 0.236864i
\(517\) −0.970130 + 1.21651i −0.0426663 + 0.0535018i
\(518\) −12.3657 54.1777i −0.543318 2.38043i
\(519\) 2.51277 11.0092i 0.110298 0.483249i
\(520\) −28.1928 + 35.3527i −1.23634 + 1.55032i
\(521\) −8.03875 −0.352184 −0.176092 0.984374i \(-0.556346\pi\)
−0.176092 + 0.984374i \(0.556346\pi\)
\(522\) −13.8390 1.67571i −0.605715 0.0733440i
\(523\) −1.48633 −0.0649927 −0.0324963 0.999472i \(-0.510346\pi\)
−0.0324963 + 0.999472i \(0.510346\pi\)
\(524\) −25.4793 + 31.9500i −1.11307 + 1.39574i
\(525\) 2.26437 9.92084i 0.0988250 0.432981i
\(526\) −10.6577 46.6943i −0.464697 2.03597i
\(527\) 2.34990 2.94668i 0.102363 0.128359i
\(528\) −23.6089 29.6047i −1.02745 1.28838i
\(529\) −12.1943 + 53.4268i −0.530188 + 2.32291i
\(530\) −4.38114 2.10985i −0.190305 0.0916459i
\(531\) 4.36993 + 2.10445i 0.189639 + 0.0913253i
\(532\) −5.41767 23.7364i −0.234886 1.02910i
\(533\) −16.0302 + 7.71971i −0.694343 + 0.334378i
\(534\) −5.16739 −0.223615
\(535\) 4.61452 2.22224i 0.199503 0.0960757i
\(536\) −42.1505 52.8550i −1.82062 2.28299i
\(537\) −6.64270 8.32969i −0.286654 0.359453i
\(538\) 66.9528 32.2428i 2.88654 1.39008i
\(539\) −2.81570 −0.121281
\(540\) 4.86616 2.34342i 0.209406 0.100845i
\(541\) −8.64061 37.8570i −0.371489 1.62760i −0.722601 0.691266i \(-0.757053\pi\)
0.351112 0.936334i \(-0.385804\pi\)
\(542\) −4.20834 2.02663i −0.180764 0.0870511i
\(543\) 11.0760 + 5.33392i 0.475316 + 0.228900i
\(544\) −4.58350 + 20.0816i −0.196516 + 0.860993i
\(545\) −12.5545 15.7429i −0.537777 0.674351i
\(546\) 25.1231 31.5033i 1.07517 1.34822i
\(547\) 3.86062 + 16.9145i 0.165068 + 0.723210i 0.987921 + 0.154956i \(0.0495237\pi\)
−0.822853 + 0.568254i \(0.807619\pi\)
\(548\) −3.37225 + 14.7748i −0.144055 + 0.631147i
\(549\) 0.969589 1.21583i 0.0413810 0.0518902i
\(550\) 41.4774 1.76860
\(551\) 3.41016 9.49220i 0.145278 0.404381i
\(552\) −61.6682 −2.62477
\(553\) −14.0183 + 17.5784i −0.596120 + 0.747511i
\(554\) 8.17654 35.8238i 0.347388 1.52201i
\(555\) 1.98479 + 8.69595i 0.0842498 + 0.369122i
\(556\) −65.9123 + 82.6514i −2.79530 + 3.50520i
\(557\) 18.9702 + 23.7879i 0.803794 + 1.00793i 0.999628 + 0.0272889i \(0.00868740\pi\)
−0.195833 + 0.980637i \(0.562741\pi\)
\(558\) −0.898897 + 3.93832i −0.0380533 + 0.166723i
\(559\) 7.42480 + 3.57559i 0.314036 + 0.151232i
\(560\) 24.8935 + 11.9881i 1.05194 + 0.506588i
\(561\) 2.34004 + 10.2524i 0.0987965 + 0.432856i
\(562\) −43.8966 + 21.1395i −1.85167 + 0.891715i
\(563\) −12.1911 −0.513793 −0.256897 0.966439i \(-0.582700\pi\)
−0.256897 + 0.966439i \(0.582700\pi\)
\(564\) −1.51350 + 0.728864i −0.0637299 + 0.0306907i
\(565\) −5.68152 7.12441i −0.239024 0.299726i
\(566\) 35.3187 + 44.2883i 1.48456 + 1.86158i
\(567\) −2.49141 + 1.19980i −0.104630 + 0.0503869i
\(568\) −57.1978 −2.39997
\(569\) 2.84513 1.37014i 0.119274 0.0574393i −0.373295 0.927713i \(-0.621772\pi\)
0.492569 + 0.870273i \(0.336058\pi\)
\(570\) 1.23955 + 5.43080i 0.0519188 + 0.227471i
\(571\) −21.9308 10.5613i −0.917776 0.441977i −0.0854992 0.996338i \(-0.527249\pi\)
−0.832276 + 0.554361i \(0.812963\pi\)
\(572\) 103.809 + 49.9918i 4.34048 + 2.09026i
\(573\) 0.374528 1.64091i 0.0156461 0.0685501i
\(574\) 14.1064 + 17.6889i 0.588791 + 0.738321i
\(575\) 20.2377 25.3773i 0.843970 1.05831i
\(576\) −1.04239 4.56700i −0.0434328 0.190291i
\(577\) −1.77812 + 7.79044i −0.0740240 + 0.324320i −0.998359 0.0572611i \(-0.981763\pi\)
0.924335 + 0.381581i \(0.124620\pi\)
\(578\) −18.0232 + 22.6003i −0.749665 + 0.940050i
\(579\) 10.5761 0.439528
\(580\) 15.2694 + 24.7549i 0.634029 + 1.02789i
\(581\) −1.33240 −0.0552772
\(582\) 7.48100 9.38088i 0.310097 0.388850i
\(583\) −1.58413 + 6.94052i −0.0656079 + 0.287447i
\(584\) −17.7023 77.5589i −0.732527 3.20941i
\(585\) −4.03245 + 5.05654i −0.166721 + 0.209062i
\(586\) 0.0125339 + 0.0157171i 0.000517772 + 0.000649266i
\(587\) 9.42720 41.3033i 0.389102 1.70477i −0.278657 0.960391i \(-0.589889\pi\)
0.667759 0.744378i \(-0.267254\pi\)
\(588\) −2.73885 1.31896i −0.112948 0.0543930i
\(589\) −2.63336 1.26816i −0.108506 0.0522537i
\(590\) −3.20996 14.0638i −0.132152 0.578996i
\(591\) 10.9153 5.25652i 0.448995 0.216224i
\(592\) 67.5130 2.77477
\(593\) 23.7641 11.4442i 0.975873 0.469956i 0.123189 0.992383i \(-0.460688\pi\)
0.852684 + 0.522427i \(0.174973\pi\)
\(594\) −7.02750 8.81221i −0.288342 0.361569i
\(595\) −4.78421 5.99920i −0.196133 0.245943i
\(596\) −5.46078 + 2.62977i −0.223682 + 0.107720i
\(597\) 4.99592 0.204469
\(598\) 115.800 55.7664i 4.73542 2.28046i
\(599\) −1.41472 6.19828i −0.0578038 0.253255i 0.937768 0.347263i \(-0.112889\pi\)
−0.995571 + 0.0940086i \(0.970032\pi\)
\(600\) 23.1803 + 11.1630i 0.946331 + 0.455729i
\(601\) 15.2278 + 7.33332i 0.621155 + 0.299133i 0.717867 0.696180i \(-0.245118\pi\)
−0.0967123 + 0.995312i \(0.530833\pi\)
\(602\) 2.33188 10.2166i 0.0950402 0.416398i
\(603\) −6.02883 7.55992i −0.245513 0.307864i
\(604\) 19.2034 24.0803i 0.781375 0.979813i
\(605\) 2.03479 + 8.91498i 0.0827259 + 0.362446i
\(606\) 1.09390 4.79269i 0.0444366 0.194690i
\(607\) −4.62349 + 5.79767i −0.187662 + 0.235320i −0.866758 0.498729i \(-0.833800\pi\)
0.679096 + 0.734049i \(0.262372\pi\)
\(608\) 15.9738 0.647823
\(609\) −7.81777 12.6742i −0.316792 0.513585i
\(610\) −4.62511 −0.187265
\(611\) 1.25420 1.57271i 0.0507394 0.0636252i
\(612\) −2.52636 + 11.0687i −0.102122 + 0.447426i
\(613\) 6.43653 + 28.2003i 0.259969 + 1.13900i 0.921284 + 0.388891i \(0.127142\pi\)
−0.661315 + 0.750109i \(0.730001\pi\)
\(614\) 0.346908 0.435009i 0.0140001 0.0175555i
\(615\) −2.26419 2.83921i −0.0913011 0.114488i
\(616\) 18.7319 82.0698i 0.754730 3.30669i
\(617\) 31.4553 + 15.1481i 1.26634 + 0.609839i 0.941845 0.336047i \(-0.109090\pi\)
0.324499 + 0.945886i \(0.394804\pi\)
\(618\) 19.1739 + 9.23369i 0.771289 + 0.371433i
\(619\) −10.0433 44.0026i −0.403674 1.76861i −0.612309 0.790618i \(-0.709759\pi\)
0.208635 0.977994i \(-0.433098\pi\)
\(620\) 7.59381 3.65698i 0.304975 0.146868i
\(621\) −8.82048 −0.353954
\(622\) −65.8315 + 31.7028i −2.63960 + 1.27117i
\(623\) −3.44168 4.31574i −0.137888 0.172906i
\(624\) 30.5219 + 38.2733i 1.22186 + 1.53216i
\(625\) −6.25412 + 3.01183i −0.250165 + 0.120473i
\(626\) −26.4819 −1.05843
\(627\) 7.34756 3.53840i 0.293433 0.141310i
\(628\) 25.2283 + 110.532i 1.00672 + 4.41072i
\(629\) −16.8928 8.13515i −0.673561 0.324370i
\(630\) 7.40985 + 3.56840i 0.295216 + 0.142168i
\(631\) −6.51100 + 28.5266i −0.259199 + 1.13562i 0.662912 + 0.748698i \(0.269321\pi\)
−0.922110 + 0.386927i \(0.873537\pi\)
\(632\) −35.4429 44.4440i −1.40984 1.76789i
\(633\) −11.9777 + 15.0196i −0.476073 + 0.596976i
\(634\) −13.6971 60.0108i −0.543980 2.38333i
\(635\) −0.857859 + 3.75853i −0.0340431 + 0.149153i
\(636\) −4.79205 + 6.00904i −0.190017 + 0.238274i
\(637\) 3.64017 0.144229
\(638\) 43.2743 42.5619i 1.71325 1.68504i
\(639\) −8.18108 −0.323638
\(640\) 3.53244 4.42954i 0.139632 0.175093i
\(641\) −3.94382 + 17.2790i −0.155772 + 0.682480i 0.835372 + 0.549685i \(0.185252\pi\)
−0.991144 + 0.132795i \(0.957605\pi\)
\(642\) −2.56776 11.2501i −0.101342 0.444006i
\(643\) 23.9696 30.0569i 0.945269 1.18533i −0.0372759 0.999305i \(-0.511868\pi\)
0.982545 0.186025i \(-0.0595605\pi\)
\(644\) −71.4884 89.6436i −2.81704 3.53245i
\(645\) −0.374285 + 1.63985i −0.0147375 + 0.0645690i
\(646\) −10.5499 5.08057i −0.415081 0.199893i
\(647\) −36.5712 17.6118i −1.43776 0.692391i −0.457340 0.889292i \(-0.651198\pi\)
−0.980423 + 0.196901i \(0.936912\pi\)
\(648\) −1.55575 6.81619i −0.0611157 0.267765i
\(649\) −19.0275 + 9.16314i −0.746893 + 0.359685i
\(650\) −53.6225 −2.10325
\(651\) −3.88794 + 1.87233i −0.152380 + 0.0733825i
\(652\) 47.3153 + 59.3315i 1.85301 + 2.32360i
\(653\) −16.5954 20.8099i −0.649427 0.814356i 0.342719 0.939438i \(-0.388652\pi\)
−0.992146 + 0.125082i \(0.960081\pi\)
\(654\) −40.8741 + 19.6839i −1.59830 + 0.769703i
\(655\) 9.98798 0.390263
\(656\) −24.7649 + 11.9262i −0.966908 + 0.465638i
\(657\) −2.53198 11.0933i −0.0987821 0.432793i
\(658\) −2.30466 1.10986i −0.0898449 0.0432670i
\(659\) 20.8219 + 10.0273i 0.811105 + 0.390608i 0.792995 0.609228i \(-0.208521\pi\)
0.0181105 + 0.999836i \(0.494235\pi\)
\(660\) −5.23303 + 22.9274i −0.203695 + 0.892448i
\(661\) 14.6279 + 18.3428i 0.568958 + 0.713450i 0.980185 0.198082i \(-0.0634713\pi\)
−0.411228 + 0.911533i \(0.634900\pi\)
\(662\) −11.4246 + 14.3260i −0.444029 + 0.556794i
\(663\) −3.02523 13.2544i −0.117490 0.514759i
\(664\) 0.749614 3.28427i 0.0290907 0.127455i
\(665\) −3.71015 + 4.65238i −0.143873 + 0.180412i
\(666\) 20.0961 0.778708
\(667\) −4.92632 47.2436i −0.190748 1.82928i
\(668\) −25.4808 −0.985882
\(669\) −13.2455 + 16.6094i −0.512102 + 0.642155i
\(670\) −6.39939 + 28.0376i −0.247230 + 1.08319i
\(671\) 1.50673 + 6.60141i 0.0581666 + 0.254845i
\(672\) 14.7044 18.4387i 0.567233 0.711287i
\(673\) −16.8106 21.0798i −0.648000 0.812567i 0.343978 0.938978i \(-0.388226\pi\)
−0.991978 + 0.126411i \(0.959654\pi\)
\(674\) 4.04597 17.7265i 0.155845 0.682801i
\(675\) 3.31550 + 1.59666i 0.127614 + 0.0614556i
\(676\) −79.1465 38.1149i −3.04409 1.46596i
\(677\) −7.46144 32.6907i −0.286766 1.25641i −0.888934 0.458035i \(-0.848553\pi\)
0.602168 0.798370i \(-0.294304\pi\)
\(678\) −18.4975 + 8.90792i −0.710391 + 0.342106i
\(679\) 12.8174 0.491888
\(680\) 17.4793 8.41757i 0.670299 0.322799i
\(681\) 12.3176 + 15.4458i 0.472012 + 0.591885i
\(682\) −10.9667 13.7517i −0.419935 0.526582i
\(683\) 11.1128 5.35164i 0.425219 0.204775i −0.209021 0.977911i \(-0.567028\pi\)
0.634240 + 0.773137i \(0.281313\pi\)
\(684\) 8.80452 0.336649
\(685\) 3.33717 1.60710i 0.127507 0.0614040i
\(686\) 10.1199 + 44.3380i 0.386378 + 1.69283i
\(687\) −18.6625 8.98740i −0.712020 0.342891i
\(688\) 11.4705 + 5.52392i 0.437310 + 0.210598i
\(689\) 2.04798 8.97280i 0.0780219 0.341836i
\(690\) 16.3563 + 20.5102i 0.622674 + 0.780808i
\(691\) 1.26022 1.58026i 0.0479410 0.0601161i −0.757283 0.653087i \(-0.773474\pi\)
0.805224 + 0.592971i \(0.202045\pi\)
\(692\) 11.8122 + 51.7526i 0.449033 + 1.96734i
\(693\) 2.67925 11.7386i 0.101776 0.445911i
\(694\) 16.2679 20.3994i 0.617523 0.774349i
\(695\) 25.8379 0.980087
\(696\) 35.6394 12.1397i 1.35091 0.460154i
\(697\) 7.63365 0.289145
\(698\) −2.65087 + 3.32409i −0.100337 + 0.125819i
\(699\) −4.62276 + 20.2536i −0.174849 + 0.766063i
\(700\) 10.6445 + 46.6366i 0.402324 + 1.76270i
\(701\) −21.0103 + 26.3461i −0.793549 + 0.995079i 0.206313 + 0.978486i \(0.433853\pi\)
−0.999862 + 0.0165931i \(0.994718\pi\)
\(702\) 9.08525 + 11.3925i 0.342900 + 0.429984i
\(703\) −3.23552 + 14.1758i −0.122030 + 0.534649i
\(704\) 18.3770 + 8.84988i 0.692608 + 0.333542i
\(705\) 0.369916 + 0.178142i 0.0139318 + 0.00670922i
\(706\) −13.8954 60.8798i −0.522961 2.29124i
\(707\) 4.73137 2.27851i 0.177941 0.0856921i
\(708\) −22.8004 −0.856893
\(709\) −11.4001 + 5.48999i −0.428139 + 0.206181i −0.635528 0.772078i \(-0.719218\pi\)
0.207389 + 0.978258i \(0.433503\pi\)
\(710\) 15.1706 + 19.0234i 0.569344 + 0.713935i
\(711\) −5.06944 6.35688i −0.190119 0.238402i
\(712\) 12.5743 6.05547i 0.471243 0.226938i
\(713\) −13.7647 −0.515490
\(714\) −15.5761 + 7.50103i −0.582919 + 0.280719i
\(715\) −6.26638 27.4548i −0.234349 1.02675i
\(716\) 45.1236 + 21.7304i 1.68635 + 0.812102i
\(717\) 2.04954 + 0.987005i 0.0765413 + 0.0368604i
\(718\) 7.42820 32.5451i 0.277218 1.21457i
\(719\) 8.31590 + 10.4278i 0.310131 + 0.388892i 0.912331 0.409453i \(-0.134281\pi\)
−0.602200 + 0.798345i \(0.705709\pi\)
\(720\) −6.22972 + 7.81182i −0.232168 + 0.291129i
\(721\) 5.05875 + 22.1638i 0.188398 + 0.825424i
\(722\) 8.92370 39.0973i 0.332106 1.45505i
\(723\) 7.34364 9.20864i 0.273113 0.342473i
\(724\) −57.7898 −2.14774
\(725\) −6.70018 + 18.6500i −0.248838 + 0.692644i
\(726\) 20.6023 0.764622
\(727\) −26.0421 + 32.6558i −0.965849 + 1.21114i 0.0115932 + 0.999933i \(0.496310\pi\)
−0.977442 + 0.211203i \(0.932262\pi\)
\(728\) −24.2169 + 106.101i −0.897536 + 3.93236i
\(729\) −0.222521 0.974928i −0.00824152 0.0361084i
\(730\) −21.1000 + 26.4586i −0.780948 + 0.979277i
\(731\) −2.20449 2.76435i −0.0815361 0.102243i
\(732\) −1.62670 + 7.12703i −0.0601245 + 0.263423i
\(733\) 38.3484 + 18.4676i 1.41643 + 0.682116i 0.976420 0.215877i \(-0.0692611\pi\)
0.440009 + 0.897994i \(0.354975\pi\)
\(734\) 74.0302 + 35.6511i 2.73251 + 1.31591i
\(735\) 0.165329 + 0.724354i 0.00609825 + 0.0267182i
\(736\) 67.7770 32.6397i 2.49829 1.20311i
\(737\) 42.1027 1.55087
\(738\) −7.37159 + 3.54997i −0.271352 + 0.130676i
\(739\) 13.8667 + 17.3883i 0.510095 + 0.639639i 0.968473 0.249118i \(-0.0801408\pi\)
−0.458378 + 0.888757i \(0.651569\pi\)
\(740\) −26.1428 32.7820i −0.961028 1.20509i
\(741\) −9.49903 + 4.57449i −0.348956 + 0.168048i
\(742\) −11.7035 −0.429648
\(743\) 25.2914 12.1797i 0.927853 0.446830i 0.0919847 0.995760i \(-0.470679\pi\)
0.835868 + 0.548930i \(0.184965\pi\)
\(744\) −2.42780 10.6369i −0.0890075 0.389968i
\(745\) 1.33467 + 0.642744i 0.0488986 + 0.0235483i
\(746\) −11.0901 5.34071i −0.406038 0.195537i
\(747\) 0.107218 0.469754i 0.00392291 0.0171874i
\(748\) −30.8219 38.6495i −1.12696 1.41316i
\(749\) 7.68571 9.63758i 0.280830 0.352149i
\(750\) −5.74448 25.1682i −0.209759 0.919014i
\(751\) −6.35994 + 27.8647i −0.232077 + 1.01680i 0.715836 + 0.698269i \(0.246046\pi\)
−0.947913 + 0.318529i \(0.896811\pi\)
\(752\) 1.93761 2.42968i 0.0706572 0.0886013i
\(753\) −1.42714 −0.0520080
\(754\) −55.9456 + 55.0245i −2.03742 + 2.00388i
\(755\) −7.52781 −0.273965
\(756\) 8.10482 10.1631i 0.294770 0.369629i
\(757\) 4.77354 20.9142i 0.173497 0.760140i −0.811044 0.584985i \(-0.801100\pi\)
0.984541 0.175155i \(-0.0560427\pi\)
\(758\) −1.22093 5.34924i −0.0443461 0.194293i
\(759\) 23.9457 30.0269i 0.869173 1.08991i
\(760\) −9.38047 11.7627i −0.340265 0.426679i
\(761\) 4.76688 20.8851i 0.172799 0.757083i −0.812038 0.583604i \(-0.801642\pi\)
0.984838 0.173479i \(-0.0555009\pi\)
\(762\) 7.82568 + 3.76865i 0.283494 + 0.136524i
\(763\) −43.6635 21.0272i −1.58073 0.761237i
\(764\) 1.76061 + 7.71372i 0.0636965 + 0.279072i
\(765\) 2.50008 1.20398i 0.0903906