Properties

Label 87.2.g.a.49.3
Level $87$
Weight $2$
Character 87.49
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 49.3
Root \(-1.05678 + 1.32516i\) of defining polynomial
Character \(\chi\) \(=\) 87.49
Dual form 87.2.g.a.16.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.626118 - 0.301523i) q^{2} +(0.623490 + 0.781831i) q^{3} +(-0.945872 + 1.18609i) q^{4} +(1.81798 - 0.875492i) q^{5} +(0.626118 + 0.301523i) q^{6} +(-1.49319 - 1.87240i) q^{7} +(-0.543873 + 2.38286i) q^{8} +(-0.222521 + 0.974928i) q^{9} +O(q^{10})\) \(q+(0.626118 - 0.301523i) q^{2} +(0.623490 + 0.781831i) q^{3} +(-0.945872 + 1.18609i) q^{4} +(1.81798 - 0.875492i) q^{5} +(0.626118 + 0.301523i) q^{6} +(-1.49319 - 1.87240i) q^{7} +(-0.543873 + 2.38286i) q^{8} +(-0.222521 + 0.974928i) q^{9} +(0.874288 - 1.09632i) q^{10} +(0.213150 + 0.933871i) q^{11} -1.51706 q^{12} +(-1.45377 - 6.36940i) q^{13} +(-1.49948 - 0.722111i) q^{14} +(1.81798 + 0.875492i) q^{15} +(-0.297197 - 1.30211i) q^{16} -3.81642 q^{17} +(0.154638 + 0.677515i) q^{18} +(-2.69251 + 3.37631i) q^{19} +(-0.681165 + 2.98438i) q^{20} +(0.532912 - 2.33484i) q^{21} +(0.415040 + 0.520444i) q^{22} +(4.85446 + 2.33778i) q^{23} +(-2.20209 + 1.06047i) q^{24} +(-0.578892 + 0.725907i) q^{25} +(-2.83075 - 3.54965i) q^{26} +(-0.900969 + 0.433884i) q^{27} +3.63318 q^{28} +(5.32202 + 0.822256i) q^{29} +1.40225 q^{30} +(-2.46382 + 1.18651i) q^{31} +(-3.62649 - 4.54747i) q^{32} +(-0.597233 + 0.748906i) q^{33} +(-2.38953 + 1.15074i) q^{34} +(-4.35384 - 2.09670i) q^{35} +(-0.945872 - 1.18609i) q^{36} +(0.414041 - 1.81403i) q^{37} +(-0.667799 + 2.92582i) q^{38} +(4.07339 - 5.10787i) q^{39} +(1.09743 + 4.80814i) q^{40} +11.8282 q^{41} +(-0.370341 - 1.62257i) q^{42} +(3.33752 + 1.60727i) q^{43} +(-1.30926 - 0.630508i) q^{44} +(0.449003 + 1.96721i) q^{45} +3.74436 q^{46} +(0.719344 + 3.15165i) q^{47} +(0.832729 - 1.04421i) q^{48} +(0.281385 - 1.23283i) q^{49} +(-0.143577 + 0.629053i) q^{50} +(-2.37950 - 2.98379i) q^{51} +(8.92974 + 4.30034i) q^{52} +(-2.04315 + 0.983927i) q^{53} +(-0.433287 + 0.543325i) q^{54} +(1.20510 + 1.51115i) q^{55} +(5.27376 - 2.53971i) q^{56} -4.31846 q^{57} +(3.58014 - 1.08988i) q^{58} -9.30726 q^{59} +(-2.75798 + 1.32817i) q^{60} +(1.95684 + 2.45380i) q^{61} +(-1.18488 + 1.48579i) q^{62} +(2.15772 - 1.03910i) q^{63} +(-1.23512 - 0.594802i) q^{64} +(-8.21929 - 10.3067i) q^{65} +(-0.148126 + 0.648983i) q^{66} +(-2.69277 + 11.7978i) q^{67} +(3.60984 - 4.52660i) q^{68} +(1.19895 + 5.25295i) q^{69} -3.35822 q^{70} +(1.02436 + 4.48801i) q^{71} +(-2.20209 - 1.06047i) q^{72} +(-8.19102 - 3.94459i) q^{73} +(-0.287733 - 1.26064i) q^{74} -0.928470 q^{75} +(-1.45781 - 6.38710i) q^{76} +(1.43030 - 1.79354i) q^{77} +(1.01028 - 4.42634i) q^{78} +(-0.954127 + 4.18030i) q^{79} +(-1.68028 - 2.10701i) q^{80} +(-0.900969 - 0.433884i) q^{81} +(7.40582 - 3.56646i) q^{82} +(10.0888 - 12.6510i) q^{83} +(2.26525 + 2.84054i) q^{84} +(-6.93816 + 3.34124i) q^{85} +2.57431 q^{86} +(2.67536 + 4.67359i) q^{87} -2.34121 q^{88} +(-13.9137 + 6.70047i) q^{89} +(0.874288 + 1.09632i) q^{90} +(-9.75529 + 12.2327i) q^{91} +(-7.36451 + 3.54656i) q^{92} +(-2.46382 - 1.18651i) q^{93} +(1.40069 + 1.75641i) q^{94} +(-1.93900 + 8.49532i) q^{95} +(1.29428 - 5.67061i) q^{96} +(9.82817 - 12.3241i) q^{97} +(-0.195546 - 0.856741i) q^{98} -0.957887 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.626118 0.301523i 0.442732 0.213209i −0.199218 0.979955i \(-0.563840\pi\)
0.641950 + 0.766747i \(0.278126\pi\)
\(3\) 0.623490 + 0.781831i 0.359972 + 0.451391i
\(4\) −0.945872 + 1.18609i −0.472936 + 0.593043i
\(5\) 1.81798 0.875492i 0.813024 0.391532i 0.0193032 0.999814i \(-0.493855\pi\)
0.793721 + 0.608282i \(0.208141\pi\)
\(6\) 0.626118 + 0.301523i 0.255612 + 0.123096i
\(7\) −1.49319 1.87240i −0.564371 0.707699i 0.414988 0.909827i \(-0.363786\pi\)
−0.979359 + 0.202128i \(0.935214\pi\)
\(8\) −0.543873 + 2.38286i −0.192288 + 0.842469i
\(9\) −0.222521 + 0.974928i −0.0741736 + 0.324976i
\(10\) 0.874288 1.09632i 0.276474 0.346688i
\(11\) 0.213150 + 0.933871i 0.0642671 + 0.281573i 0.996843 0.0794022i \(-0.0253012\pi\)
−0.932576 + 0.360975i \(0.882444\pi\)
\(12\) −1.51706 −0.437938
\(13\) −1.45377 6.36940i −0.403205 1.76655i −0.614283 0.789086i \(-0.710555\pi\)
0.211078 0.977469i \(-0.432302\pi\)
\(14\) −1.49948 0.722111i −0.400753 0.192992i
\(15\) 1.81798 + 0.875492i 0.469400 + 0.226051i
\(16\) −0.297197 1.30211i −0.0742994 0.325527i
\(17\) −3.81642 −0.925617 −0.462808 0.886458i \(-0.653158\pi\)
−0.462808 + 0.886458i \(0.653158\pi\)
\(18\) 0.154638 + 0.677515i 0.0364486 + 0.159692i
\(19\) −2.69251 + 3.37631i −0.617705 + 0.774578i −0.988020 0.154329i \(-0.950678\pi\)
0.370315 + 0.928906i \(0.379250\pi\)
\(20\) −0.681165 + 2.98438i −0.152313 + 0.667328i
\(21\) 0.532912 2.33484i 0.116291 0.509504i
\(22\) 0.415040 + 0.520444i 0.0884868 + 0.110959i
\(23\) 4.85446 + 2.33778i 1.01222 + 0.487462i 0.865070 0.501652i \(-0.167274\pi\)
0.147155 + 0.989113i \(0.452988\pi\)
\(24\) −2.20209 + 1.06047i −0.449501 + 0.216468i
\(25\) −0.578892 + 0.725907i −0.115778 + 0.145181i
\(26\) −2.83075 3.54965i −0.555156 0.696144i
\(27\) −0.900969 + 0.433884i −0.173392 + 0.0835010i
\(28\) 3.63318 0.686607
\(29\) 5.32202 + 0.822256i 0.988274 + 0.152689i
\(30\) 1.40225 0.256015
\(31\) −2.46382 + 1.18651i −0.442515 + 0.213104i −0.641855 0.766826i \(-0.721835\pi\)
0.199339 + 0.979931i \(0.436120\pi\)
\(32\) −3.62649 4.54747i −0.641079 0.803887i
\(33\) −0.597233 + 0.748906i −0.103965 + 0.130368i
\(34\) −2.38953 + 1.15074i −0.409800 + 0.197349i
\(35\) −4.35384 2.09670i −0.735934 0.354407i
\(36\) −0.945872 1.18609i −0.157645 0.197681i
\(37\) 0.414041 1.81403i 0.0680679 0.298225i −0.929423 0.369015i \(-0.879695\pi\)
0.997491 + 0.0707903i \(0.0225521\pi\)
\(38\) −0.667799 + 2.92582i −0.108331 + 0.474631i
\(39\) 4.07339 5.10787i 0.652264 0.817913i
\(40\) 1.09743 + 4.80814i 0.173519 + 0.760234i
\(41\) 11.8282 1.84725 0.923624 0.383300i \(-0.125212\pi\)
0.923624 + 0.383300i \(0.125212\pi\)
\(42\) −0.370341 1.62257i −0.0571448 0.250368i
\(43\) 3.33752 + 1.60727i 0.508967 + 0.245106i 0.670700 0.741729i \(-0.265994\pi\)
−0.161733 + 0.986835i \(0.551708\pi\)
\(44\) −1.30926 0.630508i −0.197379 0.0950526i
\(45\) 0.449003 + 1.96721i 0.0669335 + 0.293255i
\(46\) 3.74436 0.552075
\(47\) 0.719344 + 3.15165i 0.104927 + 0.459716i 0.999907 + 0.0136100i \(0.00433232\pi\)
−0.894980 + 0.446106i \(0.852811\pi\)
\(48\) 0.832729 1.04421i 0.120194 0.150719i
\(49\) 0.281385 1.23283i 0.0401979 0.176119i
\(50\) −0.143577 + 0.629053i −0.0203049 + 0.0889615i
\(51\) −2.37950 2.98379i −0.333196 0.417815i
\(52\) 8.92974 + 4.30034i 1.23833 + 0.596350i
\(53\) −2.04315 + 0.983927i −0.280648 + 0.135153i −0.568913 0.822398i \(-0.692636\pi\)
0.288265 + 0.957551i \(0.406922\pi\)
\(54\) −0.433287 + 0.543325i −0.0589629 + 0.0739371i
\(55\) 1.20510 + 1.51115i 0.162495 + 0.203763i
\(56\) 5.27376 2.53971i 0.704736 0.339383i
\(57\) −4.31846 −0.571994
\(58\) 3.58014 1.08988i 0.470096 0.143108i
\(59\) −9.30726 −1.21170 −0.605851 0.795578i \(-0.707167\pi\)
−0.605851 + 0.795578i \(0.707167\pi\)
\(60\) −2.75798 + 1.32817i −0.356054 + 0.171467i
\(61\) 1.95684 + 2.45380i 0.250547 + 0.314176i 0.891161 0.453687i \(-0.149891\pi\)
−0.640614 + 0.767863i \(0.721320\pi\)
\(62\) −1.18488 + 1.48579i −0.150480 + 0.188696i
\(63\) 2.15772 1.03910i 0.271847 0.130914i
\(64\) −1.23512 0.594802i −0.154390 0.0743503i
\(65\) −8.21929 10.3067i −1.01948 1.27838i
\(66\) −0.148126 + 0.648983i −0.0182331 + 0.0798843i
\(67\) −2.69277 + 11.7978i −0.328975 + 1.44133i 0.492113 + 0.870531i \(0.336225\pi\)
−0.821088 + 0.570801i \(0.806633\pi\)
\(68\) 3.60984 4.52660i 0.437757 0.548930i
\(69\) 1.19895 + 5.25295i 0.144337 + 0.632381i
\(70\) −3.35822 −0.401384
\(71\) 1.02436 + 4.48801i 0.121569 + 0.532629i 0.998634 + 0.0522567i \(0.0166414\pi\)
−0.877065 + 0.480373i \(0.840501\pi\)
\(72\) −2.20209 1.06047i −0.259519 0.124978i
\(73\) −8.19102 3.94459i −0.958687 0.461679i −0.111963 0.993712i \(-0.535714\pi\)
−0.846723 + 0.532033i \(0.821428\pi\)
\(74\) −0.287733 1.26064i −0.0334483 0.146547i
\(75\) −0.928470 −0.107211
\(76\) −1.45781 6.38710i −0.167223 0.732651i
\(77\) 1.43030 1.79354i 0.162998 0.204393i
\(78\) 1.01028 4.42634i 0.114392 0.501185i
\(79\) −0.954127 + 4.18030i −0.107348 + 0.470321i 0.892468 + 0.451111i \(0.148972\pi\)
−0.999815 + 0.0192099i \(0.993885\pi\)
\(80\) −1.68028 2.10701i −0.187861 0.235571i
\(81\) −0.900969 0.433884i −0.100108 0.0482093i
\(82\) 7.40582 3.56646i 0.817836 0.393849i
\(83\) 10.0888 12.6510i 1.10739 1.38863i 0.194270 0.980948i \(-0.437766\pi\)
0.913124 0.407681i \(-0.133662\pi\)
\(84\) 2.26525 + 2.84054i 0.247159 + 0.309928i
\(85\) −6.93816 + 3.34124i −0.752549 + 0.362408i
\(86\) 2.57431 0.277595
\(87\) 2.67536 + 4.67359i 0.286829 + 0.501062i
\(88\) −2.34121 −0.249574
\(89\) −13.9137 + 6.70047i −1.47485 + 0.710248i −0.986706 0.162517i \(-0.948039\pi\)
−0.488140 + 0.872765i \(0.662325\pi\)
\(90\) 0.874288 + 1.09632i 0.0921581 + 0.115563i
\(91\) −9.75529 + 12.2327i −1.02263 + 1.28234i
\(92\) −7.36451 + 3.54656i −0.767803 + 0.369754i
\(93\) −2.46382 1.18651i −0.255486 0.123036i
\(94\) 1.40069 + 1.75641i 0.144470 + 0.181160i
\(95\) −1.93900 + 8.49532i −0.198937 + 0.871602i
\(96\) 1.29428 5.67061i 0.132097 0.578754i
\(97\) 9.82817 12.3241i 0.997899 1.25133i 0.0301150 0.999546i \(-0.490413\pi\)
0.967785 0.251780i \(-0.0810159\pi\)
\(98\) −0.195546 0.856741i −0.0197531 0.0865439i
\(99\) −0.957887 −0.0962713
\(100\) −0.313431 1.37323i −0.0313431 0.137323i
\(101\) −8.33981 4.01624i −0.829842 0.399631i −0.0297862 0.999556i \(-0.509483\pi\)
−0.800056 + 0.599925i \(0.795197\pi\)
\(102\) −2.38953 1.15074i −0.236598 0.113940i
\(103\) −2.35751 10.3289i −0.232292 1.01774i −0.947733 0.319065i \(-0.896631\pi\)
0.715440 0.698674i \(-0.246226\pi\)
\(104\) 15.9681 1.56580
\(105\) −1.07531 4.71124i −0.104940 0.459770i
\(106\) −0.982574 + 1.23211i −0.0954360 + 0.119673i
\(107\) 0.0279718 0.122553i 0.00270414 0.0118476i −0.973558 0.228441i \(-0.926637\pi\)
0.976262 + 0.216593i \(0.0694945\pi\)
\(108\) 0.337578 1.47902i 0.0324834 0.142319i
\(109\) −6.01455 7.54201i −0.576089 0.722393i 0.405351 0.914161i \(-0.367149\pi\)
−0.981440 + 0.191768i \(0.938578\pi\)
\(110\) 1.21018 + 0.582791i 0.115386 + 0.0555669i
\(111\) 1.67642 0.807320i 0.159119 0.0766274i
\(112\) −1.99429 + 2.50076i −0.188442 + 0.236299i
\(113\) 1.93810 + 2.43030i 0.182321 + 0.228623i 0.864590 0.502478i \(-0.167578\pi\)
−0.682269 + 0.731101i \(0.739007\pi\)
\(114\) −2.70386 + 1.30211i −0.253240 + 0.121954i
\(115\) 10.8720 1.01382
\(116\) −6.00921 + 5.53462i −0.557941 + 0.513877i
\(117\) 6.53321 0.603995
\(118\) −5.82744 + 2.80635i −0.536460 + 0.258345i
\(119\) 5.69862 + 7.14584i 0.522391 + 0.655058i
\(120\) −3.07492 + 3.85583i −0.280701 + 0.351988i
\(121\) 9.08398 4.37461i 0.825816 0.397692i
\(122\) 1.96509 + 0.946336i 0.177911 + 0.0856772i
\(123\) 7.37474 + 9.24763i 0.664958 + 0.833830i
\(124\) 0.923152 4.04459i 0.0829015 0.363215i
\(125\) −2.66190 + 11.6626i −0.238088 + 1.04313i
\(126\) 1.03767 1.30120i 0.0924432 0.115920i
\(127\) 0.872287 + 3.82174i 0.0774029 + 0.339124i 0.998771 0.0495674i \(-0.0157843\pi\)
−0.921368 + 0.388692i \(0.872927\pi\)
\(128\) 10.6802 0.944005
\(129\) 0.824300 + 3.61149i 0.0725755 + 0.317974i
\(130\) −8.25394 3.97489i −0.723918 0.348621i
\(131\) 14.8614 + 7.15689i 1.29845 + 0.625300i 0.950065 0.312052i \(-0.101016\pi\)
0.348384 + 0.937352i \(0.386730\pi\)
\(132\) −0.323361 1.41674i −0.0281450 0.123311i
\(133\) 10.3422 0.896782
\(134\) 1.87131 + 8.19876i 0.161657 + 0.708265i
\(135\) −1.25808 + 1.57758i −0.108278 + 0.135777i
\(136\) 2.07564 9.09399i 0.177985 0.779803i
\(137\) 0.677588 2.96871i 0.0578902 0.253634i −0.937700 0.347447i \(-0.887049\pi\)
0.995590 + 0.0938135i \(0.0299057\pi\)
\(138\) 2.33457 + 2.92746i 0.198732 + 0.249202i
\(139\) −10.1634 4.89444i −0.862050 0.415141i −0.0500136 0.998749i \(-0.515926\pi\)
−0.812036 + 0.583607i \(0.801641\pi\)
\(140\) 6.60505 3.18082i 0.558228 0.268829i
\(141\) −2.01556 + 2.52743i −0.169741 + 0.212848i
\(142\) 1.99461 + 2.50116i 0.167384 + 0.209893i
\(143\) 5.63833 2.71528i 0.471501 0.227063i
\(144\) 1.33559 0.111299
\(145\) 10.3952 3.16454i 0.863274 0.262801i
\(146\) −6.31793 −0.522875
\(147\) 1.13931 0.548661i 0.0939684 0.0452528i
\(148\) 1.75997 + 2.20693i 0.144668 + 0.181408i
\(149\) 3.05371 3.82923i 0.250170 0.313703i −0.640851 0.767665i \(-0.721418\pi\)
0.891021 + 0.453962i \(0.149990\pi\)
\(150\) −0.581332 + 0.279955i −0.0474656 + 0.0228582i
\(151\) −15.3405 7.38759i −1.24839 0.601194i −0.311312 0.950308i \(-0.600768\pi\)
−0.937080 + 0.349114i \(0.886483\pi\)
\(152\) −6.58088 8.25217i −0.533780 0.669339i
\(153\) 0.849232 3.72073i 0.0686564 0.300803i
\(154\) 0.354745 1.55424i 0.0285861 0.125244i
\(155\) −3.44039 + 4.31411i −0.276339 + 0.346518i
\(156\) 2.20546 + 9.66277i 0.176578 + 0.773641i
\(157\) 20.3897 1.62728 0.813639 0.581371i \(-0.197483\pi\)
0.813639 + 0.581371i \(0.197483\pi\)
\(158\) 0.663060 + 2.90505i 0.0527502 + 0.231114i
\(159\) −2.04315 0.983927i −0.162032 0.0780305i
\(160\) −10.5742 5.09224i −0.835960 0.402577i
\(161\) −2.87135 12.5802i −0.226294 0.991459i
\(162\) −0.694939 −0.0545995
\(163\) −1.69789 7.43895i −0.132989 0.582664i −0.996876 0.0789783i \(-0.974834\pi\)
0.863887 0.503685i \(-0.168023\pi\)
\(164\) −11.1879 + 14.0292i −0.873630 + 1.09550i
\(165\) −0.430095 + 1.88437i −0.0334828 + 0.146698i
\(166\) 2.50224 10.9630i 0.194212 0.850897i
\(167\) −13.5489 16.9898i −1.04845 1.31471i −0.947477 0.319824i \(-0.896376\pi\)
−0.100972 0.994889i \(-0.532195\pi\)
\(168\) 5.27376 + 2.53971i 0.406879 + 0.195943i
\(169\) −26.7433 + 12.8789i −2.05717 + 0.990682i
\(170\) −3.33665 + 4.18402i −0.255909 + 0.320900i
\(171\) −2.69251 3.37631i −0.205902 0.258193i
\(172\) −5.06322 + 2.43832i −0.386067 + 0.185920i
\(173\) 4.01358 0.305147 0.152573 0.988292i \(-0.451244\pi\)
0.152573 + 0.988292i \(0.451244\pi\)
\(174\) 3.08428 + 2.11954i 0.233819 + 0.160682i
\(175\) 2.22358 0.168087
\(176\) 1.15265 0.555088i 0.0868844 0.0418413i
\(177\) −5.80298 7.27671i −0.436179 0.546951i
\(178\) −6.69126 + 8.39057i −0.501531 + 0.628900i
\(179\) 3.48470 1.67814i 0.260459 0.125430i −0.299098 0.954222i \(-0.596686\pi\)
0.559557 + 0.828792i \(0.310971\pi\)
\(180\) −2.75798 1.32817i −0.205568 0.0989963i
\(181\) 10.3685 + 13.0017i 0.770686 + 0.966410i 0.999976 0.00694853i \(-0.00221180\pi\)
−0.229290 + 0.973358i \(0.573640\pi\)
\(182\) −2.41951 + 10.6006i −0.179346 + 0.785767i
\(183\) −0.698387 + 3.05983i −0.0516263 + 0.226189i
\(184\) −8.21082 + 10.2960i −0.605310 + 0.759034i
\(185\) −0.835453 3.66036i −0.0614237 0.269115i
\(186\) −1.90040 −0.139344
\(187\) −0.813469 3.56404i −0.0594867 0.260628i
\(188\) −4.41854 2.12785i −0.322255 0.155190i
\(189\) 2.15772 + 1.03910i 0.156951 + 0.0755835i
\(190\) 1.34749 + 5.90373i 0.0977570 + 0.428301i
\(191\) −2.64112 −0.191105 −0.0955525 0.995424i \(-0.530462\pi\)
−0.0955525 + 0.995424i \(0.530462\pi\)
\(192\) −0.305049 1.33651i −0.0220150 0.0964542i
\(193\) 4.07831 5.11404i 0.293563 0.368117i −0.613075 0.790024i \(-0.710068\pi\)
0.906639 + 0.421907i \(0.138639\pi\)
\(194\) 2.43759 10.6798i 0.175009 0.766763i
\(195\) 2.93343 12.8522i 0.210067 0.920365i
\(196\) 1.19609 + 1.49985i 0.0854348 + 0.107132i
\(197\) 8.85143 + 4.26262i 0.630638 + 0.303699i 0.721763 0.692140i \(-0.243332\pi\)
−0.0911250 + 0.995839i \(0.529046\pi\)
\(198\) −0.599750 + 0.288825i −0.0426224 + 0.0205259i
\(199\) 0.327153 0.410236i 0.0231912 0.0290809i −0.770101 0.637922i \(-0.779794\pi\)
0.793292 + 0.608842i \(0.208365\pi\)
\(200\) −1.41489 1.77422i −0.100048 0.125456i
\(201\) −10.9028 + 5.25052i −0.769026 + 0.370343i
\(202\) −6.43269 −0.452603
\(203\) −6.40717 11.1927i −0.449695 0.785574i
\(204\) 5.78973 0.405362
\(205\) 21.5033 10.3555i 1.50186 0.723257i
\(206\) −4.59048 5.75628i −0.319834 0.401059i
\(207\) −3.35939 + 4.21254i −0.233494 + 0.292792i
\(208\) −7.86159 + 3.78594i −0.545103 + 0.262508i
\(209\) −3.72694 1.79480i −0.257798 0.124149i
\(210\) −2.09382 2.62556i −0.144487 0.181181i
\(211\) −3.68219 + 16.1327i −0.253493 + 1.11062i 0.674573 + 0.738208i \(0.264328\pi\)
−0.928066 + 0.372416i \(0.878529\pi\)
\(212\) 0.765532 3.35401i 0.0525770 0.230355i
\(213\) −2.87019 + 3.59911i −0.196662 + 0.246607i
\(214\) −0.0194387 0.0851665i −0.00132880 0.00582186i
\(215\) 7.47469 0.509769
\(216\) −0.543873 2.38286i −0.0370058 0.162133i
\(217\) 5.90056 + 2.84156i 0.400556 + 0.192898i
\(218\) −6.03990 2.90866i −0.409074 0.197000i
\(219\) −2.02302 8.86341i −0.136703 0.598934i
\(220\) −2.93222 −0.197690
\(221\) 5.54821 + 24.3083i 0.373213 + 1.63515i
\(222\) 0.806210 1.01096i 0.0541093 0.0678509i
\(223\) 2.61351 11.4505i 0.175014 0.766785i −0.808872 0.587985i \(-0.799921\pi\)
0.983885 0.178800i \(-0.0572215\pi\)
\(224\) −3.09965 + 13.5804i −0.207104 + 0.907381i
\(225\) −0.578892 0.725907i −0.0385928 0.0483938i
\(226\) 1.94627 + 0.937273i 0.129464 + 0.0623465i
\(227\) 19.1970 9.24479i 1.27415 0.613598i 0.330270 0.943887i \(-0.392860\pi\)
0.943880 + 0.330288i \(0.107146\pi\)
\(228\) 4.08471 5.12206i 0.270516 0.339217i
\(229\) 0.114294 + 0.143320i 0.00755275 + 0.00947084i 0.785594 0.618743i \(-0.212358\pi\)
−0.778041 + 0.628214i \(0.783786\pi\)
\(230\) 6.80716 3.27816i 0.448851 0.216155i
\(231\) 2.29403 0.150936
\(232\) −4.85382 + 12.2344i −0.318669 + 0.803230i
\(233\) −23.8810 −1.56449 −0.782247 0.622969i \(-0.785926\pi\)
−0.782247 + 0.622969i \(0.785926\pi\)
\(234\) 4.09056 1.96991i 0.267408 0.128777i
\(235\) 4.06700 + 5.09985i 0.265302 + 0.332678i
\(236\) 8.80347 11.0392i 0.573057 0.718591i
\(237\) −3.86318 + 1.86041i −0.250941 + 0.120847i
\(238\) 5.72264 + 2.75588i 0.370943 + 0.178637i
\(239\) −5.24316 6.57471i −0.339152 0.425283i 0.582783 0.812628i \(-0.301964\pi\)
−0.921935 + 0.387345i \(0.873392\pi\)
\(240\) 0.599686 2.62740i 0.0387096 0.169598i
\(241\) 0.119797 0.524865i 0.00771681 0.0338095i −0.970923 0.239392i \(-0.923052\pi\)
0.978640 + 0.205583i \(0.0659090\pi\)
\(242\) 4.36860 5.47805i 0.280824 0.352142i
\(243\) −0.222521 0.974928i −0.0142747 0.0625417i
\(244\) −4.76133 −0.304813
\(245\) −0.567780 2.48761i −0.0362742 0.158927i
\(246\) 7.40582 + 3.56646i 0.472178 + 0.227389i
\(247\) 25.4194 + 12.2413i 1.61740 + 0.778896i
\(248\) −1.48729 6.51625i −0.0944432 0.413783i
\(249\) 16.1813 1.02545
\(250\) 1.84986 + 8.10476i 0.116995 + 0.512590i
\(251\) −1.06622 + 1.33699i −0.0672989 + 0.0843902i −0.814341 0.580386i \(-0.802902\pi\)
0.747043 + 0.664776i \(0.231473\pi\)
\(252\) −0.808459 + 3.54209i −0.0509281 + 0.223131i
\(253\) −1.14846 + 5.03173i −0.0722031 + 0.316342i
\(254\) 1.69849 + 2.12984i 0.106573 + 0.133638i
\(255\) −6.93816 3.34124i −0.434484 0.209237i
\(256\) 9.15730 4.40992i 0.572331 0.275620i
\(257\) −11.2754 + 14.1389i −0.703339 + 0.881959i −0.997268 0.0738684i \(-0.976466\pi\)
0.293929 + 0.955827i \(0.405037\pi\)
\(258\) 1.60506 + 2.01268i 0.0999264 + 0.125304i
\(259\) −4.01482 + 1.93344i −0.249469 + 0.120138i
\(260\) 19.9990 1.24028
\(261\) −1.98590 + 5.00562i −0.122924 + 0.309840i
\(262\) 11.4630 0.708185
\(263\) −0.869873 + 0.418909i −0.0536387 + 0.0258310i −0.460511 0.887654i \(-0.652334\pi\)
0.406872 + 0.913485i \(0.366619\pi\)
\(264\) −1.45972 1.83043i −0.0898396 0.112655i
\(265\) −2.85297 + 3.57752i −0.175257 + 0.219765i
\(266\) 6.47544 3.11841i 0.397035 0.191202i
\(267\) −13.9137 6.70047i −0.851503 0.410062i
\(268\) −11.4462 14.3531i −0.699188 0.876754i
\(269\) −2.16024 + 9.46463i −0.131712 + 0.577069i 0.865397 + 0.501087i \(0.167066\pi\)
−0.997109 + 0.0759819i \(0.975791\pi\)
\(270\) −0.312030 + 1.36709i −0.0189895 + 0.0831986i
\(271\) 10.5687 13.2527i 0.642002 0.805045i −0.349250 0.937030i \(-0.613564\pi\)
0.991252 + 0.131985i \(0.0421350\pi\)
\(272\) 1.13423 + 4.96938i 0.0687727 + 0.301313i
\(273\) −15.6463 −0.946955
\(274\) −0.470882 2.06307i −0.0284470 0.124635i
\(275\) −0.801294 0.385883i −0.0483199 0.0232696i
\(276\) −7.36451 3.54656i −0.443291 0.213478i
\(277\) 4.90011 + 21.4688i 0.294419 + 1.28994i 0.878306 + 0.478100i \(0.158674\pi\)
−0.583886 + 0.811835i \(0.698469\pi\)
\(278\) −7.83928 −0.470169
\(279\) −0.608513 2.66607i −0.0364307 0.159614i
\(280\) 7.36408 9.23427i 0.440088 0.551853i
\(281\) −2.38729 + 10.4594i −0.142414 + 0.623957i 0.852456 + 0.522798i \(0.175112\pi\)
−0.994870 + 0.101158i \(0.967745\pi\)
\(282\) −0.499900 + 2.19020i −0.0297686 + 0.130425i
\(283\) 9.48869 + 11.8984i 0.564044 + 0.707289i 0.979300 0.202416i \(-0.0648793\pi\)
−0.415256 + 0.909705i \(0.636308\pi\)
\(284\) −6.29208 3.03011i −0.373366 0.179804i
\(285\) −7.85086 + 3.78077i −0.465045 + 0.223954i
\(286\) 2.71154 3.40017i 0.160337 0.201056i
\(287\) −17.6616 22.1470i −1.04253 1.30730i
\(288\) 5.24043 2.52366i 0.308795 0.148708i
\(289\) −2.43497 −0.143234
\(290\) 5.55444 5.11576i 0.326168 0.300408i
\(291\) 15.7632 0.924053
\(292\) 12.4263 5.98418i 0.727193 0.350198i
\(293\) 14.4563 + 18.1276i 0.844547 + 1.05903i 0.997491 + 0.0707934i \(0.0225531\pi\)
−0.152944 + 0.988235i \(0.548875\pi\)
\(294\) 0.547907 0.687053i 0.0319546 0.0400697i
\(295\) −16.9204 + 8.14843i −0.985143 + 0.474420i
\(296\) 4.09740 + 1.97320i 0.238157 + 0.114690i
\(297\) −0.597233 0.748906i −0.0346550 0.0434559i
\(298\) 0.757384 3.31832i 0.0438741 0.192225i
\(299\) 7.83300 34.3186i 0.452994 1.98470i
\(300\) 0.878214 1.10125i 0.0507037 0.0635804i
\(301\) −1.97410 8.64910i −0.113785 0.498526i
\(302\) −11.8325 −0.680883
\(303\) −2.05976 9.02441i −0.118330 0.518439i
\(304\) 5.19652 + 2.50251i 0.298041 + 0.143529i
\(305\) 5.70577 + 2.74775i 0.326711 + 0.157336i
\(306\) −0.590164 2.58568i −0.0337374 0.147813i
\(307\) −18.8555 −1.07614 −0.538070 0.842900i \(-0.680846\pi\)
−0.538070 + 0.842900i \(0.680846\pi\)
\(308\) 0.774413 + 3.39292i 0.0441262 + 0.193330i
\(309\) 6.60560 8.28316i 0.375779 0.471212i
\(310\) −0.853287 + 3.73850i −0.0484635 + 0.212332i
\(311\) −6.04072 + 26.4661i −0.342538 + 1.50076i 0.451160 + 0.892443i \(0.351010\pi\)
−0.793698 + 0.608312i \(0.791847\pi\)
\(312\) 9.95593 + 12.4843i 0.563644 + 0.706787i
\(313\) −6.67788 3.21590i −0.377456 0.181773i 0.235530 0.971867i \(-0.424317\pi\)
−0.612986 + 0.790094i \(0.710032\pi\)
\(314\) 12.7664 6.14796i 0.720448 0.346950i
\(315\) 3.01295 3.77812i 0.169761 0.212873i
\(316\) −4.05572 5.08571i −0.228152 0.286093i
\(317\) −2.01091 + 0.968401i −0.112944 + 0.0543908i −0.489502 0.872002i \(-0.662822\pi\)
0.376559 + 0.926393i \(0.377107\pi\)
\(318\) −1.57593 −0.0883736
\(319\) 0.366507 + 5.14534i 0.0205205 + 0.288084i
\(320\) −2.76617 −0.154633
\(321\) 0.113256 0.0545410i 0.00632131 0.00304418i
\(322\) −5.59102 7.01092i −0.311575 0.390703i
\(323\) 10.2758 12.8854i 0.571758 0.716962i
\(324\) 1.36682 0.658228i 0.0759347 0.0365682i
\(325\) 5.46518 + 2.63189i 0.303153 + 0.145991i
\(326\) −3.30609 4.14571i −0.183108 0.229610i
\(327\) 2.14657 9.40473i 0.118705 0.520083i
\(328\) −6.43301 + 28.1849i −0.355204 + 1.55625i
\(329\) 4.82702 6.05290i 0.266122 0.333707i
\(330\) 0.298889 + 1.30952i 0.0164533 + 0.0720867i
\(331\) −23.2235 −1.27648 −0.638241 0.769837i \(-0.720337\pi\)
−0.638241 + 0.769837i \(0.720337\pi\)
\(332\) 5.46243 + 23.9325i 0.299790 + 1.31346i
\(333\) 1.67642 + 0.807320i 0.0918671 + 0.0442409i
\(334\) −13.6061 6.55233i −0.744491 0.358528i
\(335\) 5.43349 + 23.8057i 0.296863 + 1.30064i
\(336\) −3.19859 −0.174497
\(337\) −6.02416 26.3936i −0.328157 1.43775i −0.822641 0.568562i \(-0.807500\pi\)
0.494484 0.869187i \(-0.335357\pi\)
\(338\) −12.8612 + 16.1274i −0.699555 + 0.877214i
\(339\) −0.691699 + 3.03053i −0.0375679 + 0.164596i
\(340\) 2.59961 11.3896i 0.140984 0.617690i
\(341\) −1.63321 2.04798i −0.0884435 0.110905i
\(342\) −2.70386 1.30211i −0.146208 0.0704102i
\(343\) −17.8325 + 8.58769i −0.962865 + 0.463691i
\(344\) −5.64508 + 7.07870i −0.304362 + 0.381658i
\(345\) 6.77859 + 8.50008i 0.364947 + 0.457629i
\(346\) 2.51297 1.21018i 0.135098 0.0650599i
\(347\) −33.0378 −1.77356 −0.886780 0.462191i \(-0.847063\pi\)
−0.886780 + 0.462191i \(0.847063\pi\)
\(348\) −8.07383 1.24741i −0.432802 0.0668683i
\(349\) 6.36434 0.340675 0.170338 0.985386i \(-0.445514\pi\)
0.170338 + 0.985386i \(0.445514\pi\)
\(350\) 1.39222 0.670459i 0.0744174 0.0358375i
\(351\) 4.07339 + 5.10787i 0.217421 + 0.272638i
\(352\) 3.47377 4.35597i 0.185152 0.232174i
\(353\) −15.8323 + 7.62444i −0.842669 + 0.405808i −0.804851 0.593477i \(-0.797755\pi\)
−0.0378175 + 0.999285i \(0.512041\pi\)
\(354\) −5.82744 2.80635i −0.309725 0.149156i
\(355\) 5.79148 + 7.26229i 0.307380 + 0.385442i
\(356\) 5.21322 22.8406i 0.276300 1.21055i
\(357\) −2.03381 + 8.91071i −0.107641 + 0.471605i
\(358\) 1.67584 2.10143i 0.0885707 0.111064i
\(359\) −1.74009 7.62384i −0.0918385 0.402371i 0.908025 0.418917i \(-0.137590\pi\)
−0.999863 + 0.0165460i \(0.994733\pi\)
\(360\) −4.93180 −0.259928
\(361\) 0.0780901 + 0.342135i 0.00411000 + 0.0180071i
\(362\) 10.4122 + 5.01426i 0.547254 + 0.263544i
\(363\) 9.08398 + 4.37461i 0.476785 + 0.229608i
\(364\) −5.28183 23.1412i −0.276843 1.21293i
\(365\) −18.3446 −0.960198
\(366\) 0.485336 + 2.12640i 0.0253689 + 0.111149i
\(367\) 18.1847 22.8028i 0.949231 1.19030i −0.0323932 0.999475i \(-0.510313\pi\)
0.981624 0.190823i \(-0.0611157\pi\)
\(368\) 1.60131 7.01581i 0.0834742 0.365724i
\(369\) −2.63201 + 11.5316i −0.137017 + 0.600311i
\(370\) −1.62677 2.03991i −0.0845719 0.106050i
\(371\) 4.89310 + 2.35639i 0.254037 + 0.122338i
\(372\) 3.73776 1.80001i 0.193794 0.0933263i
\(373\) −3.65125 + 4.57852i −0.189054 + 0.237067i −0.867321 0.497749i \(-0.834160\pi\)
0.678267 + 0.734816i \(0.262731\pi\)
\(374\) −1.58397 1.98623i −0.0819049 0.102705i
\(375\) −10.7778 + 5.19033i −0.556565 + 0.268027i
\(376\) −7.90118 −0.407472
\(377\) −2.49974 35.0935i −0.128743 1.80741i
\(378\) 1.66430 0.0856022
\(379\) 2.08807 1.00556i 0.107257 0.0516523i −0.379486 0.925198i \(-0.623899\pi\)
0.486743 + 0.873545i \(0.338185\pi\)
\(380\) −8.24213 10.3353i −0.422812 0.530190i
\(381\) −2.44409 + 3.06480i −0.125215 + 0.157014i
\(382\) −1.65366 + 0.796358i −0.0846084 + 0.0407452i
\(383\) 16.4369 + 7.91562i 0.839889 + 0.404469i 0.803815 0.594880i \(-0.202800\pi\)
0.0360743 + 0.999349i \(0.488515\pi\)
\(384\) 6.65899 + 8.35011i 0.339815 + 0.426115i
\(385\) 1.03003 4.51284i 0.0524950 0.229996i
\(386\) 1.01151 4.43170i 0.0514843 0.225568i
\(387\) −2.30964 + 2.89619i −0.117405 + 0.147222i
\(388\) 5.32129 + 23.3141i 0.270148 + 1.18359i
\(389\) 29.6576 1.50370 0.751850 0.659335i \(-0.229162\pi\)
0.751850 + 0.659335i \(0.229162\pi\)
\(390\) −2.03855 8.93149i −0.103226 0.452264i
\(391\) −18.5266 8.92195i −0.936932 0.451203i
\(392\) 2.78463 + 1.34100i 0.140645 + 0.0677310i
\(393\) 3.67047 + 16.0814i 0.185151 + 0.811198i
\(394\) 6.82732 0.343955
\(395\) 1.92524 + 8.43503i 0.0968694 + 0.424413i
\(396\) 0.906038 1.13614i 0.0455301 0.0570930i
\(397\) −0.452224 + 1.98132i −0.0226965 + 0.0994398i −0.985008 0.172511i \(-0.944812\pi\)
0.962311 + 0.271951i \(0.0876690\pi\)
\(398\) 0.0811406 0.355500i 0.00406721 0.0178196i
\(399\) 6.44826 + 8.08586i 0.322817 + 0.404799i
\(400\) 1.11725 + 0.538041i 0.0558627 + 0.0269021i
\(401\) 0.128477 0.0618714i 0.00641585 0.00308971i −0.430673 0.902508i \(-0.641724\pi\)
0.437089 + 0.899418i \(0.356010\pi\)
\(402\) −5.24330 + 6.57489i −0.261512 + 0.327926i
\(403\) 11.1392 + 13.9681i 0.554884 + 0.695803i
\(404\) 12.6520 6.09288i 0.629460 0.303132i
\(405\) −2.01780 −0.100265
\(406\) −7.38650 5.07605i −0.366586 0.251920i
\(407\) 1.78232 0.0883465
\(408\) 8.40411 4.04721i 0.416065 0.200367i
\(409\) −12.9332 16.2178i −0.639507 0.801917i 0.351434 0.936213i \(-0.385694\pi\)
−0.990941 + 0.134296i \(0.957123\pi\)
\(410\) 10.3412 12.9675i 0.510716 0.640418i
\(411\) 2.74350 1.32120i 0.135327 0.0651699i
\(412\) 14.4809 + 6.97363i 0.713422 + 0.343566i
\(413\) 13.8975 + 17.4269i 0.683849 + 0.857520i
\(414\) −0.833198 + 3.65048i −0.0409494 + 0.179411i
\(415\) 7.26544 31.8320i 0.356646 1.56257i
\(416\) −23.6926 + 29.7096i −1.16163 + 1.45663i
\(417\) −2.51016 10.9977i −0.122923 0.538560i
\(418\) −2.87468 −0.140605
\(419\) −1.45786 6.38728i −0.0712209 0.312039i 0.926752 0.375673i \(-0.122588\pi\)
−0.997973 + 0.0636334i \(0.979731\pi\)
\(420\) 6.60505 + 3.18082i 0.322293 + 0.155208i
\(421\) −7.77401 3.74377i −0.378882 0.182460i 0.234743 0.972057i \(-0.424575\pi\)
−0.613625 + 0.789597i \(0.710289\pi\)
\(422\) 2.55890 + 11.2113i 0.124565 + 0.545756i
\(423\) −3.23270 −0.157179
\(424\) −1.23335 5.40366i −0.0598968 0.262425i
\(425\) 2.20929 2.77036i 0.107166 0.134382i
\(426\) −0.711867 + 3.11889i −0.0344901 + 0.151111i
\(427\) 1.67256 7.32795i 0.0809406 0.354624i
\(428\) 0.118900 + 0.149096i 0.00574725 + 0.00720683i
\(429\) 5.63833 + 2.71528i 0.272221 + 0.131095i
\(430\) 4.68004 2.25379i 0.225691 0.108687i
\(431\) 19.6857 24.6850i 0.948225 1.18904i −0.0336362 0.999434i \(-0.510709\pi\)
0.981861 0.189602i \(-0.0607198\pi\)
\(432\) 0.832729 + 1.04421i 0.0400647 + 0.0502395i
\(433\) 2.83832 1.36686i 0.136401 0.0656873i −0.364438 0.931228i \(-0.618739\pi\)
0.500839 + 0.865540i \(0.333025\pi\)
\(434\) 4.55124 0.218467
\(435\) 8.95544 + 6.15423i 0.429380 + 0.295073i
\(436\) 14.6345 0.700863
\(437\) −20.9638 + 10.0956i −1.00283 + 0.482939i
\(438\) −3.93916 4.93956i −0.188221 0.236021i
\(439\) 14.2209 17.8324i 0.678727 0.851096i −0.316510 0.948589i \(-0.602511\pi\)
0.995236 + 0.0974931i \(0.0310824\pi\)
\(440\) −4.25627 + 2.04971i −0.202910 + 0.0977161i
\(441\) 1.13931 + 0.548661i 0.0542527 + 0.0261267i
\(442\) 10.8033 + 13.5469i 0.513862 + 0.644363i
\(443\) −4.25594 + 18.6465i −0.202206 + 0.885922i 0.767384 + 0.641188i \(0.221558\pi\)
−0.969590 + 0.244735i \(0.921299\pi\)
\(444\) −0.628125 + 2.75200i −0.0298095 + 0.130604i
\(445\) −19.4285 + 24.3626i −0.921001 + 1.15490i
\(446\) −1.81623 7.95742i −0.0860010 0.376795i
\(447\) 4.89777 0.231657
\(448\) 0.730558 + 3.20078i 0.0345156 + 0.151223i
\(449\) 35.8493 + 17.2641i 1.69184 + 0.814745i 0.995259 + 0.0972626i \(0.0310087\pi\)
0.696577 + 0.717482i \(0.254706\pi\)
\(450\) −0.581332 0.279955i −0.0274043 0.0131972i
\(451\) 2.52117 + 11.0460i 0.118717 + 0.520134i
\(452\) −4.71573 −0.221809
\(453\) −3.78879 16.5998i −0.178013 0.779925i
\(454\) 9.23208 11.5767i 0.433283 0.543320i
\(455\) −7.02523 + 30.7795i −0.329348 + 1.44297i
\(456\) 2.34869 10.2903i 0.109987 0.481887i
\(457\) 18.2165 + 22.8427i 0.852130 + 1.06854i 0.996869 + 0.0790675i \(0.0251943\pi\)
−0.144739 + 0.989470i \(0.546234\pi\)
\(458\) 0.114776 + 0.0552730i 0.00536311 + 0.00258274i
\(459\) 3.43847 1.65588i 0.160494 0.0772899i
\(460\) −10.2835 + 12.8951i −0.479472 + 0.601239i
\(461\) 0.612669 + 0.768263i 0.0285348 + 0.0357816i 0.795894 0.605436i \(-0.207001\pi\)
−0.767359 + 0.641217i \(0.778430\pi\)
\(462\) 1.43633 0.691701i 0.0668242 0.0321808i
\(463\) −10.1420 −0.471340 −0.235670 0.971833i \(-0.575728\pi\)
−0.235670 + 0.971833i \(0.575728\pi\)
\(464\) −0.511025 7.17421i −0.0237238 0.333054i
\(465\) −5.51795 −0.255889
\(466\) −14.9523 + 7.20065i −0.692652 + 0.333563i
\(467\) 11.2090 + 14.0557i 0.518692 + 0.650419i 0.970331 0.241782i \(-0.0777319\pi\)
−0.451639 + 0.892201i \(0.649160\pi\)
\(468\) −6.17957 + 7.74894i −0.285651 + 0.358195i
\(469\) 26.1110 12.5744i 1.20569 0.580631i
\(470\) 4.08414 + 1.96682i 0.188387 + 0.0907226i
\(471\) 12.7128 + 15.9413i 0.585774 + 0.734538i
\(472\) 5.06196 22.1779i 0.232996 1.02082i
\(473\) −0.789586 + 3.45940i −0.0363052 + 0.159063i
\(474\) −1.85785 + 2.32967i −0.0853340 + 0.107005i
\(475\) −0.892211 3.90903i −0.0409374 0.179359i
\(476\) −13.8657 −0.635535
\(477\) −0.504615 2.21086i −0.0231048 0.101229i
\(478\) −5.26526 2.53562i −0.240827 0.115976i
\(479\) −18.5533 8.93481i −0.847723 0.408242i −0.0409911 0.999160i \(-0.513052\pi\)
−0.806732 + 0.590918i \(0.798766\pi\)
\(480\) −2.61160 11.4422i −0.119203 0.522261i
\(481\) −12.1562 −0.554276
\(482\) −0.0832516 0.364749i −0.00379201 0.0166139i
\(483\) 8.04534 10.0885i 0.366076 0.459045i
\(484\) −3.40361 + 14.9122i −0.154710 + 0.677827i
\(485\) 7.07771 31.0095i 0.321382 1.40807i
\(486\) −0.433287 0.543325i −0.0196543 0.0246457i
\(487\) −14.4078 6.93844i −0.652880 0.314411i 0.0779626 0.996956i \(-0.475159\pi\)
−0.730843 + 0.682546i \(0.760873\pi\)
\(488\) −6.91133 + 3.32832i −0.312861 + 0.150666i
\(489\) 4.75739 5.96558i 0.215137 0.269773i
\(490\) −1.10557 1.38634i −0.0499444 0.0626284i
\(491\) 9.19032 4.42582i 0.414753 0.199735i −0.214858 0.976645i \(-0.568929\pi\)
0.629611 + 0.776911i \(0.283214\pi\)
\(492\) −17.9440 −0.808979
\(493\) −20.3110 3.13807i −0.914763 0.141332i
\(494\) 19.6066 0.882141
\(495\) −1.74142 + 0.838622i −0.0782709 + 0.0376933i
\(496\) 2.27721 + 2.85553i 0.102250 + 0.128217i
\(497\) 6.87378 8.61944i 0.308331 0.386635i
\(498\) 10.1314 4.87901i 0.453998 0.218634i
\(499\) 5.54276 + 2.66925i 0.248128 + 0.119492i 0.553815 0.832640i \(-0.313172\pi\)
−0.305687 + 0.952132i \(0.598886\pi\)
\(500\) −11.3150 14.1885i −0.506021 0.634530i
\(501\) 4.83556 21.1860i 0.216037 0.946520i
\(502\) −0.264443 + 1.15860i −0.0118027 + 0.0517110i
\(503\) −12.6166 + 15.8207i −0.562545 + 0.705410i −0.979026 0.203735i \(-0.934692\pi\)
0.416481 + 0.909145i \(0.363263\pi\)
\(504\) 1.30251 + 5.70667i 0.0580185 + 0.254195i
\(505\) −18.6778 −0.831150
\(506\) 0.798110 + 3.49675i 0.0354803 + 0.155449i
\(507\) −26.7433 12.8789i −1.18771 0.571971i
\(508\) −5.35798 2.58027i −0.237722 0.114481i
\(509\) 0.903261 + 3.95744i 0.0400363 + 0.175411i 0.990993 0.133913i \(-0.0427544\pi\)
−0.950957 + 0.309324i \(0.899897\pi\)
\(510\) −5.35157 −0.236971
\(511\) 4.84489 + 21.2268i 0.214325 + 0.939020i
\(512\) −8.91413 + 11.1780i −0.393952 + 0.494001i
\(513\) 0.960947 4.21018i 0.0424268 0.185884i
\(514\) −2.79653 + 12.2524i −0.123350 + 0.540429i
\(515\) −13.3288 16.7138i −0.587337 0.736497i
\(516\) −5.06322 2.43832i −0.222896 0.107341i
\(517\) −2.78991 + 1.34355i −0.122700 + 0.0590892i
\(518\) −1.93078 + 2.42112i −0.0848335 + 0.106378i
\(519\) 2.50243 + 3.13794i 0.109844 + 0.137740i
\(520\) 29.0296 13.9799i 1.27303 0.613060i
\(521\) 10.9066 0.477828 0.238914 0.971041i \(-0.423209\pi\)
0.238914 + 0.971041i \(0.423209\pi\)
\(522\) 0.265898 + 3.73290i 0.0116380 + 0.163385i
\(523\) 3.65147 0.159668 0.0798339 0.996808i \(-0.474561\pi\)
0.0798339 + 0.996808i \(0.474561\pi\)
\(524\) −22.5457 + 10.8574i −0.984913 + 0.474309i
\(525\) 1.38638 + 1.73846i 0.0605065 + 0.0758728i
\(526\) −0.418333 + 0.524573i −0.0182402 + 0.0228725i
\(527\) 9.40296 4.52823i 0.409600 0.197253i
\(528\) 1.15265 + 0.555088i 0.0501627 + 0.0241571i
\(529\) 3.76026 + 4.71522i 0.163490 + 0.205010i
\(530\) −0.707596 + 3.10018i −0.0307360 + 0.134663i
\(531\) 2.07106 9.07391i 0.0898764 0.393774i
\(532\) −9.78239 + 12.2667i −0.424121 + 0.531830i
\(533\) −17.1955 75.3383i −0.744819 3.26326i
\(534\) −10.7319 −0.464417
\(535\) −0.0564416 0.247287i −0.00244018 0.0106911i
\(536\) −26.6480 12.8330i −1.15102 0.554302i
\(537\) 3.48470 + 1.67814i 0.150376 + 0.0724173i
\(538\) 1.50123 + 6.57734i 0.0647228 + 0.283569i
\(539\) 1.21128 0.0521736
\(540\) −0.681165 2.98438i −0.0293127 0.128427i
\(541\) −21.1554 + 26.5281i −0.909543 + 1.14053i 0.0800725 + 0.996789i \(0.474485\pi\)
−0.989615 + 0.143741i \(0.954087\pi\)
\(542\) 2.62125 11.4845i 0.112592 0.493300i
\(543\) −3.70048 + 16.2129i −0.158803 + 0.695761i
\(544\) 13.8402 + 17.3550i 0.593393 + 0.744092i
\(545\) −17.5373 8.44551i −0.751215 0.361766i
\(546\) −9.79641 + 4.71770i −0.419248 + 0.201899i
\(547\) 12.2604 15.3741i 0.524217 0.657347i −0.447281 0.894393i \(-0.647608\pi\)
0.971498 + 0.237046i \(0.0761792\pi\)
\(548\) 2.88023 + 3.61169i 0.123037 + 0.154284i
\(549\) −2.82771 + 1.36175i −0.120684 + 0.0581183i
\(550\) −0.618057 −0.0263541
\(551\) −17.1058 + 15.7548i −0.728731 + 0.671178i
\(552\) −13.1691 −0.560516
\(553\) 9.25187 4.45547i 0.393430 0.189466i
\(554\) 9.54138 + 11.9645i 0.405374 + 0.508323i
\(555\) 2.34089 2.93538i 0.0993651 0.124600i
\(556\) 15.4185 7.42517i 0.653891 0.314897i
\(557\) 34.4588 + 16.5945i 1.46006 + 0.703130i 0.984310 0.176448i \(-0.0564606\pi\)
0.475755 + 0.879578i \(0.342175\pi\)
\(558\) −1.18488 1.48579i −0.0501600 0.0628987i
\(559\) 5.38532 23.5946i 0.227775 0.997946i
\(560\) −1.43618 + 6.29231i −0.0606896 + 0.265898i
\(561\) 2.27929 2.85814i 0.0962316 0.120671i
\(562\) 1.65902 + 7.26865i 0.0699817 + 0.306610i
\(563\) −23.4745 −0.989330 −0.494665 0.869084i \(-0.664709\pi\)
−0.494665 + 0.869084i \(0.664709\pi\)
\(564\) −1.09129 4.78125i −0.0459515 0.201327i
\(565\) 5.65113 + 2.72144i 0.237745 + 0.114492i
\(566\) 9.52868 + 4.58877i 0.400520 + 0.192880i
\(567\) 0.532912 + 2.33484i 0.0223802 + 0.0980540i
\(568\) −11.2514 −0.472100
\(569\) 0.758682 + 3.32400i 0.0318056 + 0.139349i 0.988338 0.152277i \(-0.0486607\pi\)
−0.956532 + 0.291627i \(0.905804\pi\)
\(570\) −3.77558 + 4.73442i −0.158141 + 0.198303i
\(571\) −5.16346 + 22.6226i −0.216084 + 0.946726i 0.744256 + 0.667894i \(0.232804\pi\)
−0.960340 + 0.278832i \(0.910053\pi\)
\(572\) −2.11259 + 9.25584i −0.0883316 + 0.387006i
\(573\) −1.64671 2.06491i −0.0687925 0.0862630i
\(574\) −17.7361 8.54125i −0.740290 0.356505i
\(575\) −4.50722 + 2.17056i −0.187964 + 0.0905187i
\(576\) 0.854730 1.07180i 0.0356137 0.0446582i
\(577\) −0.183171 0.229689i −0.00762551 0.00956209i 0.778004 0.628259i \(-0.216232\pi\)
−0.785630 + 0.618697i \(0.787661\pi\)
\(578\) −1.52458 + 0.734199i −0.0634142 + 0.0305387i
\(579\) 6.54111 0.271839
\(580\) −6.07910 + 15.3228i −0.252421 + 0.636246i
\(581\) −38.7522 −1.60771
\(582\) 9.86960 4.75295i 0.409108 0.197016i
\(583\) −1.35436 1.69831i −0.0560917 0.0703368i
\(584\) 13.8543 17.3727i 0.573294 0.718888i
\(585\) 11.8772 5.71977i 0.491063 0.236483i
\(586\) 14.5173 + 6.99114i 0.599702 + 0.288801i
\(587\) −1.71744 2.15360i −0.0708864 0.0888888i 0.745124 0.666926i \(-0.232390\pi\)
−0.816010 + 0.578037i \(0.803819\pi\)
\(588\) −0.426879 + 1.87028i −0.0176042 + 0.0771290i
\(589\) 2.62784 11.5133i 0.108278 0.474398i
\(590\) −8.13723 + 10.2038i −0.335004 + 0.420082i
\(591\) 2.18612 + 9.57803i 0.0899251 + 0.393987i
\(592\) −2.48512 −0.102138
\(593\) 4.62823 + 20.2776i 0.190059 + 0.832701i 0.976583 + 0.215142i \(0.0690214\pi\)
−0.786524 + 0.617559i \(0.788121\pi\)
\(594\) −0.599750 0.288825i −0.0246081 0.0118506i
\(595\) 16.6161 + 8.00188i 0.681193 + 0.328045i
\(596\) 1.65338 + 7.24393i 0.0677251 + 0.296723i
\(597\) 0.524712 0.0214750
\(598\) −5.44345 23.8493i −0.222599 0.975272i
\(599\) 21.7810 27.3125i 0.889946 1.11596i −0.102677 0.994715i \(-0.532741\pi\)
0.992623 0.121242i \(-0.0386877\pi\)
\(600\) 0.504969 2.21242i 0.0206153 0.0903215i
\(601\) −0.641141 + 2.80902i −0.0261527 + 0.114582i −0.986319 0.164845i \(-0.947288\pi\)
0.960167 + 0.279428i \(0.0901447\pi\)
\(602\) −3.84392 4.82012i −0.156666 0.196454i
\(603\) −10.9028 5.25052i −0.443997 0.213818i
\(604\) 23.2725 11.2074i 0.946943 0.456024i
\(605\) 12.6845 15.9059i 0.515699 0.646667i
\(606\) −4.01072 5.02928i −0.162924 0.204301i
\(607\) −20.0682 + 9.66435i −0.814544 + 0.392264i −0.794296 0.607531i \(-0.792160\pi\)
−0.0202484 + 0.999795i \(0.506446\pi\)
\(608\) 25.1180 1.01867
\(609\) 4.75600 11.9879i 0.192723 0.485773i
\(610\) 4.40099 0.178191
\(611\) 19.0284 9.16359i 0.769806 0.370719i
\(612\) 3.60984 + 4.52660i 0.145919 + 0.182977i
\(613\) 1.04225 1.30693i 0.0420959 0.0527866i −0.760338 0.649528i \(-0.774967\pi\)
0.802434 + 0.596741i \(0.203538\pi\)
\(614\) −11.8058 + 5.68536i −0.476442 + 0.229442i
\(615\) 21.5033 + 10.3555i 0.867098 + 0.417572i
\(616\) 3.49586 + 4.38367i 0.140852 + 0.176623i
\(617\) −3.20447 + 14.0397i −0.129007 + 0.565216i 0.868565 + 0.495575i \(0.165043\pi\)
−0.997572 + 0.0696414i \(0.977814\pi\)
\(618\) 1.63832 7.17797i 0.0659031 0.288740i
\(619\) −1.71356 + 2.14873i −0.0688737 + 0.0863649i −0.815075 0.579356i \(-0.803304\pi\)
0.746201 + 0.665720i \(0.231876\pi\)
\(620\) −1.86274 8.16119i −0.0748094 0.327761i
\(621\) −5.38804 −0.216215
\(622\) 4.19793 + 18.3923i 0.168322 + 0.737465i
\(623\) 33.3216 + 16.0468i 1.33500 + 0.642903i
\(624\) −7.86159 3.78594i −0.314715 0.151559i
\(625\) 4.33818 + 19.0068i 0.173527 + 0.760272i
\(626\) −5.15081 −0.205868
\(627\) −0.920479 4.03288i −0.0367604 0.161058i
\(628\) −19.2861 + 24.1840i −0.769598 + 0.965045i
\(629\) −1.58015 + 6.92310i −0.0630048 + 0.276042i
\(630\) 0.747275 3.27403i 0.0297721 0.130440i
\(631\) −5.65612 7.09255i −0.225167 0.282350i 0.656397 0.754416i \(-0.272080\pi\)
−0.881563 + 0.472066i \(0.843508\pi\)
\(632\) −9.44216 4.54711i −0.375589 0.180874i
\(633\) −14.9089 + 7.17975i −0.592576 + 0.285369i
\(634\) −0.967070 + 1.21267i −0.0384072 + 0.0481612i
\(635\) 4.93170 + 6.18415i 0.195708 + 0.245411i
\(636\) 3.09958 1.49268i 0.122906 0.0591885i
\(637\) −8.26146 −0.327331
\(638\) 1.78091 + 3.11108i 0.0705070 + 0.123169i
\(639\) −4.60343 −0.182109
\(640\) 19.4164 9.35043i 0.767499 0.369608i
\(641\) −7.09852 8.90126i −0.280375 0.351579i 0.621625 0.783315i \(-0.286473\pi\)
−0.902000 + 0.431736i \(0.857901\pi\)
\(642\) 0.0544660 0.0682982i 0.00214960 0.00269552i
\(643\) 9.74947 4.69510i 0.384482 0.185157i −0.231651 0.972799i \(-0.574413\pi\)
0.616133 + 0.787642i \(0.288699\pi\)
\(644\) 17.6371 + 8.49360i 0.695000 + 0.334695i
\(645\) 4.66039 + 5.84395i 0.183503 + 0.230105i
\(646\) 2.54860 11.1661i 0.100273 0.439326i
\(647\) 4.91549 21.5362i 0.193248 0.846674i −0.781596 0.623785i \(-0.785594\pi\)
0.974844 0.222889i \(-0.0715488\pi\)
\(648\) 1.52390 1.91091i 0.0598643 0.0750675i
\(649\) −1.98384 8.69178i −0.0778726 0.341182i
\(650\) 4.21542 0.165342
\(651\) 1.45732 + 6.38493i 0.0571168 + 0.250245i
\(652\) 10.4292 + 5.02245i 0.408440 + 0.196694i
\(653\) −17.4603 8.40844i −0.683274 0.329048i 0.0598439 0.998208i \(-0.480940\pi\)
−0.743118 + 0.669160i \(0.766654\pi\)
\(654\) −1.49173 6.53571i −0.0583314 0.255566i
\(655\) 33.2836 1.30050
\(656\) −3.51530 15.4015i −0.137249 0.601329i
\(657\) 5.66836 7.10790i 0.221144 0.277306i
\(658\) 1.19720 5.24528i 0.0466718 0.204482i
\(659\) −1.48867 + 6.52230i −0.0579904 + 0.254073i −0.995611 0.0935875i \(-0.970167\pi\)
0.937621 + 0.347660i \(0.113024\pi\)
\(660\) −1.82821 2.29250i −0.0711629 0.0892354i
\(661\) 40.0727 + 19.2980i 1.55865 + 0.750606i 0.997046 0.0768020i \(-0.0244709\pi\)
0.561602 + 0.827407i \(0.310185\pi\)
\(662\) −14.5407 + 7.00242i −0.565139 + 0.272157i
\(663\) −15.5457 + 19.4937i −0.603746 + 0.757074i
\(664\) 24.6586 + 30.9209i 0.956938 + 1.19996i
\(665\) 18.8019 9.05451i 0.729106 0.351119i
\(666\) 1.29306 0.0501051
\(667\) 23.9133 + 16.4333i 0.925925 + 0.636301i
\(668\) 32.9670 1.27553
\(669\) 10.5819 5.09597i 0.409120 0.197022i
\(670\) 10.5800 + 13.2668i 0.408739 + 0.512543i
\(671\) −1.87443 + 2.35046i −0.0723615 + 0.0907385i
\(672\) −12.5502 + 6.04386i −0.484135 + 0.233147i
\(673\) −18.9884 9.14433i −0.731949 0.352488i 0.0305016 0.999535i \(-0.490290\pi\)
−0.762450 + 0.647047i \(0.776004\pi\)
\(674\) −11.7301 14.7091i −0.451826 0.566572i
\(675\) 0.206604 0.905192i 0.00795220 0.0348408i
\(676\) 10.0202 43.9015i 0.385394 1.68852i
\(677\) 2.23420 2.80160i 0.0858673 0.107674i −0.737042 0.675847i \(-0.763778\pi\)
0.822909 + 0.568173i \(0.192349\pi\)
\(678\) 0.480688 + 2.10603i 0.0184607 + 0.0808817i
\(679\) −37.7509 −1.44875
\(680\) −4.18824 18.3499i −0.160612 0.703686i
\(681\) 19.1970 + 9.24479i 0.735631 + 0.354261i
\(682\) −1.64010 0.789829i −0.0628026 0.0302441i
\(683\) 2.99758 + 13.1333i 0.114699 + 0.502530i 0.999342 + 0.0362615i \(0.0115449\pi\)
−0.884643 + 0.466269i \(0.845598\pi\)
\(684\) 6.55136 0.250497
\(685\) −1.36724 5.99027i −0.0522395 0.228876i
\(686\) −8.57588 + 10.7538i −0.327428 + 0.410582i
\(687\) −0.0407910 + 0.178717i −0.00155627 + 0.00681848i
\(688\) 1.10093 4.82348i 0.0419725 0.183894i
\(689\) 9.23730 + 11.5832i 0.351913 + 0.441285i
\(690\) 6.80716 + 3.27816i 0.259144 + 0.124797i
\(691\) −15.7501 + 7.58486i −0.599163 + 0.288542i −0.708777 0.705432i \(-0.750753\pi\)
0.109614 + 0.993974i \(0.465039\pi\)
\(692\) −3.79633 + 4.76045i −0.144315 + 0.180965i
\(693\) 1.43030 + 1.79354i 0.0543327 + 0.0681311i
\(694\) −20.6855 + 9.96163i −0.785213 + 0.378138i
\(695\) −22.7619 −0.863408
\(696\) −12.5916 + 3.83317i −0.477282 + 0.145296i
\(697\) −45.1412 −1.70984
\(698\) 3.98483 1.91899i 0.150828 0.0726349i
\(699\) −14.8895 18.6709i −0.563174 0.706198i
\(700\) −2.10322 + 2.63735i −0.0794942 + 0.0996826i
\(701\) 26.5799 12.8002i 1.00391 0.483458i 0.141646 0.989917i \(-0.454760\pi\)
0.862264 + 0.506460i \(0.169046\pi\)
\(702\) 4.09056 + 1.96991i 0.154388 + 0.0743494i
\(703\) 5.00991 + 6.28223i 0.188953 + 0.236939i
\(704\) 0.292203 1.28022i 0.0110128 0.0482503i
\(705\) −1.45149 + 6.35941i −0.0546664 + 0.239509i
\(706\) −7.61395 + 9.54759i −0.286555 + 0.359328i
\(707\) 4.93289 + 21.6124i 0.185521 + 0.812818i
\(708\) 14.1197 0.530650
\(709\) −5.48443 24.0289i −0.205972 0.902423i −0.967216 0.253957i \(-0.918268\pi\)
0.761244 0.648466i \(-0.224589\pi\)
\(710\) 5.81590 + 2.80079i 0.218267 + 0.105112i
\(711\) −3.86318 1.86041i −0.144881 0.0697708i
\(712\) −8.39903 36.7985i −0.314767 1.37908i
\(713\) −14.7343 −0.551805
\(714\) 1.41337 + 6.19240i 0.0528942 + 0.231745i
\(715\) 7.87315 9.87262i 0.294439 0.369215i
\(716\) −1.30566 + 5.72046i −0.0487948 + 0.213784i
\(717\) 1.87126 8.19853i 0.0698835 0.306180i
\(718\) −3.38826 4.24875i −0.126449 0.158562i
\(719\) 1.24578 + 0.599937i 0.0464598 + 0.0223739i 0.456969 0.889482i \(-0.348935\pi\)
−0.410510 + 0.911856i \(0.634649\pi\)
\(720\) 2.42808 1.16930i 0.0904892 0.0435773i
\(721\) −15.8196 + 19.8372i −0.589154 + 0.738776i
\(722\) 0.152055 + 0.190671i 0.00565890 + 0.00709604i
\(723\) 0.485048 0.233587i 0.0180391 0.00868719i
\(724\) −25.2284 −0.937607
\(725\) −3.67776 + 3.38730i −0.136588 + 0.125801i
\(726\) 7.00668 0.260042
\(727\) −34.0179 + 16.3821i −1.26165 + 0.607580i −0.940611 0.339485i \(-0.889747\pi\)
−0.321041 + 0.947065i \(0.604033\pi\)
\(728\) −23.8433 29.8985i −0.883691 1.10811i
\(729\) 0.623490 0.781831i 0.0230922 0.0289567i
\(730\) −11.4859 + 5.53130i −0.425111 + 0.204722i
\(731\) −12.7374 6.13399i −0.471108 0.226874i
\(732\) −2.96864 3.72256i −0.109724 0.137590i
\(733\) 7.24828 31.7568i 0.267721 1.17296i −0.644936 0.764237i \(-0.723116\pi\)
0.912657 0.408727i \(-0.134027\pi\)
\(734\) 4.51017 19.7603i 0.166473 0.729368i
\(735\) 1.59089 1.99491i 0.0586807 0.0735833i
\(736\) −6.97363 30.5535i −0.257051 1.12622i
\(737\) −11.5916 −0.426982
\(738\) 1.82909 + 8.01375i 0.0673296 + 0.294990i
\(739\) 34.2033 + 16.4714i 1.25819 + 0.605911i 0.939695 0.342014i \(-0.111109\pi\)
0.318493 + 0.947925i \(0.396823\pi\)
\(740\) 5.13173 + 2.47131i 0.188646 + 0.0908472i
\(741\) 6.27806 + 27.5060i 0.230630 + 1.01046i
\(742\) 3.77416 0.138554
\(743\) 2.91935 + 12.7905i 0.107101 + 0.469238i 0.999826 + 0.0186379i \(0.00593297\pi\)
−0.892726 + 0.450601i \(0.851210\pi\)
\(744\) 4.16730 5.22563i 0.152781 0.191581i
\(745\) 2.19912 9.63496i 0.0805694 0.352998i
\(746\) −0.905585 + 3.96763i −0.0331558 + 0.145265i
\(747\) 10.0888 + 12.6510i 0.369132 + 0.462876i
\(748\) 4.99669 + 2.40628i 0.182697 + 0.0879823i
\(749\) −0.271234 + 0.130619i −0.00991067 + 0.00477273i
\(750\) −5.18319 + 6.49952i −0.189263 + 0.237329i
\(751\) −17.5307 21.9828i −0.639704 0.802163i 0.351262 0.936277i \(-0.385753\pi\)
−0.990966 + 0.134114i \(0.957181\pi\)
\(752\) 3.89000 1.87333i 0.141854 0.0683132i
\(753\) −1.71008 −0.0623186
\(754\) −12.1466 21.2189i −0.442353 0.772748i
\(755\) −34.3565 −1.25036
\(756\) −3.27338 + 1.57638i −0.119052 + 0.0573323i
\(757\) −11.8885 14.9078i −0.432096 0.541831i 0.517345 0.855777i \(-0.326920\pi\)
−0.949441 + 0.313946i \(0.898349\pi\)
\(758\) 1.00418 1.25920i 0.0364735 0.0457363i
\(759\) −4.65002 + 2.23933i −0.168785 + 0.0812826i
\(760\) −19.1886 9.24074i −0.696044 0.335197i
\(761\) 5.51450 + 6.91496i 0.199900 + 0.250667i 0.871670 0.490093i \(-0.163037\pi\)
−0.671770 + 0.740760i \(0.734466\pi\)
\(762\) −0.606186 + 2.65587i −0.0219598 + 0.0962121i
\(763\) −5.14078 + 22.5232i −0.186109 + 0.815395i
\(764\) 2.49816 3.13260i 0.0903804 0.113333i
\(765\) −1.71358