Properties

Label 87.2.g.a.49.2
Level $87$
Weight $2$
Character 87.49
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 49.2
Root \(0.102196 - 0.128149i\) of defining polynomial
Character \(\chi\) \(=\) 87.49
Dual form 87.2.g.a.16.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04865 + 0.505001i) q^{2} +(0.623490 + 0.781831i) q^{3} +(-0.402348 + 0.504528i) q^{4} +(-2.80239 + 1.34956i) q^{5} +(-1.04865 - 0.505001i) q^{6} +(1.08876 + 1.36527i) q^{7} +(0.685121 - 3.00171i) q^{8} +(-0.222521 + 0.974928i) q^{9} +O(q^{10})\) \(q+(-1.04865 + 0.505001i) q^{2} +(0.623490 + 0.781831i) q^{3} +(-0.402348 + 0.504528i) q^{4} +(-2.80239 + 1.34956i) q^{5} +(-1.04865 - 0.505001i) q^{6} +(1.08876 + 1.36527i) q^{7} +(0.685121 - 3.00171i) q^{8} +(-0.222521 + 0.974928i) q^{9} +(2.25719 - 2.83042i) q^{10} +(0.616885 + 2.70275i) q^{11} -0.645316 q^{12} +(0.256556 + 1.12405i) q^{13} +(-1.83119 - 0.881853i) q^{14} +(-2.80239 - 1.34956i) q^{15} +(0.510226 + 2.23545i) q^{16} +2.64265 q^{17} +(-0.258994 - 1.13473i) q^{18} +(4.50431 - 5.64823i) q^{19} +(0.446645 - 1.95688i) q^{20} +(-0.388575 + 1.70246i) q^{21} +(-2.01179 - 2.52270i) q^{22} +(2.53201 + 1.21935i) q^{23} +(2.77400 - 1.33589i) q^{24} +(2.91464 - 3.65485i) q^{25} +(-0.836681 - 1.04917i) q^{26} +(-0.900969 + 0.433884i) q^{27} -1.12688 q^{28} +(-0.497296 - 5.36215i) q^{29} +3.62025 q^{30} +(-3.59066 + 1.72917i) q^{31} +(2.17538 + 2.72784i) q^{32} +(-1.72847 + 2.16744i) q^{33} +(-2.77121 + 1.33454i) q^{34} +(-4.89365 - 2.35666i) q^{35} +(-0.402348 - 0.504528i) q^{36} +(-2.32975 + 10.2073i) q^{37} +(-1.87107 + 8.19768i) q^{38} +(-0.718855 + 0.901415i) q^{39} +(2.13102 + 9.33659i) q^{40} +8.92649 q^{41} +(-0.452266 - 1.98151i) q^{42} +(-10.6279 - 5.11815i) q^{43} +(-1.61181 - 0.776209i) q^{44} +(-0.692134 - 3.03244i) q^{45} -3.27095 q^{46} +(1.63447 + 7.16106i) q^{47} +(-1.42962 + 1.79269i) q^{48} +(0.879102 - 3.85160i) q^{49} +(-1.21073 + 5.30454i) q^{50} +(1.64767 + 2.06611i) q^{51} +(-0.670338 - 0.322818i) q^{52} +(4.85314 - 2.33715i) q^{53} +(0.725685 - 0.909981i) q^{54} +(-5.37628 - 6.74164i) q^{55} +(4.84407 - 2.33278i) q^{56} +7.22436 q^{57} +(3.22938 + 5.37187i) q^{58} -8.20042 q^{59} +(1.80843 - 0.870893i) q^{60} +(3.06034 + 3.83755i) q^{61} +(2.89209 - 3.62657i) q^{62} +(-1.57331 + 0.757665i) q^{63} +(-7.79050 - 3.75171i) q^{64} +(-2.23594 - 2.80378i) q^{65} +(0.717998 - 3.14575i) q^{66} +(0.100933 - 0.442217i) q^{67} +(-1.06326 + 1.33329i) q^{68} +(0.625354 + 2.73985i) q^{69} +6.32182 q^{70} +(-2.58226 - 11.3136i) q^{71} +(2.77400 + 1.33589i) q^{72} +(11.5822 + 5.57770i) q^{73} +(-2.71162 - 11.8804i) q^{74} +4.67473 q^{75} +(1.03739 + 4.54510i) q^{76} +(-3.01833 + 3.78486i) q^{77} +(0.298608 - 1.30829i) q^{78} +(3.43076 - 15.0312i) q^{79} +(-4.44673 - 5.57602i) q^{80} +(-0.900969 - 0.433884i) q^{81} +(-9.36072 + 4.50789i) q^{82} +(-2.62789 + 3.29527i) q^{83} +(-0.702595 - 0.881027i) q^{84} +(-7.40575 + 3.56642i) q^{85} +13.7296 q^{86} +(3.88224 - 3.73205i) q^{87} +8.53551 q^{88} +(1.83072 - 0.881630i) q^{89} +(2.25719 + 2.83042i) q^{90} +(-1.25529 + 1.57409i) q^{91} +(-1.63394 + 0.786865i) q^{92} +(-3.59066 - 1.72917i) q^{93} +(-5.33032 - 6.68401i) q^{94} +(-5.00022 + 21.9074i) q^{95} +(-0.776385 + 3.40157i) q^{96} +(7.89711 - 9.90266i) q^{97} +(1.02319 + 4.48291i) q^{98} -2.77225 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04865 + 0.505001i −0.741505 + 0.357090i −0.766197 0.642605i \(-0.777854\pi\)
0.0246928 + 0.999695i \(0.492139\pi\)
\(3\) 0.623490 + 0.781831i 0.359972 + 0.451391i
\(4\) −0.402348 + 0.504528i −0.201174 + 0.252264i
\(5\) −2.80239 + 1.34956i −1.25327 + 0.603542i −0.938386 0.345588i \(-0.887679\pi\)
−0.314882 + 0.949131i \(0.601965\pi\)
\(6\) −1.04865 0.505001i −0.428108 0.206166i
\(7\) 1.08876 + 1.36527i 0.411514 + 0.516022i 0.943789 0.330550i \(-0.107234\pi\)
−0.532275 + 0.846572i \(0.678663\pi\)
\(8\) 0.685121 3.00171i 0.242227 1.06127i
\(9\) −0.222521 + 0.974928i −0.0741736 + 0.324976i
\(10\) 2.25719 2.83042i 0.713786 0.895059i
\(11\) 0.616885 + 2.70275i 0.185998 + 0.814909i 0.978699 + 0.205299i \(0.0658168\pi\)
−0.792701 + 0.609610i \(0.791326\pi\)
\(12\) −0.645316 −0.186287
\(13\) 0.256556 + 1.12405i 0.0711559 + 0.311754i 0.997964 0.0637811i \(-0.0203160\pi\)
−0.926808 + 0.375535i \(0.877459\pi\)
\(14\) −1.83119 0.881853i −0.489405 0.235685i
\(15\) −2.80239 1.34956i −0.723575 0.348455i
\(16\) 0.510226 + 2.23545i 0.127557 + 0.558862i
\(17\) 2.64265 0.640937 0.320469 0.947259i \(-0.396160\pi\)
0.320469 + 0.947259i \(0.396160\pi\)
\(18\) −0.258994 1.13473i −0.0610455 0.267458i
\(19\) 4.50431 5.64823i 1.03336 1.29579i 0.0790836 0.996868i \(-0.474801\pi\)
0.954277 0.298925i \(-0.0966280\pi\)
\(20\) 0.446645 1.95688i 0.0998728 0.437571i
\(21\) −0.388575 + 1.70246i −0.0847940 + 0.371507i
\(22\) −2.01179 2.52270i −0.428914 0.537841i
\(23\) 2.53201 + 1.21935i 0.527960 + 0.254252i 0.678822 0.734303i \(-0.262491\pi\)
−0.150862 + 0.988555i \(0.548205\pi\)
\(24\) 2.77400 1.33589i 0.566240 0.272687i
\(25\) 2.91464 3.65485i 0.582929 0.730970i
\(26\) −0.836681 1.04917i −0.164087 0.205758i
\(27\) −0.900969 + 0.433884i −0.173392 + 0.0835010i
\(28\) −1.12688 −0.212959
\(29\) −0.497296 5.36215i −0.0923456 0.995727i
\(30\) 3.62025 0.660964
\(31\) −3.59066 + 1.72917i −0.644901 + 0.310568i −0.727595 0.686007i \(-0.759362\pi\)
0.0826940 + 0.996575i \(0.473648\pi\)
\(32\) 2.17538 + 2.72784i 0.384557 + 0.482219i
\(33\) −1.72847 + 2.16744i −0.300888 + 0.377302i
\(34\) −2.77121 + 1.33454i −0.475258 + 0.228872i
\(35\) −4.89365 2.35666i −0.827178 0.398348i
\(36\) −0.402348 0.504528i −0.0670579 0.0840880i
\(37\) −2.32975 + 10.2073i −0.383009 + 1.67807i 0.304988 + 0.952356i \(0.401348\pi\)
−0.687996 + 0.725714i \(0.741509\pi\)
\(38\) −1.87107 + 8.19768i −0.303527 + 1.32984i
\(39\) −0.718855 + 0.901415i −0.115109 + 0.144342i
\(40\) 2.13102 + 9.33659i 0.336943 + 1.47624i
\(41\) 8.92649 1.39408 0.697041 0.717031i \(-0.254499\pi\)
0.697041 + 0.717031i \(0.254499\pi\)
\(42\) −0.452266 1.98151i −0.0697861 0.305753i
\(43\) −10.6279 5.11815i −1.62075 0.780510i −0.620752 0.784007i \(-0.713173\pi\)
−0.999994 + 0.00349639i \(0.998887\pi\)
\(44\) −1.61181 0.776209i −0.242990 0.117018i
\(45\) −0.692134 3.03244i −0.103177 0.452049i
\(46\) −3.27095 −0.482275
\(47\) 1.63447 + 7.16106i 0.238411 + 1.04455i 0.942440 + 0.334376i \(0.108526\pi\)
−0.704028 + 0.710172i \(0.748617\pi\)
\(48\) −1.42962 + 1.79269i −0.206348 + 0.258753i
\(49\) 0.879102 3.85160i 0.125586 0.550228i
\(50\) −1.21073 + 5.30454i −0.171223 + 0.750175i
\(51\) 1.64767 + 2.06611i 0.230720 + 0.289313i
\(52\) −0.670338 0.322818i −0.0929591 0.0447667i
\(53\) 4.85314 2.33715i 0.666629 0.321032i −0.0697855 0.997562i \(-0.522231\pi\)
0.736415 + 0.676530i \(0.236517\pi\)
\(54\) 0.725685 0.909981i 0.0987533 0.123833i
\(55\) −5.37628 6.74164i −0.724937 0.909043i
\(56\) 4.84407 2.33278i 0.647316 0.311731i
\(57\) 7.22436 0.956889
\(58\) 3.22938 + 5.37187i 0.424039 + 0.705361i
\(59\) −8.20042 −1.06760 −0.533802 0.845610i \(-0.679237\pi\)
−0.533802 + 0.845610i \(0.679237\pi\)
\(60\) 1.80843 0.870893i 0.233467 0.112432i
\(61\) 3.06034 + 3.83755i 0.391837 + 0.491348i 0.938148 0.346234i \(-0.112540\pi\)
−0.546311 + 0.837582i \(0.683968\pi\)
\(62\) 2.89209 3.62657i 0.367296 0.460575i
\(63\) −1.57331 + 0.757665i −0.198218 + 0.0954568i
\(64\) −7.79050 3.75171i −0.973813 0.468963i
\(65\) −2.23594 2.80378i −0.277334 0.347766i
\(66\) 0.717998 3.14575i 0.0883794 0.387216i
\(67\) 0.100933 0.442217i 0.0123309 0.0540254i −0.968388 0.249448i \(-0.919751\pi\)
0.980719 + 0.195423i \(0.0626079\pi\)
\(68\) −1.06326 + 1.33329i −0.128940 + 0.161685i
\(69\) 0.625354 + 2.73985i 0.0752837 + 0.329840i
\(70\) 6.32182 0.755602
\(71\) −2.58226 11.3136i −0.306458 1.34268i −0.860185 0.509983i \(-0.829652\pi\)
0.553726 0.832699i \(-0.313205\pi\)
\(72\) 2.77400 + 1.33589i 0.326919 + 0.157436i
\(73\) 11.5822 + 5.57770i 1.35559 + 0.652820i 0.963650 0.267169i \(-0.0860880\pi\)
0.391945 + 0.919989i \(0.371802\pi\)
\(74\) −2.71162 11.8804i −0.315219 1.38107i
\(75\) 4.67473 0.539791
\(76\) 1.03739 + 4.54510i 0.118997 + 0.521359i
\(77\) −3.01833 + 3.78486i −0.343970 + 0.431325i
\(78\) 0.298608 1.30829i 0.0338107 0.148134i
\(79\) 3.43076 15.0312i 0.385991 1.69114i −0.292286 0.956331i \(-0.594416\pi\)
0.678277 0.734807i \(-0.262727\pi\)
\(80\) −4.44673 5.57602i −0.497160 0.623418i
\(81\) −0.900969 0.433884i −0.100108 0.0482093i
\(82\) −9.36072 + 4.50789i −1.03372 + 0.497813i
\(83\) −2.62789 + 3.29527i −0.288448 + 0.361702i −0.904851 0.425728i \(-0.860018\pi\)
0.616403 + 0.787431i \(0.288589\pi\)
\(84\) −0.702595 0.881027i −0.0766594 0.0961279i
\(85\) −7.40575 + 3.56642i −0.803267 + 0.386833i
\(86\) 13.7296 1.48050
\(87\) 3.88224 3.73205i 0.416220 0.400118i
\(88\) 8.53551 0.909889
\(89\) 1.83072 0.881630i 0.194056 0.0934526i −0.334332 0.942455i \(-0.608511\pi\)
0.528389 + 0.849003i \(0.322796\pi\)
\(90\) 2.25719 + 2.83042i 0.237929 + 0.298353i
\(91\) −1.25529 + 1.57409i −0.131590 + 0.165009i
\(92\) −1.63394 + 0.786865i −0.170350 + 0.0820364i
\(93\) −3.59066 1.72917i −0.372334 0.179306i
\(94\) −5.33032 6.68401i −0.549780 0.689403i
\(95\) −5.00022 + 21.9074i −0.513012 + 2.24765i
\(96\) −0.776385 + 3.40157i −0.0792395 + 0.347171i
\(97\) 7.89711 9.90266i 0.801830 1.00546i −0.197852 0.980232i \(-0.563396\pi\)
0.999682 0.0252311i \(-0.00803215\pi\)
\(98\) 1.02319 + 4.48291i 0.103358 + 0.452842i
\(99\) −2.77225 −0.278622
\(100\) 0.671273 + 2.94104i 0.0671273 + 0.294104i
\(101\) −2.85191 1.37341i −0.283776 0.136659i 0.286582 0.958056i \(-0.407481\pi\)
−0.570358 + 0.821397i \(0.693195\pi\)
\(102\) −2.77121 1.33454i −0.274390 0.132139i
\(103\) −0.582986 2.55423i −0.0574433 0.251676i 0.938051 0.346497i \(-0.112629\pi\)
−0.995494 + 0.0948218i \(0.969772\pi\)
\(104\) 3.54984 0.348090
\(105\) −1.20863 5.29536i −0.117950 0.516774i
\(106\) −3.90896 + 4.90168i −0.379672 + 0.476093i
\(107\) 2.23430 9.78910i 0.215998 0.946348i −0.744404 0.667730i \(-0.767266\pi\)
0.960402 0.278619i \(-0.0898766\pi\)
\(108\) 0.143596 0.629136i 0.0138176 0.0605387i
\(109\) −2.87905 3.61022i −0.275763 0.345796i 0.624593 0.780951i \(-0.285265\pi\)
−0.900356 + 0.435155i \(0.856694\pi\)
\(110\) 9.04235 + 4.35457i 0.862154 + 0.415192i
\(111\) −9.43297 + 4.54268i −0.895338 + 0.431172i
\(112\) −2.49646 + 3.13047i −0.235894 + 0.295801i
\(113\) −3.23577 4.05752i −0.304395 0.381700i 0.605982 0.795478i \(-0.292780\pi\)
−0.910378 + 0.413779i \(0.864209\pi\)
\(114\) −7.57579 + 3.64831i −0.709538 + 0.341695i
\(115\) −8.74126 −0.815127
\(116\) 2.90544 + 1.90655i 0.269764 + 0.177019i
\(117\) −1.15295 −0.106591
\(118\) 8.59933 4.14122i 0.791633 0.381230i
\(119\) 2.87722 + 3.60792i 0.263754 + 0.330738i
\(120\) −5.97098 + 7.48737i −0.545073 + 0.683500i
\(121\) 2.98635 1.43815i 0.271487 0.130741i
\(122\) −5.14719 2.47875i −0.466004 0.224416i
\(123\) 5.56557 + 6.97901i 0.501831 + 0.629276i
\(124\) 0.572278 2.50731i 0.0513921 0.225163i
\(125\) 0.225132 0.986369i 0.0201364 0.0882235i
\(126\) 1.26722 1.58904i 0.112893 0.141563i
\(127\) 3.34102 + 14.6380i 0.296467 + 1.29891i 0.875347 + 0.483496i \(0.160633\pi\)
−0.578879 + 0.815413i \(0.696510\pi\)
\(128\) 3.08601 0.272767
\(129\) −2.62489 11.5004i −0.231108 1.01255i
\(130\) 3.76062 + 1.81102i 0.329829 + 0.158837i
\(131\) 0.482335 + 0.232280i 0.0421418 + 0.0202944i 0.454836 0.890575i \(-0.349698\pi\)
−0.412694 + 0.910870i \(0.635412\pi\)
\(132\) −0.398085 1.74413i −0.0346489 0.151807i
\(133\) 12.6155 1.09390
\(134\) 0.117477 + 0.514700i 0.0101485 + 0.0444633i
\(135\) 1.93932 2.43183i 0.166910 0.209298i
\(136\) 1.81054 7.93248i 0.155252 0.680205i
\(137\) −2.77503 + 12.1582i −0.237087 + 1.03874i 0.706525 + 0.707688i \(0.250262\pi\)
−0.943611 + 0.331056i \(0.892595\pi\)
\(138\) −2.03940 2.55733i −0.173606 0.217695i
\(139\) 7.82790 + 3.76972i 0.663954 + 0.319743i 0.735333 0.677706i \(-0.237026\pi\)
−0.0713790 + 0.997449i \(0.522740\pi\)
\(140\) 3.15795 1.52079i 0.266895 0.128530i
\(141\) −4.57967 + 5.74272i −0.385678 + 0.483625i
\(142\) 8.42128 + 10.5600i 0.706698 + 0.886172i
\(143\) −2.87975 + 1.38681i −0.240817 + 0.115971i
\(144\) −2.29294 −0.191078
\(145\) 8.63018 + 14.3557i 0.716697 + 1.19218i
\(146\) −14.9624 −1.23830
\(147\) 3.55941 1.71412i 0.293575 0.141378i
\(148\) −4.21250 5.28231i −0.346265 0.434203i
\(149\) −9.37128 + 11.7512i −0.767726 + 0.962697i −0.999950 0.00996473i \(-0.996828\pi\)
0.232225 + 0.972662i \(0.425400\pi\)
\(150\) −4.90213 + 2.36074i −0.400258 + 0.192754i
\(151\) −13.5900 6.54459i −1.10594 0.532591i −0.210417 0.977612i \(-0.567482\pi\)
−0.895521 + 0.445020i \(0.853196\pi\)
\(152\) −13.8684 17.3904i −1.12487 1.41055i
\(153\) −0.588045 + 2.57640i −0.0475407 + 0.208289i
\(154\) 1.25380 5.49324i 0.101034 0.442658i
\(155\) 7.72881 9.69162i 0.620793 0.778450i
\(156\) −0.165560 0.725364i −0.0132554 0.0580756i
\(157\) −9.94273 −0.793517 −0.396758 0.917923i \(-0.629865\pi\)
−0.396758 + 0.917923i \(0.629865\pi\)
\(158\) 3.99310 + 17.4949i 0.317674 + 1.39182i
\(159\) 4.85314 + 2.33715i 0.384879 + 0.185348i
\(160\) −9.77767 4.70868i −0.772993 0.372254i
\(161\) 1.09202 + 4.78444i 0.0860630 + 0.377067i
\(162\) 1.16391 0.0914453
\(163\) 0.610696 + 2.67563i 0.0478334 + 0.209572i 0.993197 0.116446i \(-0.0371502\pi\)
−0.945364 + 0.326018i \(0.894293\pi\)
\(164\) −3.59155 + 4.50366i −0.280453 + 0.351677i
\(165\) 1.91877 8.40669i 0.149376 0.654460i
\(166\) 1.09161 4.78265i 0.0847253 0.371206i
\(167\) −1.98862 2.49365i −0.153884 0.192964i 0.698914 0.715206i \(-0.253667\pi\)
−0.852797 + 0.522242i \(0.825096\pi\)
\(168\) 4.84407 + 2.33278i 0.373728 + 0.179978i
\(169\) 10.5149 5.06373i 0.808841 0.389517i
\(170\) 5.96496 7.47983i 0.457492 0.573677i
\(171\) 4.50431 + 5.64823i 0.344453 + 0.431931i
\(172\) 6.85838 3.30282i 0.522946 0.251838i
\(173\) 7.57784 0.576132 0.288066 0.957611i \(-0.406988\pi\)
0.288066 + 0.957611i \(0.406988\pi\)
\(174\) −2.18641 + 5.87414i −0.165751 + 0.445317i
\(175\) 8.16319 0.617079
\(176\) −5.72710 + 2.75803i −0.431697 + 0.207894i
\(177\) −5.11288 6.41134i −0.384307 0.481906i
\(178\) −1.47456 + 1.84904i −0.110523 + 0.138591i
\(179\) 2.53345 1.22005i 0.189359 0.0911906i −0.336802 0.941576i \(-0.609345\pi\)
0.526161 + 0.850385i \(0.323631\pi\)
\(180\) 1.80843 + 0.870893i 0.134792 + 0.0649125i
\(181\) 4.38980 + 5.50464i 0.326292 + 0.409157i 0.917737 0.397188i \(-0.130014\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(182\) 0.521441 2.28458i 0.0386518 0.169345i
\(183\) −1.09222 + 4.78535i −0.0807395 + 0.353743i
\(184\) 5.39487 6.76495i 0.397715 0.498719i
\(185\) −7.24651 31.7490i −0.532774 2.33424i
\(186\) 4.63856 0.340116
\(187\) 1.63021 + 7.14243i 0.119213 + 0.522306i
\(188\) −4.27058 2.05660i −0.311464 0.149993i
\(189\) −1.57331 0.757665i −0.114441 0.0551120i
\(190\) −5.81981 25.4982i −0.422213 1.84984i
\(191\) 4.42589 0.320246 0.160123 0.987097i \(-0.448811\pi\)
0.160123 + 0.987097i \(0.448811\pi\)
\(192\) −1.92409 8.43001i −0.138860 0.608384i
\(193\) −2.51833 + 3.15788i −0.181273 + 0.227309i −0.864163 0.503212i \(-0.832151\pi\)
0.682890 + 0.730521i \(0.260723\pi\)
\(194\) −3.28041 + 14.3724i −0.235520 + 1.03188i
\(195\) 0.797998 3.49626i 0.0571458 0.250372i
\(196\) 1.58953 + 1.99321i 0.113538 + 0.142372i
\(197\) −10.8033 5.20261i −0.769706 0.370671i 0.00745564 0.999972i \(-0.497627\pi\)
−0.777161 + 0.629302i \(0.783341\pi\)
\(198\) 2.90711 1.39999i 0.206600 0.0994931i
\(199\) 0.858565 1.07661i 0.0608621 0.0763187i −0.750469 0.660906i \(-0.770172\pi\)
0.811331 + 0.584587i \(0.198744\pi\)
\(200\) −8.97392 11.2529i −0.634552 0.795703i
\(201\) 0.408670 0.196805i 0.0288253 0.0138815i
\(202\) 3.68422 0.259221
\(203\) 6.77932 6.51705i 0.475815 0.457408i
\(204\) −1.70534 −0.119398
\(205\) −25.0155 + 12.0468i −1.74716 + 0.841388i
\(206\) 1.90123 + 2.38407i 0.132465 + 0.166106i
\(207\) −1.75220 + 2.19719i −0.121786 + 0.152715i
\(208\) −2.38185 + 1.14704i −0.165151 + 0.0795327i
\(209\) 18.0444 + 8.68972i 1.24816 + 0.601080i
\(210\) 3.94159 + 4.94260i 0.271996 + 0.341072i
\(211\) 3.86605 16.9383i 0.266150 1.16608i −0.648301 0.761384i \(-0.724520\pi\)
0.914451 0.404696i \(-0.132623\pi\)
\(212\) −0.773492 + 3.38889i −0.0531236 + 0.232750i
\(213\) 7.23534 9.07283i 0.495758 0.621660i
\(214\) 2.60052 + 11.3936i 0.177768 + 0.778852i
\(215\) 36.6909 2.50230
\(216\) 0.685121 + 3.00171i 0.0466166 + 0.204241i
\(217\) −6.27014 3.01954i −0.425645 0.204980i
\(218\) 4.84227 + 2.33191i 0.327960 + 0.157937i
\(219\) 2.86057 + 12.5330i 0.193299 + 0.846900i
\(220\) 5.56448 0.375157
\(221\) 0.677989 + 2.97046i 0.0456065 + 0.199815i
\(222\) 7.59779 9.52732i 0.509930 0.639432i
\(223\) −3.08597 + 13.5205i −0.206652 + 0.905402i 0.760124 + 0.649778i \(0.225138\pi\)
−0.966776 + 0.255624i \(0.917719\pi\)
\(224\) −1.35575 + 5.93995i −0.0905852 + 0.396880i
\(225\) 2.91464 + 3.65485i 0.194310 + 0.243657i
\(226\) 5.44223 + 2.62084i 0.362012 + 0.174336i
\(227\) −2.15378 + 1.03721i −0.142952 + 0.0688419i −0.503992 0.863708i \(-0.668136\pi\)
0.361040 + 0.932550i \(0.382422\pi\)
\(228\) −2.90670 + 3.64489i −0.192501 + 0.241389i
\(229\) 0.665955 + 0.835081i 0.0440075 + 0.0551837i 0.803348 0.595510i \(-0.203050\pi\)
−0.759341 + 0.650693i \(0.774478\pi\)
\(230\) 9.16649 4.41435i 0.604420 0.291074i
\(231\) −4.84102 −0.318516
\(232\) −16.4364 2.18098i −1.07910 0.143189i
\(233\) −25.6684 −1.68159 −0.840795 0.541353i \(-0.817912\pi\)
−0.840795 + 0.541353i \(0.817912\pi\)
\(234\) 1.20904 0.582243i 0.0790374 0.0380624i
\(235\) −14.2447 17.8623i −0.929222 1.16521i
\(236\) 3.29942 4.13734i 0.214774 0.269318i
\(237\) 13.8909 6.68950i 0.902310 0.434529i
\(238\) −4.83919 2.33043i −0.313678 0.151059i
\(239\) −4.90036 6.14486i −0.316978 0.397478i 0.597661 0.801749i \(-0.296097\pi\)
−0.914639 + 0.404271i \(0.867525\pi\)
\(240\) 1.58702 6.95319i 0.102442 0.448826i
\(241\) −5.44182 + 23.8422i −0.350539 + 1.53581i 0.425402 + 0.905005i \(0.360133\pi\)
−0.775941 + 0.630806i \(0.782724\pi\)
\(242\) −2.40536 + 3.01623i −0.154622 + 0.193890i
\(243\) −0.222521 0.974928i −0.0142747 0.0625417i
\(244\) −3.16747 −0.202777
\(245\) 2.73438 + 11.9801i 0.174693 + 0.765380i
\(246\) −9.36072 4.50789i −0.596818 0.287412i
\(247\) 7.50448 + 3.61397i 0.477499 + 0.229951i
\(248\) 2.73043 + 11.9628i 0.173383 + 0.759639i
\(249\) −4.21480 −0.267102
\(250\) 0.262034 + 1.14804i 0.0165725 + 0.0726087i
\(251\) −3.72725 + 4.67383i −0.235262 + 0.295009i −0.885422 0.464788i \(-0.846130\pi\)
0.650160 + 0.759797i \(0.274702\pi\)
\(252\) 0.250753 1.09862i 0.0157960 0.0692067i
\(253\) −1.73364 + 7.59557i −0.108993 + 0.477529i
\(254\) −10.8957 13.6628i −0.683659 0.857281i
\(255\) −7.40575 3.56642i −0.463766 0.223338i
\(256\) 12.3449 5.94498i 0.771555 0.371561i
\(257\) 16.7993 21.0657i 1.04791 1.31404i 0.100183 0.994969i \(-0.468057\pi\)
0.947730 0.319073i \(-0.103371\pi\)
\(258\) 8.56028 + 10.7343i 0.532940 + 0.668285i
\(259\) −16.4722 + 7.93260i −1.02353 + 0.492908i
\(260\) 2.31421 0.143521
\(261\) 5.33837 + 0.708363i 0.330437 + 0.0438466i
\(262\) −0.623100 −0.0384952
\(263\) −14.9862 + 7.21695i −0.924086 + 0.445016i −0.834528 0.550965i \(-0.814260\pi\)
−0.0895580 + 0.995982i \(0.528545\pi\)
\(264\) 5.32181 + 6.67333i 0.327535 + 0.410715i
\(265\) −10.4463 + 13.0992i −0.641709 + 0.804678i
\(266\) −13.2291 + 6.37082i −0.811131 + 0.390620i
\(267\) 1.83072 + 0.881630i 0.112038 + 0.0539549i
\(268\) 0.182500 + 0.228848i 0.0111480 + 0.0139791i
\(269\) −3.03417 + 13.2935i −0.184996 + 0.810522i 0.794208 + 0.607646i \(0.207886\pi\)
−0.979204 + 0.202876i \(0.934971\pi\)
\(270\) −0.805581 + 3.52948i −0.0490261 + 0.214797i
\(271\) −8.97984 + 11.2604i −0.545486 + 0.684018i −0.975801 0.218661i \(-0.929831\pi\)
0.430315 + 0.902679i \(0.358403\pi\)
\(272\) 1.34835 + 5.90751i 0.0817558 + 0.358196i
\(273\) −2.01333 −0.121852
\(274\) −3.22988 14.1510i −0.195124 0.854895i
\(275\) 11.6761 + 5.62293i 0.704098 + 0.339076i
\(276\) −1.63394 0.786865i −0.0983518 0.0473637i
\(277\) 3.05513 + 13.3854i 0.183565 + 0.804251i 0.979915 + 0.199415i \(0.0639041\pi\)
−0.796350 + 0.604836i \(0.793239\pi\)
\(278\) −10.1124 −0.606502
\(279\) −0.886819 3.88541i −0.0530924 0.232613i
\(280\) −10.4268 + 13.0747i −0.623118 + 0.781365i
\(281\) 0.0319740 0.140087i 0.00190741 0.00835691i −0.973965 0.226697i \(-0.927207\pi\)
0.975873 + 0.218340i \(0.0700643\pi\)
\(282\) 1.90237 8.33482i 0.113284 0.496332i
\(283\) −5.51039 6.90981i −0.327559 0.410746i 0.590596 0.806967i \(-0.298893\pi\)
−0.918155 + 0.396222i \(0.870321\pi\)
\(284\) 6.74701 + 3.24919i 0.400362 + 0.192804i
\(285\) −20.2455 + 9.74972i −1.19924 + 0.577523i
\(286\) 2.31949 2.90855i 0.137155 0.171986i
\(287\) 9.71882 + 12.1870i 0.573684 + 0.719377i
\(288\) −3.14352 + 1.51384i −0.185234 + 0.0892038i
\(289\) −10.0164 −0.589199
\(290\) −16.2997 10.6958i −0.957149 0.628081i
\(291\) 12.6660 0.742493
\(292\) −7.47418 + 3.59937i −0.437393 + 0.210637i
\(293\) −2.10357 2.63779i −0.122892 0.154101i 0.716580 0.697505i \(-0.245707\pi\)
−0.839471 + 0.543404i \(0.817135\pi\)
\(294\) −2.86693 + 3.59501i −0.167203 + 0.209665i
\(295\) 22.9808 11.0670i 1.33799 0.644344i
\(296\) 29.0432 + 13.9865i 1.68810 + 0.812948i
\(297\) −1.72847 2.16744i −0.100296 0.125767i
\(298\) 3.89278 17.0554i 0.225503 0.987992i
\(299\) −0.721003 + 3.15892i −0.0416967 + 0.182685i
\(300\) −1.88087 + 2.35853i −0.108592 + 0.136170i
\(301\) −4.58368 20.0824i −0.264199 1.15753i
\(302\) 17.5561 1.01024
\(303\) −0.704365 3.08602i −0.0404647 0.177287i
\(304\) 14.9245 + 7.18728i 0.855981 + 0.412219i
\(305\) −13.7553 6.62420i −0.787626 0.379301i
\(306\) −0.684432 2.99869i −0.0391263 0.171424i
\(307\) −0.230862 −0.0131760 −0.00658799 0.999978i \(-0.502097\pi\)
−0.00658799 + 0.999978i \(0.502097\pi\)
\(308\) −0.695152 3.04566i −0.0396100 0.173543i
\(309\) 1.63349 2.04833i 0.0929260 0.116526i
\(310\) −3.21050 + 14.0661i −0.182344 + 0.798903i
\(311\) 5.60223 24.5450i 0.317673 1.39182i −0.523948 0.851750i \(-0.675541\pi\)
0.841622 0.540068i \(-0.181601\pi\)
\(312\) 2.21329 + 2.77537i 0.125303 + 0.157125i
\(313\) −8.99374 4.33116i −0.508356 0.244811i 0.162081 0.986777i \(-0.448179\pi\)
−0.670437 + 0.741966i \(0.733894\pi\)
\(314\) 10.4264 5.02109i 0.588396 0.283357i
\(315\) 3.38651 4.24655i 0.190808 0.239266i
\(316\) 6.20328 + 7.77867i 0.348962 + 0.437584i
\(317\) 24.9529 12.0167i 1.40149 0.674924i 0.428030 0.903765i \(-0.359208\pi\)
0.973464 + 0.228841i \(0.0734935\pi\)
\(318\) −6.26948 −0.351575
\(319\) 14.1858 4.65190i 0.794251 0.260456i
\(320\) 26.8952 1.50349
\(321\) 9.04649 4.35656i 0.504926 0.243160i
\(322\) −3.56129 4.46571i −0.198463 0.248864i
\(323\) 11.9033 14.9263i 0.662319 0.830522i
\(324\) 0.581409 0.279992i 0.0323005 0.0155551i
\(325\) 4.85599 + 2.33852i 0.269362 + 0.129718i
\(326\) −1.99160 2.49739i −0.110305 0.138318i
\(327\) 1.02752 4.50187i 0.0568221 0.248954i
\(328\) 6.11572 26.7947i 0.337684 1.47949i
\(329\) −7.99720 + 10.0282i −0.440900 + 0.552871i
\(330\) 2.23328 + 9.78462i 0.122938 + 0.538626i
\(331\) −23.2748 −1.27930 −0.639650 0.768666i \(-0.720921\pi\)
−0.639650 + 0.768666i \(0.720921\pi\)
\(332\) −0.605230 2.65169i −0.0332163 0.145530i
\(333\) −9.43297 4.54268i −0.516923 0.248937i
\(334\) 3.34465 + 1.61070i 0.183011 + 0.0881335i
\(335\) 0.313944 + 1.37548i 0.0171526 + 0.0751505i
\(336\) −4.00402 −0.218437
\(337\) −4.19011 18.3581i −0.228250 1.00003i −0.951066 0.308987i \(-0.900010\pi\)
0.722817 0.691040i \(-0.242847\pi\)
\(338\) −8.46926 + 10.6201i −0.460667 + 0.577658i
\(339\) 1.15483 5.05965i 0.0627218 0.274802i
\(340\) 1.18033 5.17135i 0.0640122 0.280456i
\(341\) −6.88853 8.63794i −0.373035 0.467771i
\(342\) −7.57579 3.64831i −0.409652 0.197278i
\(343\) 17.2287 8.29692i 0.930264 0.447992i
\(344\) −22.6446 + 28.3955i −1.22092 + 1.53098i
\(345\) −5.45009 6.83419i −0.293423 0.367941i
\(346\) −7.94647 + 3.82682i −0.427205 + 0.205731i
\(347\) −19.4007 −1.04148 −0.520741 0.853715i \(-0.674344\pi\)
−0.520741 + 0.853715i \(0.674344\pi\)
\(348\) 0.320913 + 3.46028i 0.0172027 + 0.185491i
\(349\) 9.57141 0.512346 0.256173 0.966631i \(-0.417538\pi\)
0.256173 + 0.966631i \(0.417538\pi\)
\(350\) −8.56030 + 4.12242i −0.457567 + 0.220353i
\(351\) −0.718855 0.901415i −0.0383696 0.0481140i
\(352\) −6.03072 + 7.56228i −0.321438 + 0.403071i
\(353\) 29.5123 14.2124i 1.57078 0.756449i 0.572784 0.819706i \(-0.305863\pi\)
0.997997 + 0.0632575i \(0.0201490\pi\)
\(354\) 8.59933 + 4.14122i 0.457049 + 0.220103i
\(355\) 22.5050 + 28.2203i 1.19444 + 1.49778i
\(356\) −0.291780 + 1.27837i −0.0154643 + 0.0677536i
\(357\) −1.02687 + 4.49900i −0.0543476 + 0.238113i
\(358\) −2.04057 + 2.55880i −0.107848 + 0.135237i
\(359\) −3.23031 14.1529i −0.170489 0.746963i −0.985798 0.167936i \(-0.946290\pi\)
0.815309 0.579027i \(-0.196567\pi\)
\(360\) −9.57670 −0.504736
\(361\) −7.38577 32.3592i −0.388725 1.70311i
\(362\) −7.38320 3.55556i −0.388052 0.186876i
\(363\) 2.98635 + 1.43815i 0.156743 + 0.0754834i
\(364\) −0.289107 1.26666i −0.0151533 0.0663910i
\(365\) −39.9854 −2.09293
\(366\) −1.27125 5.56971i −0.0664493 0.291133i
\(367\) 10.7255 13.4494i 0.559868 0.702052i −0.418665 0.908141i \(-0.637502\pi\)
0.978533 + 0.206088i \(0.0660734\pi\)
\(368\) −1.43390 + 6.28231i −0.0747470 + 0.327488i
\(369\) −1.98633 + 8.70268i −0.103404 + 0.453043i
\(370\) 23.6323 + 29.6340i 1.22859 + 1.54060i
\(371\) 8.47474 + 4.08122i 0.439986 + 0.211886i
\(372\) 2.31711 1.11586i 0.120136 0.0578546i
\(373\) 5.32000 6.67107i 0.275459 0.345415i −0.624788 0.780795i \(-0.714814\pi\)
0.900247 + 0.435380i \(0.143386\pi\)
\(374\) −5.31645 6.66662i −0.274907 0.344722i
\(375\) 0.911542 0.438976i 0.0470718 0.0226686i
\(376\) 22.6152 1.16629
\(377\) 5.89972 1.93468i 0.303851 0.0996410i
\(378\) 2.03246 0.104539
\(379\) 9.75482 4.69767i 0.501071 0.241303i −0.166236 0.986086i \(-0.553161\pi\)
0.667307 + 0.744783i \(0.267447\pi\)
\(380\) −9.04107 11.3371i −0.463797 0.581583i
\(381\) −9.36133 + 11.7387i −0.479595 + 0.601393i
\(382\) −4.64120 + 2.23508i −0.237464 + 0.114357i
\(383\) −18.0481 8.69151i −0.922215 0.444115i −0.0883534 0.996089i \(-0.528160\pi\)
−0.833861 + 0.551974i \(0.813875\pi\)
\(384\) 1.92409 + 2.41274i 0.0981885 + 0.123124i
\(385\) 3.35064 14.6801i 0.170764 0.748167i
\(386\) 1.04610 4.58326i 0.0532450 0.233282i
\(387\) 7.35477 9.22258i 0.373864 0.468810i
\(388\) 1.81879 + 7.96863i 0.0923349 + 0.404546i
\(389\) −30.9606 −1.56976 −0.784881 0.619646i \(-0.787276\pi\)
−0.784881 + 0.619646i \(0.787276\pi\)
\(390\) 0.928797 + 4.06933i 0.0470315 + 0.206058i
\(391\) 6.69121 + 3.22232i 0.338389 + 0.162960i
\(392\) −10.9591 5.27762i −0.553518 0.266560i
\(393\) 0.119127 + 0.521929i 0.00600915 + 0.0263278i
\(394\) 13.9562 0.703103
\(395\) 10.6711 + 46.7533i 0.536923 + 2.35241i
\(396\) 1.11541 1.39868i 0.0560515 0.0702863i
\(397\) −4.39793 + 19.2686i −0.220726 + 0.967063i 0.736208 + 0.676756i \(0.236615\pi\)
−0.956933 + 0.290307i \(0.906242\pi\)
\(398\) −0.356643 + 1.56256i −0.0178769 + 0.0783239i
\(399\) 7.86561 + 9.86316i 0.393773 + 0.493776i
\(400\) 9.65735 + 4.65074i 0.482868 + 0.232537i
\(401\) −16.7480 + 8.06542i −0.836356 + 0.402768i −0.802495 0.596659i \(-0.796495\pi\)
−0.0338611 + 0.999427i \(0.510780\pi\)
\(402\) −0.329163 + 0.412757i −0.0164172 + 0.0205865i
\(403\) −2.86487 3.59243i −0.142709 0.178952i
\(404\) 1.84038 0.886282i 0.0915626 0.0440942i
\(405\) 3.11042 0.154558
\(406\) −3.81799 + 10.2576i −0.189484 + 0.509079i
\(407\) −29.0250 −1.43871
\(408\) 7.33072 3.53029i 0.362925 0.174775i
\(409\) 19.6705 + 24.6660i 0.972643 + 1.21966i 0.975576 + 0.219661i \(0.0704950\pi\)
−0.00293293 + 0.999996i \(0.500934\pi\)
\(410\) 20.1488 25.2657i 0.995076 1.24779i
\(411\) −11.2359 + 5.41090i −0.554224 + 0.266900i
\(412\) 1.52324 + 0.733555i 0.0750448 + 0.0361397i
\(413\) −8.92831 11.1957i −0.439333 0.550906i
\(414\) 0.727855 3.18894i 0.0357721 0.156728i
\(415\) 2.91721 12.7811i 0.143200 0.627401i
\(416\) −2.50811 + 3.14508i −0.122970 + 0.154200i
\(417\) 1.93333 + 8.47048i 0.0946757 + 0.414801i
\(418\) −23.3105 −1.14015
\(419\) 5.20802 + 22.8178i 0.254428 + 1.11472i 0.927110 + 0.374791i \(0.122285\pi\)
−0.672681 + 0.739932i \(0.734857\pi\)
\(420\) 3.15795 + 1.52079i 0.154092 + 0.0742069i
\(421\) 0.355543 + 0.171220i 0.0173281 + 0.00834477i 0.442528 0.896755i \(-0.354082\pi\)
−0.425200 + 0.905100i \(0.639796\pi\)
\(422\) 4.49973 + 19.7146i 0.219044 + 0.959693i
\(423\) −7.34522 −0.357137
\(424\) −3.69046 16.1689i −0.179224 0.785233i
\(425\) 7.70239 9.65850i 0.373621 0.468506i
\(426\) −3.00552 + 13.1680i −0.145618 + 0.637994i
\(427\) −1.90729 + 8.35636i −0.0923000 + 0.404393i
\(428\) 4.03991 + 5.06589i 0.195276 + 0.244869i
\(429\) −2.87975 1.38681i −0.139036 0.0669560i
\(430\) −38.4758 + 18.5290i −1.85547 + 0.893546i
\(431\) −12.9796 + 16.2759i −0.625205 + 0.783983i −0.989066 0.147470i \(-0.952887\pi\)
0.363861 + 0.931453i \(0.381458\pi\)
\(432\) −1.42962 1.79269i −0.0687828 0.0862508i
\(433\) −0.269212 + 0.129646i −0.0129375 + 0.00623038i −0.440341 0.897830i \(-0.645143\pi\)
0.427404 + 0.904061i \(0.359428\pi\)
\(434\) 8.10003 0.388814
\(435\) −5.84294 + 15.6980i −0.280147 + 0.752661i
\(436\) 2.97983 0.142708
\(437\) 18.2921 8.80902i 0.875030 0.421392i
\(438\) −9.32889 11.6981i −0.445752 0.558955i
\(439\) 16.1485 20.2496i 0.770727 0.966461i −0.229249 0.973368i \(-0.573627\pi\)
0.999976 + 0.00690678i \(0.00219851\pi\)
\(440\) −23.9199 + 11.5192i −1.14034 + 0.549156i
\(441\) 3.55941 + 1.71412i 0.169496 + 0.0816248i
\(442\) −2.21106 2.77258i −0.105169 0.131878i
\(443\) −0.928033 + 4.06598i −0.0440922 + 0.193181i −0.992177 0.124836i \(-0.960160\pi\)
0.948085 + 0.318016i \(0.103017\pi\)
\(444\) 1.50342 6.58693i 0.0713494 0.312602i
\(445\) −3.94059 + 4.94135i −0.186802 + 0.234242i
\(446\) −3.59179 15.7367i −0.170076 0.745153i
\(447\) −15.0304 −0.710912
\(448\) −3.35993 14.7208i −0.158742 0.695493i
\(449\) 19.3037 + 9.29618i 0.910998 + 0.438714i 0.829849 0.557988i \(-0.188427\pi\)
0.0811496 + 0.996702i \(0.474141\pi\)
\(450\) −4.90213 2.36074i −0.231089 0.111286i
\(451\) 5.50661 + 24.1260i 0.259296 + 1.13605i
\(452\) 3.34904 0.157525
\(453\) −3.35645 14.7056i −0.157700 0.690928i
\(454\) 1.73477 2.17533i 0.0814166 0.102093i
\(455\) 1.39350 6.10531i 0.0653281 0.286221i
\(456\) 4.94956 21.6854i 0.231784 1.01551i
\(457\) 9.48836 + 11.8980i 0.443847 + 0.556566i 0.952553 0.304374i \(-0.0984473\pi\)
−0.508706 + 0.860940i \(0.669876\pi\)
\(458\) −1.12007 0.539396i −0.0523373 0.0252043i
\(459\) −2.38095 + 1.14660i −0.111133 + 0.0535189i
\(460\) 3.51703 4.41021i 0.163982 0.205627i
\(461\) −2.12415 2.66360i −0.0989316 0.124056i 0.729901 0.683553i \(-0.239566\pi\)
−0.828833 + 0.559496i \(0.810995\pi\)
\(462\) 5.07652 2.44472i 0.236181 0.113739i
\(463\) −20.8584 −0.969374 −0.484687 0.874688i \(-0.661066\pi\)
−0.484687 + 0.874688i \(0.661066\pi\)
\(464\) 11.7331 3.84759i 0.544695 0.178620i
\(465\) 12.3961 0.574853
\(466\) 26.9170 12.9626i 1.24691 0.600479i
\(467\) 10.8132 + 13.5593i 0.500373 + 0.627448i 0.966313 0.257368i \(-0.0828553\pi\)
−0.465940 + 0.884816i \(0.654284\pi\)
\(468\) 0.463888 0.581697i 0.0214432 0.0268890i
\(469\) 0.713635 0.343668i 0.0329526 0.0158691i
\(470\) 23.9581 + 11.5376i 1.10511 + 0.532191i
\(471\) −6.19919 7.77354i −0.285644 0.358186i
\(472\) −5.61828 + 24.6153i −0.258602 + 1.13301i
\(473\) 7.27685 31.8820i 0.334590 1.46593i
\(474\) −11.1884 + 14.0298i −0.513901 + 0.644411i
\(475\) −7.51495 32.9252i −0.344810 1.51071i
\(476\) −2.97794 −0.136494
\(477\) 1.19863 + 5.25152i 0.0548813 + 0.240451i
\(478\) 8.24191 + 3.96909i 0.376976 + 0.181542i
\(479\) 32.4935 + 15.6480i 1.48467 + 0.714977i 0.988213 0.153087i \(-0.0489214\pi\)
0.496452 + 0.868064i \(0.334636\pi\)
\(480\) −2.41489 10.5803i −0.110224 0.482923i
\(481\) −12.0712 −0.550399
\(482\) −6.33379 27.7501i −0.288496 1.26398i
\(483\) −3.05976 + 3.83682i −0.139224 + 0.174581i
\(484\) −0.475964 + 2.08534i −0.0216347 + 0.0947880i
\(485\) −8.76656 + 38.4088i −0.398069 + 1.74405i
\(486\) 0.725685 + 0.909981i 0.0329178 + 0.0412776i
\(487\) −11.8931 5.72743i −0.538929 0.259535i 0.144559 0.989496i \(-0.453824\pi\)
−0.683488 + 0.729961i \(0.739538\pi\)
\(488\) 13.6159 6.55709i 0.616364 0.296825i
\(489\) −1.71113 + 2.14569i −0.0773801 + 0.0970316i
\(490\) −8.91736 11.1820i −0.402845 0.505152i
\(491\) 22.3150 10.7464i 1.00706 0.484976i 0.143734 0.989616i \(-0.454089\pi\)
0.863330 + 0.504640i \(0.168375\pi\)
\(492\) −5.76040 −0.259699
\(493\) −1.31418 14.1703i −0.0591878 0.638199i
\(494\) −9.69460 −0.436181
\(495\) 7.76895 3.74133i 0.349188 0.168160i
\(496\) −5.69751 7.14446i −0.255826 0.320796i
\(497\) 12.6346 15.8433i 0.566741 0.710671i
\(498\) 4.41984 2.12848i 0.198058 0.0953795i
\(499\) −14.2485 6.86174i −0.637853 0.307174i 0.0868646 0.996220i \(-0.472315\pi\)
−0.724717 + 0.689047i \(0.758030\pi\)
\(500\) 0.407069 + 0.510449i 0.0182047 + 0.0228280i
\(501\) 0.709729 3.10953i 0.0317084 0.138923i
\(502\) 1.54828 6.78346i 0.0691031 0.302760i
\(503\) −14.6226 + 18.3361i −0.651988 + 0.817568i −0.992445 0.122693i \(-0.960847\pi\)
0.340456 + 0.940260i \(0.389418\pi\)
\(504\) 1.19639 + 5.24171i 0.0532913 + 0.233484i
\(505\) 9.84569 0.438127
\(506\) −2.01780 8.84056i −0.0897021 0.393011i
\(507\) 10.5149 + 5.06373i 0.466985 + 0.224888i
\(508\) −8.72951 4.20391i −0.387309 0.186518i
\(509\) −1.55265 6.80262i −0.0688202 0.301521i 0.928791 0.370605i \(-0.120850\pi\)
−0.997611 + 0.0690838i \(0.977992\pi\)
\(510\) 9.56706 0.423637
\(511\) 4.99524 + 21.8856i 0.220976 + 0.968161i
\(512\) −13.7914 + 17.2938i −0.609498 + 0.764286i
\(513\) −1.60757 + 7.04323i −0.0709760 + 0.310966i
\(514\) −6.97835 + 30.5741i −0.307802 + 1.34857i
\(515\) 5.08084 + 6.37118i 0.223889 + 0.280748i
\(516\) 6.85838 + 3.30282i 0.301923 + 0.145399i
\(517\) −18.3463 + 8.83510i −0.806868 + 0.388567i
\(518\) 13.2676 16.6370i 0.582943 0.730987i
\(519\) 4.72470 + 5.92459i 0.207391 + 0.260061i
\(520\) −9.94804 + 4.79072i −0.436250 + 0.210087i
\(521\) −20.4524 −0.896037 −0.448019 0.894024i \(-0.647870\pi\)
−0.448019 + 0.894024i \(0.647870\pi\)
\(522\) −5.95579 + 1.95306i −0.260678 + 0.0854832i
\(523\) −19.8313 −0.867162 −0.433581 0.901115i \(-0.642750\pi\)
−0.433581 + 0.901115i \(0.642750\pi\)
\(524\) −0.311258 + 0.149894i −0.0135974 + 0.00654815i
\(525\) 5.08967 + 6.38224i 0.222131 + 0.278544i
\(526\) 12.0706 15.1361i 0.526303 0.659964i
\(527\) −9.48885 + 4.56959i −0.413341 + 0.199055i
\(528\) −5.72710 2.75803i −0.249240 0.120028i
\(529\) −9.41603 11.8073i −0.409393 0.513362i
\(530\) 4.33932 19.0118i 0.188488 0.825820i
\(531\) 1.82476 7.99481i 0.0791880 0.346945i
\(532\) −5.07580 + 6.36485i −0.220064 + 0.275951i
\(533\) 2.29015 + 10.0338i 0.0991972 + 0.434611i
\(534\) −2.36501 −0.102344
\(535\) 6.94961 + 30.4482i 0.300458 + 1.31639i
\(536\) −1.25826 0.605944i −0.0543484 0.0261728i
\(537\) 2.53345 + 1.22005i 0.109327 + 0.0526489i
\(538\) −3.53149 15.4725i −0.152253 0.667066i
\(539\) 10.9522 0.471745
\(540\) 0.446645 + 1.95688i 0.0192205 + 0.0842107i
\(541\) 22.2616 27.9152i 0.957101 1.20017i −0.0226089 0.999744i \(-0.507197\pi\)
0.979710 0.200422i \(-0.0642313\pi\)
\(542\) 3.73017 16.3430i 0.160225 0.701990i
\(543\) −1.56670 + 6.86417i −0.0672337 + 0.294570i
\(544\) 5.74878 + 7.20874i 0.246477 + 0.309072i
\(545\) 12.9404 + 6.23179i 0.554308 + 0.266941i
\(546\) 2.11127 1.01674i 0.0903541 0.0435123i
\(547\) −6.16194 + 7.72683i −0.263466 + 0.330376i −0.895914 0.444227i \(-0.853478\pi\)
0.632449 + 0.774602i \(0.282050\pi\)
\(548\) −5.01762 6.29190i −0.214342 0.268776i
\(549\) −4.42233 + 2.12968i −0.188740 + 0.0908925i
\(550\) −15.0837 −0.643172
\(551\) −32.5267 21.3440i −1.38568 0.909284i
\(552\) 8.65269 0.368283
\(553\) 24.2568 11.6815i 1.03150 0.496746i
\(554\) −9.96339 12.4937i −0.423304 0.530806i
\(555\) 20.3043 25.4607i 0.861868 1.08075i
\(556\) −5.05147 + 2.43266i −0.214230 + 0.103168i
\(557\) 28.7227 + 13.8321i 1.21702 + 0.586085i 0.928480 0.371383i \(-0.121116\pi\)
0.288539 + 0.957468i \(0.406830\pi\)
\(558\) 2.89209 + 3.62657i 0.122432 + 0.153525i
\(559\) 3.02637 13.2594i 0.128002 0.560813i
\(560\) 2.77132 12.1419i 0.117110 0.513090i
\(561\) −4.56775 + 5.72778i −0.192851 + 0.241827i
\(562\) 0.0372149 + 0.163049i 0.00156981 + 0.00687781i
\(563\) −9.06052 −0.381855 −0.190928 0.981604i \(-0.561150\pi\)
−0.190928 + 0.981604i \(0.561150\pi\)
\(564\) −1.05475 4.62114i −0.0444128 0.194585i
\(565\) 14.5438 + 7.00391i 0.611861 + 0.294657i
\(566\) 9.26791 + 4.46319i 0.389560 + 0.187602i
\(567\) −0.388575 1.70246i −0.0163186 0.0714965i
\(568\) −35.7294 −1.49917
\(569\) 3.72126 + 16.3039i 0.156003 + 0.683496i 0.991070 + 0.133346i \(0.0425722\pi\)
−0.835066 + 0.550150i \(0.814571\pi\)
\(570\) 16.3067 20.4480i 0.683014 0.856472i
\(571\) 5.17962 22.6934i 0.216761 0.949690i −0.743093 0.669188i \(-0.766642\pi\)
0.959854 0.280502i \(-0.0905009\pi\)
\(572\) 0.458974 2.01090i 0.0191907 0.0840798i
\(573\) 2.75950 + 3.46030i 0.115280 + 0.144556i
\(574\) −16.3461 7.87185i −0.682272 0.328565i
\(575\) 11.8364 5.70013i 0.493613 0.237712i
\(576\) 5.39119 6.76034i 0.224633 0.281681i
\(577\) 11.8070 + 14.8056i 0.491533 + 0.616363i 0.964296 0.264826i \(-0.0853146\pi\)
−0.472763 + 0.881190i \(0.656743\pi\)
\(578\) 10.5036 5.05829i 0.436894 0.210397i
\(579\) −4.03908 −0.167858
\(580\) −10.7152 1.42183i −0.444925 0.0590383i
\(581\) −7.36006 −0.305347
\(582\) −13.2821 + 6.39634i −0.550562 + 0.265137i
\(583\) 9.31055 + 11.6751i 0.385603 + 0.483531i
\(584\) 24.6779 30.9451i 1.02118 1.28052i
\(585\) 3.23103 1.55598i 0.133587 0.0643319i
\(586\) 3.53799 + 1.70381i 0.146153 + 0.0703835i
\(587\) −0.0141875 0.0177906i −0.000585581 0.000734295i 0.781539 0.623857i \(-0.214435\pi\)
−0.782124 + 0.623123i \(0.785864\pi\)
\(588\) −0.567298 + 2.48549i −0.0233950 + 0.102500i
\(589\) −6.40669 + 28.0696i −0.263983 + 1.15659i
\(590\) −18.5099 + 23.2107i −0.762040 + 0.955568i
\(591\) −2.66820 11.6902i −0.109755 0.480869i
\(592\) −24.0066 −0.986665
\(593\) −0.0784633 0.343770i −0.00322210 0.0141170i 0.973291 0.229574i \(-0.0737332\pi\)
−0.976513 + 0.215457i \(0.930876\pi\)
\(594\) 2.90711 + 1.39999i 0.119280 + 0.0574424i
\(595\) −12.9322 6.22783i −0.530169 0.255316i
\(596\) −2.15830 9.45615i −0.0884076 0.387339i
\(597\) 1.37703 0.0563582
\(598\) −0.839183 3.67670i −0.0343167 0.150351i
\(599\) 5.02946 6.30675i 0.205498 0.257687i −0.668393 0.743808i \(-0.733017\pi\)
0.873891 + 0.486122i \(0.161589\pi\)
\(600\) 3.20275 14.0322i 0.130752 0.572862i
\(601\) 4.86790 21.3277i 0.198566 0.869974i −0.773226 0.634131i \(-0.781358\pi\)
0.971791 0.235842i \(-0.0757849\pi\)
\(602\) 14.9483 + 18.7446i 0.609247 + 0.763972i
\(603\) 0.408670 + 0.196805i 0.0166423 + 0.00801451i
\(604\) 8.76983 4.22333i 0.356839 0.171845i
\(605\) −6.42807 + 8.06054i −0.261338 + 0.327708i
\(606\) 2.29707 + 2.88044i 0.0933123 + 0.117010i
\(607\) 2.92395 1.40810i 0.118680 0.0571530i −0.373602 0.927589i \(-0.621877\pi\)
0.492281 + 0.870436i \(0.336163\pi\)
\(608\) 25.2061 1.02224
\(609\) 9.32208 + 1.23697i 0.377750 + 0.0501246i
\(610\) 17.7697 0.719473
\(611\) −7.63003 + 3.67443i −0.308678 + 0.148651i
\(612\) −1.06326 1.33329i −0.0429799 0.0538951i
\(613\) −5.82061 + 7.29882i −0.235092 + 0.294797i −0.885358 0.464911i \(-0.846086\pi\)
0.650265 + 0.759707i \(0.274658\pi\)
\(614\) 0.242092 0.116585i 0.00977005 0.00470501i
\(615\) −25.0155 12.0468i −1.00872 0.485776i
\(616\) 9.29315 + 11.6532i 0.374432 + 0.469522i
\(617\) −4.93142 + 21.6059i −0.198531 + 0.869823i 0.773280 + 0.634064i \(0.218615\pi\)
−0.971812 + 0.235758i \(0.924243\pi\)
\(618\) −0.678543 + 2.97289i −0.0272950 + 0.119587i
\(619\) −4.06400 + 5.09610i −0.163346 + 0.204829i −0.856768 0.515703i \(-0.827531\pi\)
0.693422 + 0.720532i \(0.256102\pi\)
\(620\) 1.78003 + 7.79880i 0.0714876 + 0.313207i
\(621\) −2.81031 −0.112774
\(622\) 6.52049 + 28.5681i 0.261448 + 1.14548i
\(623\) 3.19688 + 1.53954i 0.128080 + 0.0616803i
\(624\) −2.38185 1.14704i −0.0953501 0.0459182i
\(625\) 5.90138 + 25.8556i 0.236055 + 1.03423i
\(626\) 11.6185 0.464368
\(627\) 4.45660 + 19.5256i 0.177979 + 0.779778i
\(628\) 4.00044 5.01639i 0.159635 0.200176i
\(629\) −6.15672 + 26.9744i −0.245485 + 1.07554i
\(630\) −1.40674 + 6.16332i −0.0560458 + 0.245553i
\(631\) −14.9507 18.7476i −0.595179 0.746331i 0.389439 0.921052i \(-0.372669\pi\)
−0.984618 + 0.174721i \(0.944098\pi\)
\(632\) −42.7687 20.5963i −1.70125 0.819278i
\(633\) 15.6533 7.53825i 0.622164 0.299618i
\(634\) −20.0983 + 25.2025i −0.798206 + 1.00092i
\(635\) −29.1177 36.5124i −1.15550 1.44895i
\(636\) −3.13180 + 1.50820i −0.124184 + 0.0598039i
\(637\) 4.55491 0.180472
\(638\) −12.5266 + 12.0420i −0.495935 + 0.476749i
\(639\) 11.6046 0.459070
\(640\) −8.64820 + 4.16476i −0.341850 + 0.164626i
\(641\) 27.4148 + 34.3771i 1.08282 + 1.35781i 0.929154 + 0.369692i \(0.120537\pi\)
0.153667 + 0.988123i \(0.450892\pi\)
\(642\) −7.28650 + 9.13698i −0.287575 + 0.360608i
\(643\) −14.8855 + 7.16846i −0.587025 + 0.282697i −0.703727 0.710470i \(-0.748482\pi\)
0.116702 + 0.993167i \(0.462768\pi\)
\(644\) −2.85325 1.37405i −0.112434 0.0541454i
\(645\) 22.8764 + 28.6861i 0.900758 + 1.12952i
\(646\) −4.94458 + 21.6636i −0.194542 + 0.852343i
\(647\) 7.84873 34.3875i 0.308565 1.35191i −0.548261 0.836307i \(-0.684710\pi\)
0.856826 0.515605i \(-0.172433\pi\)
\(648\) −1.91967 + 2.40719i −0.0754116 + 0.0945632i
\(649\) −5.05871 22.1637i −0.198572 0.870000i
\(650\) −6.27317 −0.246054
\(651\) −1.54860 6.78485i −0.0606943 0.265919i
\(652\) −1.59564 0.768422i −0.0624903 0.0300937i
\(653\) −15.1503 7.29602i −0.592878 0.285515i 0.113287 0.993562i \(-0.463862\pi\)
−0.706165 + 0.708047i \(0.749576\pi\)
\(654\) 1.19594 + 5.23976i 0.0467650 + 0.204891i
\(655\) −1.66517 −0.0650635
\(656\) 4.55453 + 19.9547i 0.177824 + 0.779100i
\(657\) −8.01514 + 10.0507i −0.312700 + 0.392114i
\(658\) 3.32199 14.5546i 0.129505 0.567397i
\(659\) −0.668451 + 2.92867i −0.0260392 + 0.114085i −0.986277 0.165097i \(-0.947206\pi\)
0.960238 + 0.279182i \(0.0900633\pi\)
\(660\) 3.46940 + 4.35049i 0.135046 + 0.169342i
\(661\) −34.5193 16.6236i −1.34264 0.646583i −0.381948 0.924184i \(-0.624746\pi\)
−0.960697 + 0.277601i \(0.910461\pi\)
\(662\) 24.4071 11.7538i 0.948607 0.456825i
\(663\) −1.89968 + 2.38213i −0.0737776 + 0.0925141i
\(664\) 8.09102 + 10.1458i 0.313992 + 0.393734i
\(665\) −35.3535 + 17.0253i −1.37095 + 0.660214i
\(666\) 12.1859 0.472194
\(667\) 5.27918 14.1834i 0.204411 0.549183i
\(668\) 2.05823 0.0796353
\(669\) −12.4949 + 6.01721i −0.483079 + 0.232639i
\(670\) −1.02384 1.28385i −0.0395542 0.0495994i
\(671\) −8.48405 + 10.6387i −0.327523 + 0.410701i
\(672\) −5.48934 + 2.64353i −0.211756 + 0.101976i
\(673\) 24.6701 + 11.8805i 0.950963 + 0.457960i 0.844024 0.536306i \(-0.180181\pi\)
0.106939 + 0.994266i \(0.465895\pi\)
\(674\) 13.6648 + 17.1351i 0.526348 + 0.660019i
\(675\) −1.04022 + 4.55752i −0.0400383 + 0.175419i
\(676\) −1.67587 + 7.34246i −0.0644565 + 0.282402i
\(677\) 17.8546 22.3890i 0.686209 0.860479i −0.309700 0.950834i \(-0.600229\pi\)
0.995910 + 0.0903549i \(0.0288001\pi\)
\(678\) 1.34412 + 5.88897i 0.0516206 + 0.226165i
\(679\) 22.1178 0.848805
\(680\) 5.63154 + 24.6734i 0.215960 + 0.946181i
\(681\) −2.15378 1.03721i −0.0825332 0.0397459i
\(682\) 11.5858 + 5.57943i 0.443643 + 0.213647i
\(683\) −2.80121 12.2729i −0.107185 0.469609i −0.999823 0.0188337i \(-0.994005\pi\)
0.892637 0.450775i \(-0.148852\pi\)
\(684\) −4.66199 −0.178256
\(685\) −8.63150 37.8171i −0.329793 1.44492i
\(686\) −13.8769 + 17.4011i −0.529822 + 0.664376i
\(687\) −0.237676 + 1.04133i −0.00906792 + 0.0397292i
\(688\) 6.01870 26.3696i 0.229461 1.00533i
\(689\) 3.87216 + 4.85554i 0.147518 + 0.184981i
\(690\) 9.16649 + 4.41435i 0.348962 + 0.168051i
\(691\) −36.0563 + 17.3638i −1.37165 + 0.660550i −0.967201 0.254012i \(-0.918250\pi\)
−0.404446 + 0.914562i \(0.632536\pi\)
\(692\) −3.04892 + 3.82323i −0.115903 + 0.145337i
\(693\) −3.01833 3.78486i −0.114657 0.143775i
\(694\) 20.3444 9.79736i 0.772264 0.371903i
\(695\) −27.0243 −1.02509
\(696\) −8.54274 14.2103i −0.323812 0.538639i
\(697\) 23.5896 0.893520
\(698\) −10.0370 + 4.83358i −0.379907 + 0.182954i
\(699\) −16.0040 20.0683i −0.605326 0.759054i
\(700\) −3.28444 + 4.11856i −0.124140 + 0.155667i
\(701\) 11.6102 5.59119i 0.438512 0.211176i −0.201584 0.979471i \(-0.564609\pi\)
0.640096 + 0.768295i \(0.278895\pi\)
\(702\) 1.20904 + 0.582243i 0.0456323 + 0.0219753i
\(703\) 47.1593 + 59.1359i 1.77865 + 2.23035i
\(704\) 5.33408 23.3701i 0.201036 0.880795i
\(705\) 5.08388 22.2739i 0.191470 0.838884i
\(706\) −23.7707 + 29.8075i −0.894622 + 1.12182i
\(707\) −1.22999 5.38894i −0.0462585 0.202672i
\(708\) 5.29186 0.198880
\(709\) 0.139525 + 0.611300i 0.00523998 + 0.0229578i 0.977480 0.211027i \(-0.0676807\pi\)
−0.972240 + 0.233984i \(0.924824\pi\)
\(710\) −37.8511 18.2281i −1.42052 0.684089i
\(711\) 13.8909 + 6.68950i 0.520949 + 0.250876i
\(712\) −1.39213 6.09933i −0.0521724 0.228582i
\(713\) −11.2000 −0.419444
\(714\) −1.19518 5.23643i −0.0447285 0.195969i
\(715\) 6.19860 7.77280i 0.231814 0.290686i
\(716\) −0.403781 + 1.76908i −0.0150900 + 0.0661137i
\(717\) 1.74892 7.66252i 0.0653146 0.286162i
\(718\) 10.5347 + 13.2101i 0.393151 + 0.492996i
\(719\) −31.9194 15.3716i −1.19039 0.573263i −0.269471 0.963009i \(-0.586849\pi\)
−0.920923 + 0.389745i \(0.872563\pi\)
\(720\) 6.42571 3.09446i 0.239472 0.115324i
\(721\) 2.85247 3.57688i 0.106231 0.133210i
\(722\) 24.0865 + 30.2035i 0.896406 + 1.12406i
\(723\) −22.0335 + 10.6108i −0.819435 + 0.394619i
\(724\) −4.54347 −0.168857
\(725\) −21.0473 13.8112i −0.781677 0.512936i
\(726\) −3.85790 −0.143180
\(727\) 17.5000 8.42754i 0.649038 0.312560i −0.0802424 0.996775i \(-0.525569\pi\)
0.729280 + 0.684215i \(0.239855\pi\)
\(728\) 3.86493 + 4.84647i 0.143244 + 0.179622i
\(729\) 0.623490 0.781831i 0.0230922 0.0289567i
\(730\) 41.9305 20.1927i 1.55192 0.747364i
\(731\) −28.0860 13.5255i −1.03880 0.500258i
\(732\) −1.97489 2.47643i −0.0729940 0.0915315i
\(733\) 5.58097 24.4518i 0.206138 0.903148i −0.760971 0.648786i \(-0.775277\pi\)
0.967109 0.254363i \(-0.0818656\pi\)
\(734\) −4.45532 + 19.5201i −0.164449 + 0.720498i
\(735\) −7.66156 + 9.60729i −0.282601 + 0.354370i
\(736\) 2.18189 + 9.55947i 0.0804254 + 0.352367i
\(737\) 1.25746 0.0463193
\(738\) −2.31191 10.1291i −0.0851025 0.372858i
\(739\) −47.6184 22.9318i −1.75167 0.843560i −0.977603 0.210458i \(-0.932505\pi\)
−0.774068 0.633103i \(-0.781781\pi\)
\(740\) 18.9339 + 9.11808i 0.696024 + 0.335187i
\(741\) 1.85345 + 8.12051i 0.0680883 + 0.298314i
\(742\) −10.9480 −0.401914
\(743\) −3.53331 15.4804i −0.129625 0.567922i −0.997470 0.0710881i \(-0.977353\pi\)
0.867845 0.496834i \(-0.165504\pi\)
\(744\) −7.65050 + 9.59342i −0.280481 + 0.351712i
\(745\) 10.4030 45.5787i 0.381138 1.66987i
\(746\) −2.20990 + 9.68219i −0.0809101 + 0.354490i
\(747\) −2.62789 3.29527i −0.0961494 0.120567i
\(748\) −4.25947 2.05125i −0.155741 0.0750011i
\(749\) 15.7973 7.60760i 0.577222 0.277976i
\(750\) −0.734202 + 0.920660i −0.0268093 + 0.0336177i
\(751\) −5.78372 7.25256i −0.211051 0.264650i 0.665027 0.746820i \(-0.268420\pi\)
−0.876078 + 0.482170i \(0.839849\pi\)
\(752\) −15.1742 + 7.30752i −0.553347 + 0.266478i
\(753\) −5.97805 −0.217852
\(754\) −5.20971 + 5.00816i −0.189726 + 0.182386i
\(755\) 46.9168 1.70748
\(756\) 1.01528 0.488933i 0.0369254 0.0177823i
\(757\) −3.73161 4.67930i −0.135628 0.170072i 0.709379 0.704827i \(-0.248975\pi\)
−0.845007 + 0.534755i \(0.820404\pi\)
\(758\) −7.85702 + 9.85239i −0.285380 + 0.357855i
\(759\) −7.01936 + 3.38035i −0.254787 + 0.122699i
\(760\) 62.3340 + 30.0185i 2.26109 + 1.08888i
\(761\) 13.1939 + 16.5446i 0.478279 + 0.599743i 0.961177 0.275934i \(-0.0889872\pi\)
−0.482898 + 0.875677i \(0.660416\pi\)
\(762\) 3.88864 17.0373i 0.140871 0.617195i
\(763\) 1.79430 7.86134i 0.0649580 0.284599i
\(764\) −1.78075 + 2.23299i −0.0644252 + 0.0807866i
\(765\) −1.82907