Properties

Label 87.2.g.a.49.1
Level $87$
Weight $2$
Character 87.49
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 49.1
Root \(1.10857 - 1.39010i\) of defining polynomial
Character \(\chi\) \(=\) 87.49
Dual form 87.2.g.a.16.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.50290 + 1.20533i) q^{2} +(0.623490 + 0.781831i) q^{3} +(3.56470 - 4.46999i) q^{4} +(2.28635 - 1.10105i) q^{5} +(-2.50290 - 1.20533i) q^{6} +(0.527912 + 0.661981i) q^{7} +(-2.29793 + 10.0679i) q^{8} +(-0.222521 + 0.974928i) q^{9} +O(q^{10})\) \(q+(-2.50290 + 1.20533i) q^{2} +(0.623490 + 0.781831i) q^{3} +(3.56470 - 4.46999i) q^{4} +(2.28635 - 1.10105i) q^{5} +(-2.50290 - 1.20533i) q^{6} +(0.527912 + 0.661981i) q^{7} +(-2.29793 + 10.0679i) q^{8} +(-0.222521 + 0.974928i) q^{9} +(-4.39538 + 5.51163i) q^{10} +(-0.279921 - 1.22641i) q^{11} +5.71733 q^{12} +(0.494312 + 2.16572i) q^{13} +(-2.11922 - 1.02056i) q^{14} +(2.28635 + 1.10105i) q^{15} +(-3.83921 - 16.8207i) q^{16} +3.75587 q^{17} +(-0.618165 - 2.70836i) q^{18} +(-1.84230 + 2.31017i) q^{19} +(3.22848 - 14.1449i) q^{20} +(-0.188410 + 0.825477i) q^{21} +(2.17885 + 2.73219i) q^{22} +(-5.78259 - 2.78475i) q^{23} +(-9.30411 + 4.48063i) q^{24} +(0.897653 - 1.12562i) q^{25} +(-3.84763 - 4.82478i) q^{26} +(-0.900969 + 0.433884i) q^{27} +4.84090 q^{28} +(4.24261 - 3.31666i) q^{29} -7.04965 q^{30} +(-0.518900 + 0.249889i) q^{31} +(17.0064 + 21.3253i) q^{32} +(0.784321 - 0.983507i) q^{33} +(-9.40056 + 4.52707i) q^{34} +(1.93587 + 0.932265i) q^{35} +(3.56470 + 4.46999i) q^{36} +(0.893407 - 3.91427i) q^{37} +(1.82657 - 8.00271i) q^{38} +(-1.38503 + 1.73677i) q^{39} +(5.83136 + 25.5489i) q^{40} -9.29991 q^{41} +(-0.523404 - 2.29318i) q^{42} +(-8.60331 - 4.14313i) q^{43} +(-6.47989 - 3.12055i) q^{44} +(0.564683 + 2.47404i) q^{45} +17.8298 q^{46} +(0.626576 + 2.74521i) q^{47} +(10.7572 - 13.4891i) q^{48} +(1.39812 - 6.12556i) q^{49} +(-0.889987 + 3.89929i) q^{50} +(2.34175 + 2.93646i) q^{51} +(11.4428 + 5.51058i) q^{52} +(-3.55697 + 1.71295i) q^{53} +(1.73206 - 2.17193i) q^{54} +(-1.99034 - 2.49581i) q^{55} +(-7.87785 + 3.79377i) q^{56} -2.95482 q^{57} +(-6.62115 + 13.4150i) q^{58} +2.24563 q^{59} +(13.0718 - 6.29507i) q^{60} +(-2.97162 - 3.72629i) q^{61} +(0.997555 - 1.25089i) q^{62} +(-0.762856 + 0.367372i) q^{63} +(-37.1800 - 17.9050i) q^{64} +(3.51474 + 4.40735i) q^{65} +(-0.777623 + 3.40699i) q^{66} +(0.0320387 - 0.140371i) q^{67} +(13.3885 - 16.7887i) q^{68} +(-1.42818 - 6.25727i) q^{69} -5.96898 q^{70} +(1.13905 + 4.99050i) q^{71} +(-9.30411 - 4.48063i) q^{72} +(-1.24324 - 0.598712i) q^{73} +(2.48189 + 10.8739i) q^{74} +1.43972 q^{75} +(3.75920 + 16.4701i) q^{76} +(0.664089 - 0.832741i) q^{77} +(1.37320 - 6.01640i) q^{78} +(-0.0599388 + 0.262609i) q^{79} +(-27.2982 - 34.2308i) q^{80} +(-0.900969 - 0.433884i) q^{81} +(23.2767 - 11.2095i) q^{82} +(-4.26140 + 5.34363i) q^{83} +(3.01825 + 3.78477i) q^{84} +(8.58724 - 4.13540i) q^{85} +26.5271 q^{86} +(5.23830 + 1.24910i) q^{87} +12.9906 q^{88} +(4.15363 - 2.00028i) q^{89} +(-4.39538 - 5.51163i) q^{90} +(-1.17271 + 1.47054i) q^{91} +(-33.0610 + 15.9213i) q^{92} +(-0.518900 - 0.249889i) q^{93} +(-4.87715 - 6.11575i) q^{94} +(-1.66853 + 7.31033i) q^{95} +(-6.06950 + 26.5922i) q^{96} +(-2.88047 + 3.61199i) q^{97} +(3.88399 + 17.0169i) q^{98} +1.25795 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.50290 + 1.20533i −1.76982 + 0.852299i −0.803351 + 0.595506i \(0.796952\pi\)
−0.966466 + 0.256793i \(0.917334\pi\)
\(3\) 0.623490 + 0.781831i 0.359972 + 0.451391i
\(4\) 3.56470 4.46999i 1.78235 2.23500i
\(5\) 2.28635 1.10105i 1.02249 0.492404i 0.153977 0.988074i \(-0.450792\pi\)
0.868511 + 0.495670i \(0.165077\pi\)
\(6\) −2.50290 1.20533i −1.02180 0.492075i
\(7\) 0.527912 + 0.661981i 0.199532 + 0.250205i 0.871524 0.490353i \(-0.163132\pi\)
−0.671992 + 0.740559i \(0.734561\pi\)
\(8\) −2.29793 + 10.0679i −0.812440 + 3.55953i
\(9\) −0.222521 + 0.974928i −0.0741736 + 0.324976i
\(10\) −4.39538 + 5.51163i −1.38994 + 1.74293i
\(11\) −0.279921 1.22641i −0.0843993 0.369778i 0.915036 0.403372i \(-0.132162\pi\)
−0.999436 + 0.0335941i \(0.989305\pi\)
\(12\) 5.71733 1.65045
\(13\) 0.494312 + 2.16572i 0.137098 + 0.600663i 0.996064 + 0.0886323i \(0.0282496\pi\)
−0.858967 + 0.512031i \(0.828893\pi\)
\(14\) −2.11922 1.02056i −0.566385 0.272757i
\(15\) 2.28635 + 1.10105i 0.590334 + 0.284290i
\(16\) −3.83921 16.8207i −0.959802 4.20517i
\(17\) 3.75587 0.910932 0.455466 0.890253i \(-0.349473\pi\)
0.455466 + 0.890253i \(0.349473\pi\)
\(18\) −0.618165 2.70836i −0.145703 0.638366i
\(19\) −1.84230 + 2.31017i −0.422652 + 0.529989i −0.946879 0.321589i \(-0.895783\pi\)
0.524227 + 0.851579i \(0.324354\pi\)
\(20\) 3.22848 14.1449i 0.721910 3.16289i
\(21\) −0.188410 + 0.825477i −0.0411144 + 0.180134i
\(22\) 2.17885 + 2.73219i 0.464532 + 0.582505i
\(23\) −5.78259 2.78475i −1.20575 0.580660i −0.280443 0.959871i \(-0.590481\pi\)
−0.925310 + 0.379211i \(0.876196\pi\)
\(24\) −9.30411 + 4.48063i −1.89919 + 0.914604i
\(25\) 0.897653 1.12562i 0.179531 0.225124i
\(26\) −3.84763 4.82478i −0.754582 0.946216i
\(27\) −0.900969 + 0.433884i −0.173392 + 0.0835010i
\(28\) 4.84090 0.914844
\(29\) 4.24261 3.31666i 0.787833 0.615889i
\(30\) −7.04965 −1.28708
\(31\) −0.518900 + 0.249889i −0.0931972 + 0.0448814i −0.479902 0.877322i \(-0.659328\pi\)
0.386704 + 0.922204i \(0.373613\pi\)
\(32\) 17.0064 + 21.3253i 3.00633 + 3.76982i
\(33\) 0.784321 0.983507i 0.136533 0.171207i
\(34\) −9.40056 + 4.52707i −1.61218 + 0.776386i
\(35\) 1.93587 + 0.932265i 0.327222 + 0.157582i
\(36\) 3.56470 + 4.46999i 0.594117 + 0.744999i
\(37\) 0.893407 3.91427i 0.146875 0.643502i −0.846867 0.531805i \(-0.821514\pi\)
0.993742 0.111698i \(-0.0356288\pi\)
\(38\) 1.82657 8.00271i 0.296308 1.29821i
\(39\) −1.38503 + 1.73677i −0.221783 + 0.278107i
\(40\) 5.83136 + 25.5489i 0.922019 + 4.03963i
\(41\) −9.29991 −1.45240 −0.726201 0.687482i \(-0.758716\pi\)
−0.726201 + 0.687482i \(0.758716\pi\)
\(42\) −0.523404 2.29318i −0.0807630 0.353846i
\(43\) −8.60331 4.14313i −1.31199 0.631822i −0.358582 0.933498i \(-0.616740\pi\)
−0.953410 + 0.301676i \(0.902454\pi\)
\(44\) −6.47989 3.12055i −0.976880 0.470441i
\(45\) 0.564683 + 2.47404i 0.0841779 + 0.368808i
\(46\) 17.8298 2.62886
\(47\) 0.626576 + 2.74521i 0.0913956 + 0.400430i 0.999846 0.0175630i \(-0.00559076\pi\)
−0.908450 + 0.417993i \(0.862734\pi\)
\(48\) 10.7572 13.4891i 1.55267 1.94699i
\(49\) 1.39812 6.12556i 0.199731 0.875080i
\(50\) −0.889987 + 3.89929i −0.125863 + 0.551443i
\(51\) 2.34175 + 2.93646i 0.327910 + 0.411186i
\(52\) 11.4428 + 5.51058i 1.58684 + 0.764180i
\(53\) −3.55697 + 1.71295i −0.488587 + 0.235291i −0.661923 0.749571i \(-0.730260\pi\)
0.173336 + 0.984863i \(0.444545\pi\)
\(54\) 1.73206 2.17193i 0.235704 0.295563i
\(55\) −1.99034 2.49581i −0.268377 0.336535i
\(56\) −7.87785 + 3.79377i −1.05272 + 0.506964i
\(57\) −2.95482 −0.391375
\(58\) −6.62115 + 13.4150i −0.869400 + 1.76148i
\(59\) 2.24563 0.292356 0.146178 0.989258i \(-0.453303\pi\)
0.146178 + 0.989258i \(0.453303\pi\)
\(60\) 13.0718 6.29507i 1.68757 0.812690i
\(61\) −2.97162 3.72629i −0.380477 0.477103i 0.554311 0.832310i \(-0.312982\pi\)
−0.934788 + 0.355207i \(0.884410\pi\)
\(62\) 0.997555 1.25089i 0.126690 0.158864i
\(63\) −0.762856 + 0.367372i −0.0961108 + 0.0462845i
\(64\) −37.1800 17.9050i −4.64750 2.23812i
\(65\) 3.51474 + 4.40735i 0.435950 + 0.546664i
\(66\) −0.777623 + 3.40699i −0.0957187 + 0.419371i
\(67\) 0.0320387 0.140371i 0.00391415 0.0171490i −0.972933 0.231087i \(-0.925772\pi\)
0.976847 + 0.213938i \(0.0686290\pi\)
\(68\) 13.3885 16.7887i 1.62360 2.03593i
\(69\) −1.42818 6.25727i −0.171933 0.753287i
\(70\) −5.96898 −0.713429
\(71\) 1.13905 + 4.99050i 0.135180 + 0.592264i 0.996455 + 0.0841244i \(0.0268093\pi\)
−0.861275 + 0.508139i \(0.830334\pi\)
\(72\) −9.30411 4.48063i −1.09650 0.528047i
\(73\) −1.24324 0.598712i −0.145510 0.0700739i 0.359712 0.933063i \(-0.382875\pi\)
−0.505222 + 0.862990i \(0.668589\pi\)
\(74\) 2.48189 + 10.8739i 0.288514 + 1.26406i
\(75\) 1.43972 0.166245
\(76\) 3.75920 + 16.4701i 0.431210 + 1.88925i
\(77\) 0.664089 0.832741i 0.0756800 0.0948997i
\(78\) 1.37320 6.01640i 0.155485 0.681223i
\(79\) −0.0599388 + 0.262609i −0.00674364 + 0.0295458i −0.978188 0.207722i \(-0.933395\pi\)
0.971444 + 0.237268i \(0.0762520\pi\)
\(80\) −27.2982 34.2308i −3.05203 3.82712i
\(81\) −0.900969 0.433884i −0.100108 0.0482093i
\(82\) 23.2767 11.2095i 2.57049 1.23788i
\(83\) −4.26140 + 5.34363i −0.467750 + 0.586540i −0.958619 0.284694i \(-0.908108\pi\)
0.490869 + 0.871234i \(0.336680\pi\)
\(84\) 3.01825 + 3.78477i 0.329318 + 0.412952i
\(85\) 8.58724 4.13540i 0.931417 0.448547i
\(86\) 26.5271 2.86049
\(87\) 5.23830 + 1.24910i 0.561604 + 0.133918i
\(88\) 12.9906 1.38480
\(89\) 4.15363 2.00028i 0.440284 0.212030i −0.200590 0.979675i \(-0.564286\pi\)
0.640875 + 0.767645i \(0.278572\pi\)
\(90\) −4.39538 5.51163i −0.463314 0.580977i
\(91\) −1.17271 + 1.47054i −0.122934 + 0.154154i
\(92\) −33.0610 + 15.9213i −3.44685 + 1.65991i
\(93\) −0.518900 0.249889i −0.0538074 0.0259123i
\(94\) −4.87715 6.11575i −0.503040 0.630792i
\(95\) −1.66853 + 7.31033i −0.171188 + 0.750024i
\(96\) −6.06950 + 26.5922i −0.619466 + 2.71406i
\(97\) −2.88047 + 3.61199i −0.292467 + 0.366742i −0.906257 0.422727i \(-0.861073\pi\)
0.613790 + 0.789469i \(0.289644\pi\)
\(98\) 3.88399 + 17.0169i 0.392342 + 1.71896i
\(99\) 1.25795 0.126429
\(100\) −1.83165 8.02500i −0.183165 0.802500i
\(101\) 8.21134 + 3.95437i 0.817059 + 0.393475i 0.795246 0.606287i \(-0.207342\pi\)
0.0218131 + 0.999762i \(0.493056\pi\)
\(102\) −9.40056 4.52707i −0.930794 0.448247i
\(103\) 3.20560 + 14.0446i 0.315857 + 1.38386i 0.844745 + 0.535168i \(0.179752\pi\)
−0.528889 + 0.848691i \(0.677391\pi\)
\(104\) −22.9401 −2.24946
\(105\) 0.478120 + 2.09478i 0.0466597 + 0.204430i
\(106\) 6.83807 8.57466i 0.664172 0.832845i
\(107\) 0.407981 1.78748i 0.0394410 0.172802i −0.951371 0.308046i \(-0.900325\pi\)
0.990812 + 0.135244i \(0.0431819\pi\)
\(108\) −1.27223 + 5.57399i −0.122420 + 0.536357i
\(109\) 8.94438 + 11.2159i 0.856716 + 1.07429i 0.996457 + 0.0840999i \(0.0268015\pi\)
−0.139741 + 0.990188i \(0.544627\pi\)
\(110\) 7.98990 + 3.84773i 0.761807 + 0.366867i
\(111\) 3.61733 1.74201i 0.343342 0.165345i
\(112\) 9.10820 11.4213i 0.860644 1.07921i
\(113\) −7.34424 9.20939i −0.690888 0.866346i 0.305418 0.952218i \(-0.401204\pi\)
−0.996306 + 0.0858722i \(0.972632\pi\)
\(114\) 7.39561 3.56154i 0.692663 0.333569i
\(115\) −16.2872 −1.51879
\(116\) 0.298185 30.7873i 0.0276858 2.85853i
\(117\) −2.22142 −0.205370
\(118\) −5.62059 + 2.70673i −0.517417 + 0.249175i
\(119\) 1.98277 + 2.48631i 0.181760 + 0.227920i
\(120\) −16.3391 + 20.4886i −1.49155 + 1.87034i
\(121\) 8.48492 4.08612i 0.771357 0.371466i
\(122\) 11.9291 + 5.74474i 1.08001 + 0.520104i
\(123\) −5.79840 7.27096i −0.522824 0.655601i
\(124\) −0.732720 + 3.21026i −0.0658002 + 0.288290i
\(125\) −2.01043 + 8.80825i −0.179818 + 0.787834i
\(126\) 1.46655 1.83899i 0.130650 0.163830i
\(127\) −2.67677 11.7277i −0.237524 1.04066i −0.943226 0.332153i \(-0.892225\pi\)
0.705701 0.708510i \(-0.250632\pi\)
\(128\) 60.0872 5.31100
\(129\) −2.12484 9.30954i −0.187082 0.819659i
\(130\) −14.1094 6.79471i −1.23747 0.595936i
\(131\) 2.14780 + 1.03433i 0.187654 + 0.0903695i 0.525352 0.850885i \(-0.323934\pi\)
−0.337697 + 0.941255i \(0.609648\pi\)
\(132\) −1.60040 7.01181i −0.139297 0.610300i
\(133\) −2.50186 −0.216939
\(134\) 0.0890038 + 0.389951i 0.00768876 + 0.0336867i
\(135\) −1.58221 + 1.98402i −0.136175 + 0.170758i
\(136\) −8.63071 + 37.8136i −0.740077 + 3.24249i
\(137\) 3.01965 13.2299i 0.257986 1.13031i −0.665416 0.746473i \(-0.731746\pi\)
0.923401 0.383836i \(-0.125397\pi\)
\(138\) 11.1167 + 13.9399i 0.946315 + 1.18664i
\(139\) −18.0033 8.66991i −1.52702 0.735373i −0.533157 0.846017i \(-0.678994\pi\)
−0.993860 + 0.110644i \(0.964709\pi\)
\(140\) 11.0680 5.33007i 0.935418 0.450473i
\(141\) −1.75563 + 2.20149i −0.147851 + 0.185399i
\(142\) −8.86614 11.1178i −0.744030 0.932984i
\(143\) 2.51770 1.21246i 0.210541 0.101391i
\(144\) 17.2532 1.43777
\(145\) 6.04830 12.2544i 0.502284 1.01767i
\(146\) 3.83335 0.317250
\(147\) 5.66087 2.72613i 0.466901 0.224847i
\(148\) −14.3120 17.9467i −1.17644 1.47521i
\(149\) −10.0592 + 12.6139i −0.824085 + 1.03337i 0.174726 + 0.984617i \(0.444096\pi\)
−0.998811 + 0.0487523i \(0.984476\pi\)
\(150\) −3.60348 + 1.73535i −0.294223 + 0.141690i
\(151\) −2.52401 1.21550i −0.205401 0.0989158i 0.328355 0.944554i \(-0.393506\pi\)
−0.533756 + 0.845638i \(0.679220\pi\)
\(152\) −19.0250 23.8566i −1.54313 1.93503i
\(153\) −0.835759 + 3.66170i −0.0675671 + 0.296031i
\(154\) −0.658418 + 2.88472i −0.0530568 + 0.232457i
\(155\) −0.911248 + 1.14267i −0.0731932 + 0.0917814i
\(156\) 2.82615 + 12.3822i 0.226273 + 0.991366i
\(157\) 8.49632 0.678080 0.339040 0.940772i \(-0.389898\pi\)
0.339040 + 0.940772i \(0.389898\pi\)
\(158\) −0.166510 0.729530i −0.0132469 0.0580383i
\(159\) −3.55697 1.71295i −0.282086 0.135845i
\(160\) 62.3628 + 30.0323i 4.93021 + 2.37426i
\(161\) −1.20925 5.29807i −0.0953022 0.417546i
\(162\) 2.77801 0.218261
\(163\) 4.61597 + 20.2239i 0.361550 + 1.58406i 0.749261 + 0.662275i \(0.230409\pi\)
−0.387711 + 0.921781i \(0.626734\pi\)
\(164\) −33.1514 + 41.5705i −2.58869 + 3.24611i
\(165\) 0.710344 3.11222i 0.0553002 0.242286i
\(166\) 4.22501 18.5110i 0.327924 1.43673i
\(167\) 6.10998 + 7.66168i 0.472805 + 0.592878i 0.959855 0.280495i \(-0.0904988\pi\)
−0.487051 + 0.873374i \(0.661927\pi\)
\(168\) −7.87785 3.79377i −0.607789 0.292696i
\(169\) 7.26658 3.49940i 0.558968 0.269185i
\(170\) −16.5085 + 20.7010i −1.26614 + 1.58769i
\(171\) −1.84230 2.31017i −0.140884 0.176663i
\(172\) −49.1880 + 23.6877i −3.75055 + 1.80617i
\(173\) −20.1246 −1.53005 −0.765023 0.644003i \(-0.777272\pi\)
−0.765023 + 0.644003i \(0.777272\pi\)
\(174\) −14.6165 + 3.18751i −1.10808 + 0.241645i
\(175\) 1.21902 0.0921494
\(176\) −19.5544 + 9.41691i −1.47397 + 0.709826i
\(177\) 1.40013 + 1.75571i 0.105240 + 0.131967i
\(178\) −7.98512 + 10.0130i −0.598510 + 0.750508i
\(179\) 22.1567 10.6701i 1.65607 0.797521i 0.657023 0.753871i \(-0.271816\pi\)
0.999047 0.0436504i \(-0.0138988\pi\)
\(180\) 13.0718 + 6.29507i 0.974318 + 0.469207i
\(181\) 12.1022 + 15.1757i 0.899551 + 1.12800i 0.991221 + 0.132212i \(0.0422079\pi\)
−0.0916705 + 0.995789i \(0.529221\pi\)
\(182\) 1.16270 5.09412i 0.0861850 0.377601i
\(183\) 1.06056 4.64661i 0.0783987 0.343487i
\(184\) 41.3244 51.8192i 3.04648 3.82016i
\(185\) −2.26716 9.93310i −0.166685 0.730296i
\(186\) 1.59995 0.117314
\(187\) −1.05135 4.60625i −0.0768820 0.336842i
\(188\) 14.5046 + 6.98506i 1.05786 + 0.509438i
\(189\) −0.762856 0.367372i −0.0554896 0.0267224i
\(190\) −4.63520 20.3082i −0.336273 1.47331i
\(191\) −0.923161 −0.0667976 −0.0333988 0.999442i \(-0.510633\pi\)
−0.0333988 + 0.999442i \(0.510633\pi\)
\(192\) −9.18271 40.2321i −0.662705 2.90350i
\(193\) 6.07588 7.61891i 0.437351 0.548421i −0.513492 0.858095i \(-0.671648\pi\)
0.950843 + 0.309673i \(0.100220\pi\)
\(194\) 2.85587 12.5124i 0.205039 0.898336i
\(195\) −1.25440 + 5.49587i −0.0898292 + 0.393567i
\(196\) −22.3973 28.0854i −1.59981 2.00610i
\(197\) 6.73034 + 3.24116i 0.479517 + 0.230923i 0.657997 0.753020i \(-0.271404\pi\)
−0.178480 + 0.983943i \(0.557118\pi\)
\(198\) −3.14853 + 1.51625i −0.223756 + 0.107755i
\(199\) 16.1636 20.2685i 1.14581 1.43679i 0.264413 0.964410i \(-0.414822\pi\)
0.881392 0.472385i \(-0.156607\pi\)
\(200\) 9.26987 + 11.6241i 0.655479 + 0.821945i
\(201\) 0.129722 0.0624709i 0.00914989 0.00440636i
\(202\) −25.3185 −1.78140
\(203\) 4.43530 + 1.05762i 0.311297 + 0.0742306i
\(204\) 21.4736 1.50345
\(205\) −21.2629 + 10.2397i −1.48506 + 0.715169i
\(206\) −24.9518 31.2885i −1.73847 2.17997i
\(207\) 4.00167 5.01794i 0.278136 0.348771i
\(208\) 34.5311 16.6293i 2.39430 1.15304i
\(209\) 3.34892 + 1.61276i 0.231650 + 0.111557i
\(210\) −3.72160 4.66673i −0.256814 0.322035i
\(211\) −4.28601 + 18.7782i −0.295061 + 1.29275i 0.582323 + 0.812957i \(0.302144\pi\)
−0.877384 + 0.479789i \(0.840713\pi\)
\(212\) −5.02267 + 22.0058i −0.344958 + 1.51136i
\(213\) −3.19155 + 4.00207i −0.218681 + 0.274217i
\(214\) 1.13337 + 4.96563i 0.0774758 + 0.339444i
\(215\) −24.2320 −1.65261
\(216\) −2.29793 10.0679i −0.156354 0.685032i
\(217\) −0.439356 0.211583i −0.0298254 0.0143632i
\(218\) −35.9058 17.2913i −2.43185 1.17112i
\(219\) −0.307054 1.34529i −0.0207488 0.0909065i
\(220\) −18.2512 −1.23050
\(221\) 1.85657 + 8.13417i 0.124886 + 0.547163i
\(222\) −6.95411 + 8.72018i −0.466729 + 0.585260i
\(223\) 0.175370 0.768344i 0.0117436 0.0514521i −0.968717 0.248170i \(-0.920171\pi\)
0.980460 + 0.196717i \(0.0630281\pi\)
\(224\) −5.13908 + 22.5158i −0.343369 + 1.50440i
\(225\) 0.897653 + 1.12562i 0.0598435 + 0.0750414i
\(226\) 29.4823 + 14.1979i 1.96113 + 0.944431i
\(227\) 16.9571 8.16610i 1.12548 0.542003i 0.223899 0.974612i \(-0.428121\pi\)
0.901581 + 0.432609i \(0.142407\pi\)
\(228\) −10.5330 + 13.2080i −0.697567 + 0.874722i
\(229\) 16.7757 + 21.0360i 1.10857 + 1.39010i 0.912287 + 0.409552i \(0.134315\pi\)
0.196281 + 0.980548i \(0.437114\pi\)
\(230\) 40.7652 19.6315i 2.68798 1.29446i
\(231\) 1.06512 0.0700795
\(232\) 23.6425 + 50.3355i 1.55221 + 3.30469i
\(233\) −13.1181 −0.859393 −0.429696 0.902973i \(-0.641379\pi\)
−0.429696 + 0.902973i \(0.641379\pi\)
\(234\) 5.55999 2.67755i 0.363468 0.175037i
\(235\) 4.45519 + 5.58663i 0.290624 + 0.364432i
\(236\) 8.00500 10.0380i 0.521081 0.653415i
\(237\) −0.242687 + 0.116872i −0.0157642 + 0.00759165i
\(238\) −7.95951 3.83310i −0.515938 0.248463i
\(239\) 2.52458 + 3.16572i 0.163302 + 0.204774i 0.856749 0.515733i \(-0.172481\pi\)
−0.693448 + 0.720507i \(0.743909\pi\)
\(240\) 9.74261 42.6851i 0.628883 2.75531i
\(241\) −0.896181 + 3.92643i −0.0577281 + 0.252923i −0.995555 0.0941792i \(-0.969977\pi\)
0.937827 + 0.347103i \(0.112834\pi\)
\(242\) −16.3118 + 20.4543i −1.04856 + 1.31485i
\(243\) −0.222521 0.974928i −0.0142747 0.0625417i
\(244\) −27.2494 −1.74446
\(245\) −3.54795 15.5446i −0.226670 0.993108i
\(246\) 23.2767 + 11.2095i 1.48407 + 0.714691i
\(247\) −5.91386 2.84796i −0.376290 0.181212i
\(248\) −1.32346 5.79845i −0.0840396 0.368202i
\(249\) −6.83476 −0.433135
\(250\) −5.58498 24.4694i −0.353225 1.54758i
\(251\) 18.9067 23.7083i 1.19338 1.49645i 0.369939 0.929056i \(-0.379378\pi\)
0.823443 0.567399i \(-0.192050\pi\)
\(252\) −1.07720 + 4.71953i −0.0678573 + 0.297302i
\(253\) −1.79658 + 7.87135i −0.112950 + 0.494868i
\(254\) 20.8354 + 26.1268i 1.30733 + 1.63934i
\(255\) 8.58724 + 4.13540i 0.537754 + 0.258969i
\(256\) −76.0321 + 36.6151i −4.75200 + 2.28844i
\(257\) −5.07958 + 6.36959i −0.316855 + 0.397324i −0.914598 0.404364i \(-0.867493\pi\)
0.597743 + 0.801688i \(0.296064\pi\)
\(258\) 16.5394 + 20.7397i 1.02970 + 1.29120i
\(259\) 3.06282 1.47497i 0.190314 0.0916504i
\(260\) 32.2298 1.99881
\(261\) 2.28944 + 4.87427i 0.141713 + 0.301710i
\(262\) −6.62243 −0.409135
\(263\) 5.10905 2.46039i 0.315038 0.151714i −0.269682 0.962949i \(-0.586919\pi\)
0.584720 + 0.811235i \(0.301204\pi\)
\(264\) 8.09951 + 10.1565i 0.498491 + 0.625087i
\(265\) −6.24645 + 7.83280i −0.383716 + 0.481165i
\(266\) 6.26191 3.01558i 0.383942 0.184897i
\(267\) 4.15363 + 2.00028i 0.254198 + 0.122415i
\(268\) −0.513248 0.643592i −0.0313516 0.0393137i
\(269\) −4.57344 + 20.0376i −0.278848 + 1.22171i 0.620405 + 0.784282i \(0.286968\pi\)
−0.899252 + 0.437430i \(0.855889\pi\)
\(270\) 1.56869 6.87290i 0.0954677 0.418271i
\(271\) 5.98035 7.49912i 0.363280 0.455539i −0.566278 0.824214i \(-0.691617\pi\)
0.929558 + 0.368675i \(0.120189\pi\)
\(272\) −14.4196 63.1762i −0.874314 3.83062i
\(273\) −1.88089 −0.113837
\(274\) 8.38860 + 36.7529i 0.506774 + 2.22032i
\(275\) −1.63175 0.785809i −0.0983982 0.0473861i
\(276\) −33.0610 15.9213i −1.99004 0.958352i
\(277\) 5.75035 + 25.1939i 0.345505 + 1.51376i 0.787260 + 0.616621i \(0.211499\pi\)
−0.441755 + 0.897136i \(0.645644\pi\)
\(278\) 55.5105 3.32930
\(279\) −0.128158 0.561496i −0.00767260 0.0336159i
\(280\) −13.8344 + 17.3478i −0.826764 + 1.03673i
\(281\) 4.07233 17.8421i 0.242935 1.06437i −0.695395 0.718627i \(-0.744771\pi\)
0.938330 0.345740i \(-0.112372\pi\)
\(282\) 1.74063 7.62622i 0.103653 0.454135i
\(283\) −8.60447 10.7897i −0.511483 0.641379i 0.457293 0.889316i \(-0.348819\pi\)
−0.968776 + 0.247937i \(0.920247\pi\)
\(284\) 26.3679 + 12.6981i 1.56465 + 0.753494i
\(285\) −6.75576 + 3.25340i −0.400177 + 0.192715i
\(286\) −4.84014 + 6.06934i −0.286203 + 0.358888i
\(287\) −4.90954 6.15637i −0.289801 0.363399i
\(288\) −24.5749 + 11.8346i −1.44809 + 0.697363i
\(289\) −2.89345 −0.170203
\(290\) −0.367672 + 37.9617i −0.0215904 + 2.22919i
\(291\) −4.61991 −0.270824
\(292\) −7.10800 + 3.42303i −0.415964 + 0.200318i
\(293\) −8.24552 10.3396i −0.481708 0.604043i 0.480286 0.877112i \(-0.340533\pi\)
−0.961995 + 0.273069i \(0.911961\pi\)
\(294\) −10.8827 + 13.6465i −0.634691 + 0.795878i
\(295\) 5.13431 2.47255i 0.298931 0.143958i
\(296\) 37.3554 + 17.9894i 2.17124 + 1.04561i
\(297\) 0.784321 + 0.983507i 0.0455109 + 0.0570689i
\(298\) 9.97333 43.6960i 0.577739 2.53124i
\(299\) 3.17259 13.9000i 0.183476 0.803859i
\(300\) 5.13218 6.43555i 0.296307 0.371557i
\(301\) −1.79912 7.88244i −0.103699 0.454336i
\(302\) 7.78241 0.447828
\(303\) 2.02803 + 8.88540i 0.116507 + 0.510453i
\(304\) 45.9316 + 22.1195i 2.63436 + 1.26864i
\(305\) −10.8970 5.24772i −0.623960 0.300483i
\(306\) −2.32175 10.1722i −0.132725 0.581508i
\(307\) 23.3280 1.33140 0.665698 0.746221i \(-0.268134\pi\)
0.665698 + 0.746221i \(0.268134\pi\)
\(308\) −1.35507 5.93694i −0.0772122 0.338289i
\(309\) −8.98189 + 11.2629i −0.510962 + 0.640726i
\(310\) 0.903466 3.95834i 0.0513134 0.224819i
\(311\) 1.26488 5.54181i 0.0717249 0.314247i −0.926321 0.376736i \(-0.877047\pi\)
0.998046 + 0.0624884i \(0.0199036\pi\)
\(312\) −14.3029 17.9353i −0.809744 1.01539i
\(313\) −3.59647 1.73197i −0.203284 0.0978966i 0.329472 0.944165i \(-0.393129\pi\)
−0.532756 + 0.846269i \(0.678844\pi\)
\(314\) −21.2654 + 10.2409i −1.20008 + 0.577927i
\(315\) −1.33966 + 1.67988i −0.0754815 + 0.0946507i
\(316\) 0.960196 + 1.20405i 0.0540153 + 0.0677330i
\(317\) −11.0688 + 5.33046i −0.621687 + 0.299389i −0.718086 0.695954i \(-0.754982\pi\)
0.0963994 + 0.995343i \(0.469267\pi\)
\(318\) 10.9674 0.615022
\(319\) −5.25519 4.27479i −0.294234 0.239342i
\(320\) −104.721 −5.85408
\(321\) 1.65188 0.795503i 0.0921989 0.0444007i
\(322\) 9.41257 + 11.8030i 0.524542 + 0.657755i
\(323\) −6.91943 + 8.67669i −0.385007 + 0.482784i
\(324\) −5.15114 + 2.48066i −0.286174 + 0.137814i
\(325\) 2.88150 + 1.38766i 0.159837 + 0.0769735i
\(326\) −35.9298 45.0545i −1.98997 2.49534i
\(327\) −3.19221 + 13.9860i −0.176530 + 0.773427i
\(328\) 21.3705 93.6303i 1.17999 5.16987i
\(329\) −1.48650 + 1.86401i −0.0819534 + 0.102766i
\(330\) 1.97334 + 8.64578i 0.108629 + 0.475934i
\(331\) −15.4931 −0.851579 −0.425790 0.904822i \(-0.640004\pi\)
−0.425790 + 0.904822i \(0.640004\pi\)
\(332\) 8.69537 + 38.0969i 0.477220 + 2.09084i
\(333\) 3.61733 + 1.74201i 0.198229 + 0.0954618i
\(334\) −24.5275 11.8118i −1.34209 0.646315i
\(335\) −0.0813034 0.356213i −0.00444208 0.0194620i
\(336\) 14.6084 0.796955
\(337\) 0.00717696 + 0.0314443i 0.000390954 + 0.00171288i 0.975123 0.221664i \(-0.0711489\pi\)
−0.974732 + 0.223377i \(0.928292\pi\)
\(338\) −13.9696 + 17.5173i −0.759845 + 0.952816i
\(339\) 2.62113 11.4839i 0.142360 0.623721i
\(340\) 12.1257 53.1264i 0.657611 2.88118i
\(341\) 0.451718 + 0.566437i 0.0244619 + 0.0306743i
\(342\) 7.39561 + 3.56154i 0.399909 + 0.192586i
\(343\) 10.1331 4.87983i 0.547135 0.263486i
\(344\) 61.4823 77.0964i 3.31490 4.15676i
\(345\) −10.1549 12.7338i −0.546721 0.685567i
\(346\) 50.3699 24.2568i 2.70790 1.30406i
\(347\) −4.44819 −0.238791 −0.119396 0.992847i \(-0.538096\pi\)
−0.119396 + 0.992847i \(0.538096\pi\)
\(348\) 24.2564 18.9625i 1.30028 1.01649i
\(349\) −17.0567 −0.913024 −0.456512 0.889717i \(-0.650901\pi\)
−0.456512 + 0.889717i \(0.650901\pi\)
\(350\) −3.05109 + 1.46933i −0.163088 + 0.0785389i
\(351\) −1.38503 1.73677i −0.0739275 0.0927022i
\(352\) 21.3932 26.8262i 1.14026 1.42984i
\(353\) 7.89583 3.80243i 0.420252 0.202383i −0.211792 0.977315i \(-0.567930\pi\)
0.632045 + 0.774932i \(0.282216\pi\)
\(354\) −5.62059 2.70673i −0.298731 0.143861i
\(355\) 8.09906 + 10.1559i 0.429854 + 0.539019i
\(356\) 5.86520 25.6971i 0.310855 1.36194i
\(357\) −0.707642 + 3.10038i −0.0374524 + 0.164090i
\(358\) −42.5950 + 53.4124i −2.25121 + 2.82293i
\(359\) −0.501253 2.19613i −0.0264551 0.115907i 0.959976 0.280081i \(-0.0903614\pi\)
−0.986431 + 0.164174i \(0.947504\pi\)
\(360\) −26.2059 −1.38117
\(361\) 2.28508 + 10.0116i 0.120267 + 0.526925i
\(362\) −48.5824 23.3961i −2.55344 1.22967i
\(363\) 8.48492 + 4.08612i 0.445343 + 0.214466i
\(364\) 2.39292 + 10.4840i 0.125423 + 0.549513i
\(365\) −3.50169 −0.183287
\(366\) 2.94624 + 12.9083i 0.154002 + 0.674729i
\(367\) 5.57199 6.98706i 0.290856 0.364721i −0.614839 0.788653i \(-0.710779\pi\)
0.905694 + 0.423932i \(0.139350\pi\)
\(368\) −24.6408 + 107.958i −1.28449 + 5.62771i
\(369\) 2.06943 9.06674i 0.107730 0.471996i
\(370\) 17.6472 + 22.1289i 0.917433 + 1.15042i
\(371\) −3.01171 1.45036i −0.156360 0.0752990i
\(372\) −2.96672 + 1.42870i −0.153817 + 0.0740746i
\(373\) −2.98091 + 3.73794i −0.154346 + 0.193543i −0.852992 0.521924i \(-0.825215\pi\)
0.698647 + 0.715467i \(0.253786\pi\)
\(374\) 8.18347 + 10.2618i 0.423157 + 0.530623i
\(375\) −8.14005 + 3.92004i −0.420350 + 0.202430i
\(376\) −29.0783 −1.49960
\(377\) 9.28014 + 7.54886i 0.477952 + 0.388786i
\(378\) 2.35216 0.120982
\(379\) −30.8943 + 14.8779i −1.58693 + 0.764226i −0.999001 0.0446854i \(-0.985771\pi\)
−0.587931 + 0.808911i \(0.700057\pi\)
\(380\) 26.7293 + 33.5175i 1.37118 + 1.71941i
\(381\) 7.50013 9.40486i 0.384243 0.481826i
\(382\) 2.31058 1.11272i 0.118220 0.0569315i
\(383\) −21.4436 10.3267i −1.09572 0.527669i −0.203407 0.979094i \(-0.565201\pi\)
−0.892309 + 0.451426i \(0.850916\pi\)
\(384\) 37.4637 + 46.9780i 1.91181 + 2.39734i
\(385\) 0.601453 2.63514i 0.0306529 0.134299i
\(386\) −6.02399 + 26.3928i −0.306613 + 1.34336i
\(387\) 5.95367 7.46567i 0.302642 0.379501i
\(388\) 5.87757 + 25.7513i 0.298388 + 1.30733i
\(389\) 18.5239 0.939198 0.469599 0.882880i \(-0.344399\pi\)
0.469599 + 0.882880i \(0.344399\pi\)
\(390\) −3.48472 15.2676i −0.176456 0.773104i
\(391\) −21.7186 10.4591i −1.09836 0.528942i
\(392\) 58.4586 + 28.1522i 2.95260 + 1.42190i
\(393\) 0.530463 + 2.32411i 0.0267583 + 0.117236i
\(394\) −20.7521 −1.04547
\(395\) 0.152104 + 0.666413i 0.00765320 + 0.0335309i
\(396\) 4.48422 5.62304i 0.225341 0.282568i
\(397\) 2.41408 10.5768i 0.121159 0.530833i −0.877524 0.479533i \(-0.840806\pi\)
0.998683 0.0513005i \(-0.0163366\pi\)
\(398\) −16.0255 + 70.2125i −0.803287 + 3.51943i
\(399\) −1.55989 1.95603i −0.0780919 0.0979242i
\(400\) −22.3800 10.7776i −1.11900 0.538881i
\(401\) −25.8578 + 12.4525i −1.29128 + 0.621846i −0.948263 0.317485i \(-0.897162\pi\)
−0.343013 + 0.939331i \(0.611447\pi\)
\(402\) −0.249383 + 0.312717i −0.0124381 + 0.0155969i
\(403\) −0.797689 1.00027i −0.0397357 0.0498270i
\(404\) 46.9470 22.6085i 2.33570 1.12481i
\(405\) −2.53766 −0.126097
\(406\) −12.3759 + 2.69888i −0.614205 + 0.133943i
\(407\) −5.05060 −0.250349
\(408\) −34.9450 + 16.8286i −1.73004 + 0.833142i
\(409\) −15.7089 19.6984i −0.776756 0.974021i 0.223244 0.974763i \(-0.428335\pi\)
−1.00000 0.000741524i \(0.999764\pi\)
\(410\) 40.8767 51.2577i 2.01875 2.53144i
\(411\) 12.2263 5.88787i 0.603079 0.290427i
\(412\) 74.2064 + 35.7359i 3.65589 + 1.76058i
\(413\) 1.18550 + 1.48657i 0.0583345 + 0.0731491i
\(414\) −3.96750 + 17.3828i −0.194992 + 0.854316i
\(415\) −3.85947 + 16.9095i −0.189454 + 0.830052i
\(416\) −37.7782 + 47.3724i −1.85223 + 2.32262i
\(417\) −4.44644 19.4811i −0.217743 0.953995i
\(418\) −10.3259 −0.505057
\(419\) −2.88089 12.6220i −0.140741 0.616625i −0.995264 0.0972114i \(-0.969008\pi\)
0.854523 0.519413i \(-0.173849\pi\)
\(420\) 11.0680 + 5.33007i 0.540064 + 0.260081i
\(421\) −17.6399 8.49493i −0.859716 0.414018i −0.0485414 0.998821i \(-0.515457\pi\)
−0.811175 + 0.584804i \(0.801172\pi\)
\(422\) −11.9066 52.1661i −0.579602 2.53940i
\(423\) −2.81581 −0.136909
\(424\) −9.07207 39.7473i −0.440579 1.93030i
\(425\) 3.37147 4.22769i 0.163540 0.205073i
\(426\) 3.16429 13.8637i 0.153310 0.671697i
\(427\) 0.897981 3.93431i 0.0434563 0.190395i
\(428\) −6.53569 8.19550i −0.315915 0.396144i
\(429\) 2.51770 + 1.21246i 0.121556 + 0.0585382i
\(430\) 60.6503 29.2076i 2.92482 1.40852i
\(431\) −2.24797 + 2.81887i −0.108281 + 0.135780i −0.833019 0.553245i \(-0.813389\pi\)
0.724738 + 0.689025i \(0.241961\pi\)
\(432\) 10.7572 + 13.4891i 0.517557 + 0.648996i
\(433\) 4.33066 2.08554i 0.208118 0.100225i −0.326921 0.945052i \(-0.606011\pi\)
0.535039 + 0.844827i \(0.320297\pi\)
\(434\) 1.35469 0.0650272
\(435\) 13.3519 2.91173i 0.640176 0.139607i
\(436\) 82.0190 3.92800
\(437\) 17.0865 8.22842i 0.817358 0.393619i
\(438\) 2.39005 + 2.99703i 0.114201 + 0.143204i
\(439\) 4.70521 5.90014i 0.224567 0.281599i −0.656765 0.754095i \(-0.728076\pi\)
0.881332 + 0.472497i \(0.156647\pi\)
\(440\) 29.7011 14.3033i 1.41595 0.681884i
\(441\) 5.66087 + 2.72613i 0.269565 + 0.129816i
\(442\) −14.4512 18.1212i −0.687373 0.861939i
\(443\) −5.07740 + 22.2456i −0.241235 + 1.05692i 0.698660 + 0.715454i \(0.253780\pi\)
−0.939895 + 0.341465i \(0.889077\pi\)
\(444\) 5.10791 22.3792i 0.242411 1.06207i
\(445\) 7.29426 9.14672i 0.345781 0.433596i
\(446\) 0.487178 + 2.13447i 0.0230686 + 0.101070i
\(447\) −16.1338 −0.763101
\(448\) −7.77505 34.0647i −0.367337 1.60941i
\(449\) 11.7896 + 5.67759i 0.556388 + 0.267942i 0.690876 0.722973i \(-0.257225\pi\)
−0.134489 + 0.990915i \(0.542939\pi\)
\(450\) −3.60348 1.73535i −0.169870 0.0818050i
\(451\) 2.60324 + 11.4055i 0.122582 + 0.537066i
\(452\) −67.3459 −3.16768
\(453\) −0.623378 2.73120i −0.0292889 0.128323i
\(454\) −32.5990 + 40.8778i −1.52995 + 1.91849i
\(455\) −1.06210 + 4.65339i −0.0497922 + 0.218154i
\(456\) 6.78995 29.7487i 0.317969 1.39311i
\(457\) −19.5401 24.5025i −0.914048 1.14618i −0.988840 0.148981i \(-0.952401\pi\)
0.0747922 0.997199i \(-0.476171\pi\)
\(458\) −67.3432 32.4308i −3.14674 1.51539i
\(459\) −3.38392 + 1.62961i −0.157948 + 0.0760637i
\(460\) −58.0589 + 72.8036i −2.70701 + 3.39448i
\(461\) 23.7681 + 29.8043i 1.10699 + 1.38813i 0.913410 + 0.407042i \(0.133440\pi\)
0.193584 + 0.981084i \(0.437989\pi\)
\(462\) −2.66588 + 1.28382i −0.124028 + 0.0597287i
\(463\) 39.1593 1.81989 0.909944 0.414732i \(-0.136125\pi\)
0.909944 + 0.414732i \(0.136125\pi\)
\(464\) −72.0767 58.6302i −3.34608 2.72184i
\(465\) −1.46153 −0.0677768
\(466\) 32.8332 15.8116i 1.52097 0.732460i
\(467\) 8.74298 + 10.9633i 0.404577 + 0.507323i 0.941826 0.336100i \(-0.109108\pi\)
−0.537249 + 0.843423i \(0.680537\pi\)
\(468\) −7.91869 + 9.92972i −0.366042 + 0.459002i
\(469\) 0.109836 0.0528945i 0.00507178 0.00244244i
\(470\) −17.8846 8.61279i −0.824957 0.397278i
\(471\) 5.29737 + 6.64269i 0.244090 + 0.306079i
\(472\) −5.16029 + 22.6087i −0.237522 + 1.04065i
\(473\) −2.67295 + 11.7110i −0.122902 + 0.538471i
\(474\) 0.466552 0.585038i 0.0214294 0.0268717i
\(475\) 0.946631 + 4.14746i 0.0434344 + 0.190299i
\(476\) 18.1818 0.833361
\(477\) −0.878499 3.84895i −0.0402237 0.176232i
\(478\) −10.1345 4.88053i −0.463542 0.223230i
\(479\) 37.6742 + 18.1430i 1.72138 + 0.828973i 0.988971 + 0.148107i \(0.0473180\pi\)
0.732408 + 0.680866i \(0.238396\pi\)
\(480\) 15.4023 + 67.4820i 0.703017 + 3.08012i
\(481\) 8.91885 0.406665
\(482\) −2.48960 10.9077i −0.113398 0.496830i
\(483\) 3.38824 4.24872i 0.154170 0.193323i
\(484\) 11.9813 52.4933i 0.544603 2.38606i
\(485\) −2.60878 + 11.4298i −0.118459 + 0.519002i
\(486\) 1.73206 + 2.17193i 0.0785679 + 0.0985210i
\(487\) −12.7105 6.12107i −0.575969 0.277372i 0.123138 0.992390i \(-0.460704\pi\)
−0.699106 + 0.715018i \(0.746419\pi\)
\(488\) 44.3444 21.3551i 2.00738 0.966701i
\(489\) −12.9337 + 16.2183i −0.584880 + 0.733416i
\(490\) 27.6166 + 34.6301i 1.24759 + 1.56443i
\(491\) −23.9429 + 11.5303i −1.08053 + 0.520354i −0.887485 0.460837i \(-0.847549\pi\)
−0.193041 + 0.981191i \(0.561835\pi\)
\(492\) −53.1707 −2.39712
\(493\) 15.9347 12.4569i 0.717662 0.561033i
\(494\) 18.2345 0.820411
\(495\) 2.87613 1.38507i 0.129272 0.0622542i
\(496\) 6.19546 + 7.76887i 0.278185 + 0.348832i
\(497\) −2.70230 + 3.38858i −0.121215 + 0.151998i
\(498\) 17.1067 8.23816i 0.766571 0.369161i
\(499\) −17.2217 8.29352i −0.770948 0.371269i 0.00669320 0.999978i \(-0.497869\pi\)
−0.777641 + 0.628709i \(0.783584\pi\)
\(500\) 32.2063 + 40.3854i 1.44031 + 1.80609i
\(501\) −2.18063 + 9.55395i −0.0974232 + 0.426839i
\(502\) −18.7453 + 82.1284i −0.836642 + 3.66557i
\(503\) 10.0746 12.6332i 0.449206 0.563287i −0.504737 0.863273i \(-0.668411\pi\)
0.953944 + 0.299986i \(0.0969821\pi\)
\(504\) −1.94567 8.52453i −0.0866669 0.379713i
\(505\) 23.1280 1.02918
\(506\) −4.99093 21.8667i −0.221874 0.972093i
\(507\) 7.26658 + 3.49940i 0.322720 + 0.155414i
\(508\) −61.9645 29.8405i −2.74923 1.32396i
\(509\) 5.58653 + 24.4762i 0.247619 + 1.08489i 0.933895 + 0.357548i \(0.116387\pi\)
−0.686276 + 0.727341i \(0.740756\pi\)
\(510\) −26.4775 −1.17245
\(511\) −0.259985 1.13907i −0.0115010 0.0503894i
\(512\) 71.2398 89.3318i 3.14838 3.94795i
\(513\) 0.657509 2.88073i 0.0290297 0.127188i
\(514\) 5.03620 22.0650i 0.222137 0.973246i
\(515\) 22.7930 + 28.5815i 1.00438 + 1.25945i
\(516\) −49.1880 23.6877i −2.16538 1.04279i
\(517\) 3.19137 1.53688i 0.140356 0.0675921i
\(518\) −5.88808 + 7.38342i −0.258708 + 0.324409i
\(519\) −12.5475 15.7340i −0.550773 0.690648i
\(520\) −52.4492 + 25.2582i −2.30005 + 1.10765i
\(521\) 2.82291 0.123674 0.0618370 0.998086i \(-0.480304\pi\)
0.0618370 + 0.998086i \(0.480304\pi\)
\(522\) −11.6053 9.44027i −0.507952 0.413189i
\(523\) 30.2113 1.32105 0.660523 0.750805i \(-0.270334\pi\)
0.660523 + 0.750805i \(0.270334\pi\)
\(524\) 12.2797 5.91359i 0.536441 0.258336i
\(525\) 0.760048 + 0.953070i 0.0331712 + 0.0415954i
\(526\) −9.82186 + 12.3162i −0.428253 + 0.537013i
\(527\) −1.94892 + 0.938550i −0.0848963 + 0.0408839i
\(528\) −19.5544 9.41691i −0.850997 0.409818i
\(529\) 11.3432 + 14.2240i 0.493184 + 0.618433i
\(530\) 6.19311 27.1338i 0.269011 1.17862i
\(531\) −0.499700 + 2.18933i −0.0216851 + 0.0950088i
\(532\) −8.91839 + 11.1833i −0.386661 + 0.484858i
\(533\) −4.59706 20.1410i −0.199121 0.872405i
\(534\) −12.8071 −0.554219
\(535\) −1.03532 4.53602i −0.0447606 0.196109i
\(536\) 1.33961 + 0.645123i 0.0578625 + 0.0278651i
\(537\) 22.1567 + 10.6701i 0.956132 + 0.460449i
\(538\) −12.7051 55.6645i −0.547754 2.39987i
\(539\) −7.90383 −0.340442
\(540\) 3.22848 + 14.1449i 0.138932 + 0.608699i
\(541\) 8.40733 10.5425i 0.361459 0.453256i −0.567535 0.823349i \(-0.692103\pi\)
0.928995 + 0.370094i \(0.120674\pi\)
\(542\) −5.92928 + 25.9779i −0.254684 + 1.11584i
\(543\) −4.31923 + 18.9238i −0.185356 + 0.812098i
\(544\) 63.8736 + 80.0950i 2.73856 + 3.43405i
\(545\) 32.7993 + 15.7953i 1.40497 + 0.676596i
\(546\) 4.70767 2.26710i 0.201470 0.0970228i
\(547\) 14.5525 18.2482i 0.622219 0.780238i −0.366436 0.930443i \(-0.619422\pi\)
0.988655 + 0.150206i \(0.0479935\pi\)
\(548\) −48.3736 60.6585i −2.06642 2.59120i
\(549\) 4.29411 2.06793i 0.183268 0.0882573i
\(550\) 5.03126 0.214534
\(551\) −0.154107 + 15.9114i −0.00656520 + 0.677850i
\(552\) 66.2793 2.82103
\(553\) −0.205485 + 0.0989562i −0.00873810 + 0.00420805i
\(554\) −44.7596 56.1268i −1.90165 2.38460i
\(555\) 6.35245 7.96572i 0.269647 0.338126i
\(556\) −102.931 + 49.5688i −4.36523 + 2.10219i
\(557\) −3.00534 1.44729i −0.127340 0.0613238i 0.369129 0.929378i \(-0.379656\pi\)
−0.496469 + 0.868054i \(0.665370\pi\)
\(558\) 0.997555 + 1.25089i 0.0422299 + 0.0529546i
\(559\) 4.72016 20.6804i 0.199642 0.874687i
\(560\) 8.24912 36.1418i 0.348589 1.52727i
\(561\) 2.94581 3.69392i 0.124372 0.155958i
\(562\) 11.3130 + 49.5654i 0.477209 + 2.09079i
\(563\) 7.82895 0.329951 0.164976 0.986298i \(-0.447245\pi\)
0.164976 + 0.986298i \(0.447245\pi\)
\(564\) 3.58235 + 15.6953i 0.150844 + 0.660891i
\(565\) −26.9315 12.9695i −1.13302 0.545633i
\(566\) 34.5413 + 16.6342i 1.45188 + 0.699188i
\(567\) −0.188410 0.825477i −0.00791247 0.0346668i
\(568\) −52.8612 −2.21801
\(569\) −0.0380192 0.166573i −0.00159385 0.00698310i 0.974125 0.226011i \(-0.0725685\pi\)
−0.975719 + 0.219028i \(0.929711\pi\)
\(570\) 12.9876 16.2859i 0.543989 0.682140i
\(571\) −5.95314 + 26.0824i −0.249131 + 1.09152i 0.683291 + 0.730146i \(0.260548\pi\)
−0.932423 + 0.361370i \(0.882309\pi\)
\(572\) 3.55516 15.5762i 0.148649 0.651273i
\(573\) −0.575582 0.721757i −0.0240453 0.0301518i
\(574\) 19.7086 + 9.49114i 0.822619 + 0.396153i
\(575\) −8.32533 + 4.00927i −0.347190 + 0.167198i
\(576\) 25.7294 32.2636i 1.07206 1.34432i
\(577\) −24.4227 30.6252i −1.01673 1.27494i −0.961015 0.276495i \(-0.910827\pi\)
−0.0557170 0.998447i \(-0.517744\pi\)
\(578\) 7.24202 3.48757i 0.301228 0.145064i
\(579\) 9.74495 0.404986
\(580\) −33.2166 70.7191i −1.37925 2.93645i
\(581\) −5.78703 −0.240087
\(582\) 11.5632 5.56853i 0.479309 0.230823i
\(583\) 3.09645 + 3.88283i 0.128242 + 0.160810i
\(584\) 8.88462 11.1410i 0.367648 0.461016i
\(585\) −5.07895 + 2.44589i −0.209989 + 0.101125i
\(586\) 33.1003 + 15.9403i 1.36736 + 0.658486i
\(587\) −1.30417 1.63538i −0.0538290 0.0674994i 0.754188 0.656658i \(-0.228031\pi\)
−0.808017 + 0.589159i \(0.799459\pi\)
\(588\) 7.99351 35.0219i 0.329647 1.44428i
\(589\) 0.378683 1.65912i 0.0156033 0.0683627i
\(590\) −9.87041 + 12.3771i −0.406358 + 0.509557i
\(591\) 1.66226 + 7.28283i 0.0683761 + 0.299575i
\(592\) −69.2706 −2.84701
\(593\) −4.80876 21.0685i −0.197472 0.865181i −0.972435 0.233174i \(-0.925089\pi\)
0.774963 0.632007i \(-0.217768\pi\)
\(594\) −3.14853 1.51625i −0.129186 0.0622126i
\(595\) 7.27087 + 3.50147i 0.298077 + 0.143546i
\(596\) 20.5258 + 89.9294i 0.840769 + 3.68365i
\(597\) 25.9244 1.06101
\(598\) 8.81348 + 38.6144i 0.360410 + 1.57906i
\(599\) −6.19230 + 7.76490i −0.253011 + 0.317265i −0.892074 0.451888i \(-0.850751\pi\)
0.639064 + 0.769154i \(0.279322\pi\)
\(600\) −3.30838 + 14.4950i −0.135064 + 0.591754i
\(601\) −3.45048 + 15.1175i −0.140748 + 0.616657i 0.854514 + 0.519428i \(0.173855\pi\)
−0.995262 + 0.0972287i \(0.969002\pi\)
\(602\) 14.0040 + 17.5604i 0.570759 + 0.715710i
\(603\) 0.129722 + 0.0624709i 0.00528269 + 0.00254401i
\(604\) −14.4306 + 6.94941i −0.587172 + 0.282767i
\(605\) 14.9005 18.6846i 0.605792 0.759639i
\(606\) −15.7858 19.7948i −0.641255 0.804109i
\(607\) −0.363257 + 0.174936i −0.0147442 + 0.00710042i −0.441241 0.897388i \(-0.645462\pi\)
0.426497 + 0.904489i \(0.359747\pi\)
\(608\) −80.5959 −3.26859
\(609\) 1.93848 + 4.12707i 0.0785511 + 0.167237i
\(610\) 33.5993 1.36040
\(611\) −5.63564 + 2.71398i −0.227994 + 0.109796i
\(612\) 13.3885 + 16.7887i 0.541200 + 0.678643i
\(613\) −9.22408 + 11.5666i −0.372557 + 0.467172i −0.932401 0.361426i \(-0.882290\pi\)
0.559843 + 0.828598i \(0.310861\pi\)
\(614\) −58.3875 + 28.1180i −2.35633 + 1.13475i
\(615\) −21.2629 10.2397i −0.857402 0.412903i
\(616\) 6.85791 + 8.59954i 0.276313 + 0.346485i
\(617\) −0.133056 + 0.582958i −0.00535665 + 0.0234690i −0.977536 0.210770i \(-0.932403\pi\)
0.972179 + 0.234239i \(0.0752599\pi\)
\(618\) 8.90518 39.0161i 0.358219 1.56946i
\(619\) 3.30388 4.14293i 0.132794 0.166518i −0.710989 0.703204i \(-0.751752\pi\)
0.843783 + 0.536685i \(0.180324\pi\)
\(620\) 1.85940 + 8.14655i 0.0746751 + 0.327173i
\(621\) 6.41819 0.257553
\(622\) 3.51385 + 15.3952i 0.140893 + 0.617291i
\(623\) 3.51691 + 1.69365i 0.140902 + 0.0678548i
\(624\) 34.5311 + 16.6293i 1.38235 + 0.665705i
\(625\) 6.70362 + 29.3705i 0.268145 + 1.17482i
\(626\) 11.0892 0.443214
\(627\) 0.827115 + 3.62383i 0.0330318 + 0.144722i
\(628\) 30.2868 37.9785i 1.20858 1.51551i
\(629\) 3.35552 14.7015i 0.133793 0.586187i
\(630\) 1.32822 5.81932i 0.0529176 0.231847i
\(631\) −16.5526 20.7564i −0.658950 0.826298i 0.334278 0.942474i \(-0.391508\pi\)
−0.993229 + 0.116177i \(0.962936\pi\)
\(632\) −2.50618 1.20691i −0.0996904 0.0480084i
\(633\) −17.3537 + 8.35709i −0.689747 + 0.332165i
\(634\) 21.2792 26.6832i 0.845104 1.05973i
\(635\) −19.0328 23.8664i −0.755293 0.947108i
\(636\) −20.3364 + 9.79348i −0.806390 + 0.388337i
\(637\) 13.9574 0.553011
\(638\) 18.3058 + 4.36512i 0.724732 + 0.172817i
\(639\) −5.11884 −0.202498
\(640\) 137.381 66.1590i 5.43044 2.61516i
\(641\) 3.27345 + 4.10477i 0.129293 + 0.162129i 0.842264 0.539065i \(-0.181222\pi\)
−0.712971 + 0.701194i \(0.752651\pi\)
\(642\) −3.17564 + 3.98213i −0.125333 + 0.157162i
\(643\) −16.1356 + 7.77051i −0.636327 + 0.306439i −0.724093 0.689702i \(-0.757742\pi\)
0.0877660 + 0.996141i \(0.472027\pi\)
\(644\) −27.9929 13.4807i −1.10308 0.531213i
\(645\) −15.1084 18.9453i −0.594893 0.745972i
\(646\) 6.86034 30.0571i 0.269916 1.18258i
\(647\) 7.79104 34.1348i 0.306297 1.34198i −0.554141 0.832423i \(-0.686953\pi\)
0.860439 0.509554i \(-0.170190\pi\)
\(648\) 6.43865 8.07381i 0.252934 0.317169i
\(649\) −0.628599 2.75407i −0.0246747 0.108107i
\(650\) −8.88471 −0.348487
\(651\) −0.108512 0.475422i −0.00425292 0.0186332i
\(652\) 106.855 + 51.4587i 4.18477 + 2.01528i
\(653\) −16.7006 8.04260i −0.653546 0.314731i 0.0775675 0.996987i \(-0.475285\pi\)
−0.731113 + 0.682256i \(0.760999\pi\)
\(654\) −8.86799 38.8532i −0.346766 1.51928i
\(655\) 6.04947 0.236372
\(656\) 35.7043 + 156.431i 1.39402 + 6.10759i
\(657\) 0.860347 1.07884i 0.0335653 0.0420896i
\(658\) 1.47381 6.45717i 0.0574549 0.251727i
\(659\) 0.290833 1.27422i 0.0113293 0.0496367i −0.968947 0.247267i \(-0.920467\pi\)
0.980277 + 0.197630i \(0.0633246\pi\)
\(660\) −11.3794 14.2694i −0.442944 0.555434i
\(661\) −30.7540 14.8103i −1.19619 0.576055i −0.273603 0.961843i \(-0.588215\pi\)
−0.922588 + 0.385788i \(0.873930\pi\)
\(662\) 38.7777 18.6744i 1.50714 0.725800i
\(663\) −5.20200 + 6.52310i −0.202029 + 0.253336i
\(664\) −44.0066 55.1826i −1.70779 2.14150i
\(665\) −5.72014 + 2.75467i −0.221818 + 0.106822i
\(666\) −11.1535 −0.432190
\(667\) −33.7693 + 7.36429i −1.30755 + 0.285146i
\(668\) 56.0279 2.16778
\(669\) 0.710057 0.341945i 0.0274524 0.0132204i
\(670\) 0.632850 + 0.793569i 0.0244491 + 0.0306582i
\(671\) −3.73815 + 4.68750i −0.144310 + 0.180959i
\(672\) −20.8077 + 10.0205i −0.802675 + 0.386548i
\(673\) 17.1253 + 8.24713i 0.660134 + 0.317904i 0.733786 0.679380i \(-0.237751\pi\)
−0.0736527 + 0.997284i \(0.523466\pi\)
\(674\) −0.0558641 0.0700513i −0.00215180 0.00269828i
\(675\) −0.320369 + 1.40363i −0.0123310 + 0.0540256i
\(676\) 10.2609 44.9559i 0.394650 1.72907i
\(677\) 14.7723 18.5239i 0.567746 0.711930i −0.412223 0.911083i \(-0.635248\pi\)
0.979968 + 0.199153i \(0.0638189\pi\)
\(678\) 7.28152 + 31.9024i 0.279645 + 1.22521i
\(679\) −3.91170 −0.150117
\(680\) 21.9018 + 95.9581i 0.839896 + 3.67983i
\(681\) 16.9571 + 8.16610i 0.649796 + 0.312926i
\(682\) −1.81335 0.873263i −0.0694368 0.0334390i
\(683\) −3.23113 14.1565i −0.123636 0.541683i −0.998370 0.0570798i \(-0.981821\pi\)
0.874734 0.484603i \(-0.161036\pi\)
\(684\) −16.8937 −0.645946
\(685\) −7.66284 33.5731i −0.292782 1.28276i
\(686\) −19.4803 + 24.4275i −0.743760 + 0.932645i
\(687\) −5.98717 + 26.2315i −0.228425 + 1.00079i
\(688\) −36.6604 + 160.620i −1.39766 + 6.12357i
\(689\) −5.46802 6.85668i −0.208315 0.261219i
\(690\) 40.7652 + 19.6315i 1.55190 + 0.747358i
\(691\) 11.3521 5.46688i 0.431854 0.207970i −0.205312 0.978697i \(-0.565821\pi\)
0.637166 + 0.770727i \(0.280107\pi\)
\(692\) −71.7382 + 89.9568i −2.72708 + 3.41964i
\(693\) 0.664089 + 0.832741i 0.0252267 + 0.0316332i
\(694\) 11.1334 5.36155i 0.422617 0.203522i
\(695\) −50.7078 −1.92346
\(696\) −24.6130 + 49.8682i −0.932954 + 1.89025i
\(697\) −34.9292 −1.32304
\(698\) 42.6912 20.5590i 1.61588 0.778169i
\(699\) −8.17898 10.2561i −0.309357 0.387922i
\(700\) 4.34545 5.44902i 0.164243 0.205954i
\(701\) −32.7410 + 15.7672i −1.23661 + 0.595521i −0.933891 0.357559i \(-0.883609\pi\)
−0.302721 + 0.953079i \(0.597895\pi\)
\(702\) 5.55999 + 2.67755i 0.209848 + 0.101058i
\(703\) 7.39671 + 9.27518i 0.278972 + 0.349820i
\(704\) −11.5514 + 50.6101i −0.435360 + 1.90744i
\(705\) −1.59004 + 6.96641i −0.0598843 + 0.262370i
\(706\) −15.1793 + 19.0342i −0.571279 + 0.716362i
\(707\) 1.71715 + 7.52332i 0.0645800 + 0.282943i
\(708\) 12.8390 0.482520
\(709\) 4.48293 + 19.6410i 0.168360 + 0.737633i 0.986654 + 0.162833i \(0.0520630\pi\)
−0.818294 + 0.574800i \(0.805080\pi\)
\(710\) −32.5124 15.6571i −1.22017 0.587602i
\(711\) −0.242687 0.116872i −0.00910148 0.00438304i
\(712\) 10.5939 + 46.4148i 0.397022 + 1.73947i
\(713\) 3.69646 0.138434
\(714\) −1.96584 8.61289i −0.0735696 0.322329i
\(715\) 4.42138 5.54423i 0.165350 0.207343i
\(716\) 31.2867 137.076i 1.16924 5.12277i
\(717\) −0.901012 + 3.94759i −0.0336489 + 0.147426i
\(718\) 3.90165 + 4.89252i 0.145608 + 0.182587i
\(719\) 17.5840 + 8.46801i 0.655773 + 0.315804i 0.732018 0.681286i \(-0.238579\pi\)
−0.0762449 + 0.997089i \(0.524293\pi\)
\(720\) 39.4470 18.9967i 1.47010 0.707964i
\(721\) −7.60501 + 9.53639i −0.283226 + 0.355154i
\(722\) −17.7866 22.3037i −0.661949 0.830058i
\(723\) −3.62856 + 1.74742i −0.134948 + 0.0649874i
\(724\) 110.976 4.12439
\(725\) 0.0750882 7.75279i 0.00278871 0.287931i
\(726\) −26.1621 −0.970965
\(727\) 0.886876 0.427097i 0.0328924 0.0158401i −0.417365 0.908739i \(-0.637046\pi\)
0.450258 + 0.892899i \(0.351332\pi\)
\(728\) −12.1104 15.1859i −0.448840 0.562828i
\(729\) 0.623490 0.781831i 0.0230922 0.0289567i
\(730\) 8.76438 4.22070i 0.324384 0.156215i
\(731\) −32.3129 15.5611i −1.19514 0.575547i
\(732\) −16.9897 21.3044i −0.627958 0.787435i
\(733\) 7.34197 32.1673i 0.271182 1.18812i −0.637438 0.770501i \(-0.720006\pi\)
0.908620 0.417624i \(-0.137137\pi\)
\(734\) −5.52441 + 24.2040i −0.203910 + 0.893386i
\(735\) 9.94114 12.4658i 0.366684 0.459808i
\(736\) −38.9552 170.674i −1.43591 6.29112i
\(737\) −0.181121 −0.00667167
\(738\) 5.74888 + 25.1875i 0.211619 + 0.927165i
\(739\) −19.6077 9.44255i −0.721279 0.347350i 0.0369684 0.999316i \(-0.488230\pi\)
−0.758248 + 0.651967i \(0.773944\pi\)
\(740\) −52.4826 25.2743i −1.92930 0.929102i
\(741\) −1.46060 6.39932i −0.0536566 0.235085i
\(742\) 9.28617 0.340906
\(743\) 3.81650 + 16.7212i 0.140014 + 0.613440i 0.995430 + 0.0954983i \(0.0304445\pi\)
−0.855416 + 0.517942i \(0.826698\pi\)
\(744\) 3.70825 4.64999i 0.135951 0.170477i
\(745\) −9.11045 + 39.9155i −0.333781 + 1.46239i
\(746\) 2.95545 12.9487i 0.108207 0.474085i
\(747\) −4.26140 5.34363i −0.155917 0.195513i
\(748\) −24.3376 11.7204i −0.889871 0.428540i
\(749\) 1.39866 0.673557i 0.0511058 0.0246112i
\(750\) 15.6488 19.6229i 0.571412 0.716529i
\(751\) 23.4475 + 29.4022i 0.855610 + 1.07290i 0.996559 + 0.0828839i \(0.0264131\pi\)
−0.140949 + 0.990017i \(0.545015\pi\)
\(752\) 43.7707 21.0789i 1.59615 0.768667i
\(753\) 30.3241 1.10507
\(754\) −32.3262 7.70836i −1.17725 0.280722i
\(755\) −7.10910 −0.258726
\(756\) −4.36150 + 2.10039i −0.158626 + 0.0763904i
\(757\) 15.4259 + 19.3435i 0.560664 + 0.703050i 0.978680 0.205389i \(-0.0658460\pi\)
−0.418017 + 0.908439i \(0.637275\pi\)
\(758\) 59.3924 74.4757i 2.15723 2.70508i
\(759\) −7.27422 + 3.50308i −0.264038 + 0.127154i
\(760\) −69.7653 33.5972i −2.53065 1.21870i
\(761\) −14.7384 18.4813i −0.534266 0.669948i 0.439304 0.898338i \(-0.355225\pi\)
−0.973570 + 0.228391i \(0.926654\pi\)
\(762\) −7.43608 + 32.5796i −0.269381 + 1.18023i
\(763\) −2.70286 + 11.8420i −0.0978503 + 0.428710i
\(764\) −3.29079 + 4.12652i −0.119057 + 0.149292i
\(765\) 2.12087 + 9.29216i 0.0766804 + 0.335959i</