Properties

Label 87.2.g.a.25.3
Level $87$
Weight $2$
Character 87.25
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 25.3
Root \(2.87569 + 1.38486i\) of defining polynomial
Character \(\chi\) \(=\) 87.25
Dual form 87.2.g.a.7.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.487716 - 2.13682i) q^{2} +(-0.900969 + 0.433884i) q^{3} +(-2.52621 - 1.21656i) q^{4} +(0.533332 - 2.33668i) q^{5} +(0.487716 + 2.13682i) q^{6} +(-1.21803 + 0.586571i) q^{7} +(-1.09855 + 1.37753i) q^{8} +(0.623490 - 0.781831i) q^{9} +O(q^{10})\) \(q+(0.487716 - 2.13682i) q^{2} +(-0.900969 + 0.433884i) q^{3} +(-2.52621 - 1.21656i) q^{4} +(0.533332 - 2.33668i) q^{5} +(0.487716 + 2.13682i) q^{6} +(-1.21803 + 0.586571i) q^{7} +(-1.09855 + 1.37753i) q^{8} +(0.623490 - 0.781831i) q^{9} +(-4.73296 - 2.27927i) q^{10} +(2.18816 + 2.74387i) q^{11} +2.80388 q^{12} +(3.76255 + 4.71809i) q^{13} +(0.659347 + 2.88879i) q^{14} +(0.533332 + 2.33668i) q^{15} +(-1.08862 - 1.36508i) q^{16} +3.05437 q^{17} +(-1.36655 - 1.71360i) q^{18} +(-5.07762 - 2.44525i) q^{19} +(-4.19002 + 5.25412i) q^{20} +(0.842900 - 1.05696i) q^{21} +(6.93036 - 3.33749i) q^{22} +(-0.225809 - 0.989335i) q^{23} +(0.392066 - 1.71776i) q^{24} +(-0.670784 - 0.323033i) q^{25} +(11.9168 - 5.73883i) q^{26} +(-0.222521 + 0.974928i) q^{27} +3.79059 q^{28} +(-5.14766 - 1.58164i) q^{29} +5.25319 q^{30} +(-1.80501 + 7.90829i) q^{31} +(-6.62277 + 3.18936i) q^{32} +(-3.16198 - 1.52273i) q^{33} +(1.48967 - 6.52665i) q^{34} +(0.721015 + 3.15897i) q^{35} +(-2.52621 + 1.21656i) q^{36} +(3.42698 - 4.29729i) q^{37} +(-7.70151 + 9.65739i) q^{38} +(-5.43705 - 2.61834i) q^{39} +(2.63296 + 3.30163i) q^{40} -6.85782 q^{41} +(-1.84745 - 2.31663i) q^{42} +(1.73610 + 7.60636i) q^{43} +(-2.18968 - 9.59361i) q^{44} +(-1.49436 - 1.87387i) q^{45} -2.22416 q^{46} +(-0.260777 - 0.327004i) q^{47} +(1.57310 + 0.757565i) q^{48} +(-3.22491 + 4.04390i) q^{49} +(-1.01742 + 1.27580i) q^{50} +(-2.75189 + 1.32524i) q^{51} +(-3.76517 - 16.4963i) q^{52} +(2.96899 - 13.0080i) q^{53} +(1.97472 + 0.950976i) q^{54} +(7.57855 - 3.64964i) q^{55} +(0.530037 - 2.32225i) q^{56} +5.63574 q^{57} +(-5.89028 + 10.2283i) q^{58} +3.56102 q^{59} +(1.49540 - 6.55177i) q^{60} +(-6.49557 + 3.12810i) q^{61} +(16.0183 + 7.71400i) q^{62} +(-0.300828 + 1.31801i) q^{63} +(2.80802 + 12.3027i) q^{64} +(13.0314 - 6.27557i) q^{65} +(-4.79596 + 6.01394i) q^{66} +(5.18318 - 6.49950i) q^{67} +(-7.71599 - 3.71582i) q^{68} +(0.632703 + 0.793385i) q^{69} +7.10182 q^{70} +(-6.10196 - 7.65161i) q^{71} +(0.392066 + 1.71776i) q^{72} +(0.0675863 + 0.296115i) q^{73} +(-7.51117 - 9.41871i) q^{74} +0.744514 q^{75} +(9.85235 + 12.3545i) q^{76} +(-4.27471 - 2.05859i) q^{77} +(-8.24668 + 10.3410i) q^{78} +(2.49794 - 3.13231i) q^{79} +(-3.77036 + 1.81571i) q^{80} +(-0.222521 - 0.974928i) q^{81} +(-3.34467 + 14.6540i) q^{82} +(3.88709 + 1.87192i) q^{83} +(-3.41520 + 1.64468i) q^{84} +(1.62899 - 7.13709i) q^{85} +17.1002 q^{86} +(5.32413 - 0.808479i) q^{87} -6.18356 q^{88} +(-3.11361 + 13.6416i) q^{89} +(-4.73296 + 2.27927i) q^{90} +(-7.35039 - 3.53976i) q^{91} +(-0.633143 + 2.77398i) q^{92} +(-1.80501 - 7.90829i) q^{93} +(-0.825935 + 0.397749i) q^{94} +(-8.42183 + 10.5606i) q^{95} +(4.58310 - 5.74702i) q^{96} +(3.42690 + 1.65031i) q^{97} +(7.06827 + 8.86333i) q^{98} +3.50954 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.487716 2.13682i 0.344867 1.51096i −0.443791 0.896130i \(-0.646367\pi\)
0.788658 0.614832i \(-0.210776\pi\)
\(3\) −0.900969 + 0.433884i −0.520175 + 0.250503i
\(4\) −2.52621 1.21656i −1.26311 0.608280i
\(5\) 0.533332 2.33668i 0.238513 1.04499i −0.703836 0.710363i \(-0.748531\pi\)
0.942349 0.334632i \(-0.108612\pi\)
\(6\) 0.487716 + 2.13682i 0.199109 + 0.872355i
\(7\) −1.21803 + 0.586571i −0.460371 + 0.221703i −0.649670 0.760217i \(-0.725093\pi\)
0.189299 + 0.981920i \(0.439378\pi\)
\(8\) −1.09855 + 1.37753i −0.388395 + 0.487031i
\(9\) 0.623490 0.781831i 0.207830 0.260610i
\(10\) −4.73296 2.27927i −1.49669 0.720769i
\(11\) 2.18816 + 2.74387i 0.659755 + 0.827307i 0.993317 0.115421i \(-0.0368218\pi\)
−0.333561 + 0.942728i \(0.608250\pi\)
\(12\) 2.80388 0.809411
\(13\) 3.76255 + 4.71809i 1.04354 + 1.30856i 0.949763 + 0.312971i \(0.101324\pi\)
0.0937822 + 0.995593i \(0.470104\pi\)
\(14\) 0.659347 + 2.88879i 0.176218 + 0.772061i
\(15\) 0.533332 + 2.33668i 0.137706 + 0.603328i
\(16\) −1.08862 1.36508i −0.272155 0.341271i
\(17\) 3.05437 0.740794 0.370397 0.928874i \(-0.379222\pi\)
0.370397 + 0.928874i \(0.379222\pi\)
\(18\) −1.36655 1.71360i −0.322099 0.403899i
\(19\) −5.07762 2.44525i −1.16489 0.560980i −0.251414 0.967880i \(-0.580895\pi\)
−0.913473 + 0.406900i \(0.866610\pi\)
\(20\) −4.19002 + 5.25412i −0.936916 + 1.17486i
\(21\) 0.842900 1.05696i 0.183936 0.230648i
\(22\) 6.93036 3.33749i 1.47756 0.711555i
\(23\) −0.225809 0.989335i −0.0470845 0.206291i 0.945914 0.324417i \(-0.105168\pi\)
−0.992999 + 0.118127i \(0.962311\pi\)
\(24\) 0.392066 1.71776i 0.0800302 0.350635i
\(25\) −0.670784 0.323033i −0.134157 0.0646065i
\(26\) 11.9168 5.73883i 2.33708 1.12548i
\(27\) −0.222521 + 0.974928i −0.0428242 + 0.187625i
\(28\) 3.79059 0.716354
\(29\) −5.14766 1.58164i −0.955897 0.293703i
\(30\) 5.25319 0.959096
\(31\) −1.80501 + 7.90829i −0.324190 + 1.42037i 0.505828 + 0.862634i \(0.331187\pi\)
−0.830018 + 0.557736i \(0.811670\pi\)
\(32\) −6.62277 + 3.18936i −1.17075 + 0.563804i
\(33\) −3.16198 1.52273i −0.550431 0.265074i
\(34\) 1.48967 6.52665i 0.255476 1.11931i
\(35\) 0.721015 + 3.15897i 0.121874 + 0.533964i
\(36\) −2.52621 + 1.21656i −0.421035 + 0.202760i
\(37\) 3.42698 4.29729i 0.563392 0.706471i −0.415789 0.909461i \(-0.636495\pi\)
0.979181 + 0.202990i \(0.0650660\pi\)
\(38\) −7.70151 + 9.65739i −1.24935 + 1.56664i
\(39\) −5.43705 2.61834i −0.870625 0.419271i
\(40\) 2.63296 + 3.30163i 0.416308 + 0.522034i
\(41\) −6.85782 −1.07101 −0.535506 0.844531i \(-0.679879\pi\)
−0.535506 + 0.844531i \(0.679879\pi\)
\(42\) −1.84745 2.31663i −0.285068 0.357463i
\(43\) 1.73610 + 7.60636i 0.264753 + 1.15996i 0.916027 + 0.401116i \(0.131378\pi\)
−0.651274 + 0.758843i \(0.725765\pi\)
\(44\) −2.18968 9.59361i −0.330107 1.44629i
\(45\) −1.49436 1.87387i −0.222766 0.279340i
\(46\) −2.22416 −0.327935
\(47\) −0.260777 0.327004i −0.0380382 0.0476984i 0.762449 0.647049i \(-0.223997\pi\)
−0.800487 + 0.599350i \(0.795426\pi\)
\(48\) 1.57310 + 0.757565i 0.227057 + 0.109345i
\(49\) −3.22491 + 4.04390i −0.460701 + 0.577700i
\(50\) −1.01742 + 1.27580i −0.143884 + 0.180425i
\(51\) −2.75189 + 1.32524i −0.385342 + 0.185571i
\(52\) −3.76517 16.4963i −0.522135 2.28762i
\(53\) 2.96899 13.0080i 0.407821 1.78678i −0.186392 0.982475i \(-0.559680\pi\)
0.594214 0.804307i \(-0.297463\pi\)
\(54\) 1.97472 + 0.950976i 0.268726 + 0.129411i
\(55\) 7.57855 3.64964i 1.02189 0.492117i
\(56\) 0.530037 2.32225i 0.0708292 0.310323i
\(57\) 5.63574 0.746471
\(58\) −5.89028 + 10.2283i −0.773432 + 1.34304i
\(59\) 3.56102 0.463606 0.231803 0.972763i \(-0.425538\pi\)
0.231803 + 0.972763i \(0.425538\pi\)
\(60\) 1.49540 6.55177i 0.193055 0.845830i
\(61\) −6.49557 + 3.12810i −0.831672 + 0.400512i −0.800742 0.599009i \(-0.795561\pi\)
−0.0309301 + 0.999522i \(0.509847\pi\)
\(62\) 16.0183 + 7.71400i 2.03432 + 0.979679i
\(63\) −0.300828 + 1.31801i −0.0379007 + 0.166054i
\(64\) 2.80802 + 12.3027i 0.351002 + 1.53784i
\(65\) 13.0314 6.27557i 1.61634 0.778389i
\(66\) −4.79596 + 6.01394i −0.590342 + 0.740265i
\(67\) 5.18318 6.49950i 0.633226 0.794040i −0.356912 0.934138i \(-0.616170\pi\)
0.990138 + 0.140098i \(0.0447418\pi\)
\(68\) −7.71599 3.71582i −0.935701 0.450610i
\(69\) 0.632703 + 0.793385i 0.0761685 + 0.0955123i
\(70\) 7.10182 0.848830
\(71\) −6.10196 7.65161i −0.724169 0.908079i 0.274397 0.961617i \(-0.411522\pi\)
−0.998566 + 0.0535372i \(0.982950\pi\)
\(72\) 0.392066 + 1.71776i 0.0462055 + 0.202439i
\(73\) 0.0675863 + 0.296115i 0.00791038 + 0.0346577i 0.978729 0.205157i \(-0.0657705\pi\)
−0.970819 + 0.239815i \(0.922913\pi\)
\(74\) −7.51117 9.41871i −0.873156 1.09490i
\(75\) 0.744514 0.0859691
\(76\) 9.85235 + 12.3545i 1.13014 + 1.41715i
\(77\) −4.27471 2.05859i −0.487148 0.234598i
\(78\) −8.24668 + 10.3410i −0.933752 + 1.17089i
\(79\) 2.49794 3.13231i 0.281040 0.352413i −0.621196 0.783655i \(-0.713353\pi\)
0.902236 + 0.431242i \(0.141924\pi\)
\(80\) −3.77036 + 1.81571i −0.421539 + 0.203002i
\(81\) −0.222521 0.974928i −0.0247245 0.108325i
\(82\) −3.34467 + 14.6540i −0.369357 + 1.61826i
\(83\) 3.88709 + 1.87192i 0.426663 + 0.205470i 0.634877 0.772613i \(-0.281051\pi\)
−0.208214 + 0.978083i \(0.566765\pi\)
\(84\) −3.41520 + 1.64468i −0.372629 + 0.179449i
\(85\) 1.62899 7.13709i 0.176689 0.774126i
\(86\) 17.1002 1.84396
\(87\) 5.32413 0.808479i 0.570807 0.0866780i
\(88\) −6.18356 −0.659170
\(89\) −3.11361 + 13.6416i −0.330042 + 1.44601i 0.489004 + 0.872282i \(0.337360\pi\)
−0.819046 + 0.573728i \(0.805497\pi\)
\(90\) −4.73296 + 2.27927i −0.498898 + 0.240256i
\(91\) −7.35039 3.53976i −0.770530 0.371068i
\(92\) −0.633143 + 2.77398i −0.0660097 + 0.289207i
\(93\) −1.80501 7.90829i −0.187171 0.820051i
\(94\) −0.825935 + 0.397749i −0.0851887 + 0.0410247i
\(95\) −8.42183 + 10.5606i −0.864062 + 1.08350i
\(96\) 4.58310 5.74702i 0.467761 0.586553i
\(97\) 3.42690 + 1.65031i 0.347949 + 0.167563i 0.599692 0.800231i \(-0.295290\pi\)
−0.251743 + 0.967794i \(0.581004\pi\)
\(98\) 7.06827 + 8.86333i 0.714003 + 0.895332i
\(99\) 3.50954 0.352722
\(100\) 1.30155 + 1.63210i 0.130155 + 0.163210i
\(101\) 0.00939526 + 0.0411633i 0.000934863 + 0.00409590i 0.975393 0.220472i \(-0.0707599\pi\)
−0.974458 + 0.224568i \(0.927903\pi\)
\(102\) 1.48967 + 6.52665i 0.147499 + 0.646235i
\(103\) 7.34494 + 9.21026i 0.723718 + 0.907514i 0.998542 0.0539808i \(-0.0171910\pi\)
−0.274824 + 0.961495i \(0.588620\pi\)
\(104\) −10.6327 −1.04262
\(105\) −2.02024 2.53330i −0.197155 0.247225i
\(106\) −26.3477 12.6884i −2.55912 1.23241i
\(107\) −3.90752 + 4.89987i −0.377754 + 0.473688i −0.933971 0.357349i \(-0.883681\pi\)
0.556217 + 0.831037i \(0.312252\pi\)
\(108\) 1.74819 2.19216i 0.168220 0.210941i
\(109\) 13.3409 6.42464i 1.27783 0.615369i 0.332996 0.942928i \(-0.391940\pi\)
0.944831 + 0.327559i \(0.106226\pi\)
\(110\) −4.10245 17.9740i −0.391154 1.71376i
\(111\) −1.22307 + 5.35864i −0.116089 + 0.508619i
\(112\) 2.12668 + 1.02416i 0.200953 + 0.0967737i
\(113\) −10.7154 + 5.16029i −1.00802 + 0.485439i −0.863654 0.504085i \(-0.831830\pi\)
−0.144370 + 0.989524i \(0.546116\pi\)
\(114\) 2.74864 12.0426i 0.257434 1.12789i
\(115\) −2.43219 −0.226803
\(116\) 11.0799 + 10.2580i 1.02874 + 0.952430i
\(117\) 6.03467 0.557905
\(118\) 1.73677 7.60928i 0.159883 0.700491i
\(119\) −3.72031 + 1.79160i −0.341040 + 0.164236i
\(120\) −3.80474 1.83227i −0.347324 0.167262i
\(121\) −0.293028 + 1.28384i −0.0266389 + 0.116713i
\(122\) 3.51621 + 15.4055i 0.318342 + 1.39475i
\(123\) 6.17868 2.97550i 0.557113 0.268292i
\(124\) 14.1807 17.7821i 1.27347 1.59688i
\(125\) 6.35924 7.97423i 0.568788 0.713237i
\(126\) 2.66964 + 1.28563i 0.237831 + 0.114533i
\(127\) −9.41080 11.8008i −0.835074 1.04715i −0.998166 0.0605385i \(-0.980718\pi\)
0.163092 0.986611i \(-0.447853\pi\)
\(128\) 12.9568 1.14523
\(129\) −4.86445 6.09983i −0.428291 0.537060i
\(130\) −7.05419 30.9064i −0.618693 2.71067i
\(131\) −2.32463 10.1849i −0.203103 0.889855i −0.969033 0.246930i \(-0.920578\pi\)
0.765930 0.642924i \(-0.222279\pi\)
\(132\) 6.13535 + 7.69348i 0.534013 + 0.669632i
\(133\) 7.61899 0.660650
\(134\) −11.3604 14.2454i −0.981386 1.23062i
\(135\) 2.15942 + 1.03992i 0.185853 + 0.0895021i
\(136\) −3.35537 + 4.20750i −0.287720 + 0.360790i
\(137\) −2.28953 + 2.87098i −0.195608 + 0.245284i −0.869956 0.493129i \(-0.835853\pi\)
0.674348 + 0.738413i \(0.264425\pi\)
\(138\) 2.00390 0.965029i 0.170584 0.0821487i
\(139\) −1.28647 5.63639i −0.109117 0.478072i −0.999728 0.0233073i \(-0.992580\pi\)
0.890611 0.454765i \(-0.150277\pi\)
\(140\) 2.02164 8.85739i 0.170860 0.748586i
\(141\) 0.376834 + 0.181474i 0.0317351 + 0.0152828i
\(142\) −19.3262 + 9.30699i −1.62182 + 0.781025i
\(143\) −4.71275 + 20.6479i −0.394100 + 1.72666i
\(144\) −1.74601 −0.145501
\(145\) −6.44120 + 11.1849i −0.534912 + 0.928855i
\(146\) 0.665709 0.0550944
\(147\) 1.15096 5.04267i 0.0949292 0.415912i
\(148\) −13.8852 + 6.68675i −1.14135 + 0.549648i
\(149\) 7.73406 + 3.72453i 0.633599 + 0.305125i 0.722977 0.690873i \(-0.242773\pi\)
−0.0893774 + 0.995998i \(0.528488\pi\)
\(150\) 0.363111 1.59090i 0.0296479 0.129896i
\(151\) −2.65704 11.6412i −0.216227 0.947351i −0.960238 0.279184i \(-0.909936\pi\)
0.744011 0.668168i \(-0.232921\pi\)
\(152\) 8.94642 4.30837i 0.725650 0.349455i
\(153\) 1.90437 2.38800i 0.153959 0.193059i
\(154\) −6.48369 + 8.13029i −0.522471 + 0.655158i
\(155\) 17.5165 + 8.43548i 1.40696 + 0.677554i
\(156\) 10.5498 + 13.2290i 0.844657 + 1.05917i
\(157\) −12.2535 −0.977936 −0.488968 0.872302i \(-0.662626\pi\)
−0.488968 + 0.872302i \(0.662626\pi\)
\(158\) −5.47492 6.86533i −0.435561 0.546176i
\(159\) 2.96899 + 13.0080i 0.235456 + 1.03160i
\(160\) 3.92037 + 17.1763i 0.309933 + 1.35790i
\(161\) 0.855356 + 1.07258i 0.0674115 + 0.0845314i
\(162\) −2.19178 −0.172202
\(163\) −4.94515 6.20102i −0.387334 0.485701i 0.549491 0.835499i \(-0.314822\pi\)
−0.936825 + 0.349798i \(0.886250\pi\)
\(164\) 17.3243 + 8.34295i 1.35280 + 0.651475i
\(165\) −5.24452 + 6.57642i −0.408286 + 0.511974i
\(166\) 5.89576 7.39305i 0.457600 0.573812i
\(167\) −11.6445 + 5.60770i −0.901080 + 0.433937i −0.826279 0.563261i \(-0.809546\pi\)
−0.0748008 + 0.997198i \(0.523832\pi\)
\(168\) 0.530037 + 2.32225i 0.0408933 + 0.179165i
\(169\) −5.21082 + 22.8301i −0.400833 + 1.75616i
\(170\) −14.4562 6.96175i −1.10874 0.533941i
\(171\) −5.07762 + 2.44525i −0.388295 + 0.186993i
\(172\) 4.86783 21.3273i 0.371168 1.62619i
\(173\) 2.65357 0.201747 0.100874 0.994899i \(-0.467836\pi\)
0.100874 + 0.994899i \(0.467836\pi\)
\(174\) 0.869087 11.7710i 0.0658853 0.892360i
\(175\) 1.00651 0.0760853
\(176\) 1.36354 5.97405i 0.102781 0.450311i
\(177\) −3.20837 + 1.54507i −0.241156 + 0.116135i
\(178\) 27.6312 + 13.3065i 2.07105 + 0.997363i
\(179\) 2.98150 13.0628i 0.222848 0.976361i −0.732474 0.680795i \(-0.761635\pi\)
0.955322 0.295566i \(-0.0955083\pi\)
\(180\) 1.49540 + 6.55177i 0.111461 + 0.488340i
\(181\) −1.36397 + 0.656854i −0.101383 + 0.0488236i −0.483888 0.875130i \(-0.660776\pi\)
0.382505 + 0.923953i \(0.375062\pi\)
\(182\) −11.1487 + 13.9801i −0.826400 + 1.03627i
\(183\) 4.49507 5.63664i 0.332285 0.416673i
\(184\) 1.61090 + 0.775770i 0.118757 + 0.0571905i
\(185\) −8.21368 10.2996i −0.603882 0.757244i
\(186\) −17.7790 −1.30362
\(187\) 6.68346 + 8.38079i 0.488743 + 0.612864i
\(188\) 0.260958 + 1.14333i 0.0190323 + 0.0833860i
\(189\) −0.300828 1.31801i −0.0218820 0.0958713i
\(190\) 18.4588 + 23.1466i 1.33914 + 1.67923i
\(191\) −11.6187 −0.840696 −0.420348 0.907363i \(-0.638092\pi\)
−0.420348 + 0.907363i \(0.638092\pi\)
\(192\) −7.86789 9.86602i −0.567816 0.712019i
\(193\) 5.55158 + 2.67350i 0.399612 + 0.192443i 0.622886 0.782313i \(-0.285960\pi\)
−0.223274 + 0.974756i \(0.571674\pi\)
\(194\) 5.19777 6.51780i 0.373178 0.467951i
\(195\) −9.01798 + 11.3082i −0.645791 + 0.809797i
\(196\) 13.0664 6.29246i 0.933317 0.449462i
\(197\) 0.562248 + 2.46337i 0.0400585 + 0.175508i 0.991000 0.133864i \(-0.0427385\pi\)
−0.950941 + 0.309372i \(0.899881\pi\)
\(198\) 1.71166 7.49926i 0.121642 0.532949i
\(199\) −11.9665 5.76277i −0.848284 0.408512i −0.0413438 0.999145i \(-0.513164\pi\)
−0.806940 + 0.590633i \(0.798878\pi\)
\(200\) 1.18187 0.569161i 0.0835712 0.0402458i
\(201\) −1.84985 + 8.10474i −0.130479 + 0.571664i
\(202\) 0.0925410 0.00651116
\(203\) 7.19773 1.09299i 0.505182 0.0767128i
\(204\) 8.56410 0.599607
\(205\) −3.65749 + 16.0245i −0.255451 + 1.11920i
\(206\) 23.2629 11.2028i 1.62081 0.780539i
\(207\) −0.914283 0.440295i −0.0635471 0.0306026i
\(208\) 2.34461 10.2724i 0.162569 0.712263i
\(209\) −4.40120 19.2829i −0.304438 1.33383i
\(210\) −6.39852 + 3.08136i −0.441540 + 0.212634i
\(211\) −5.17794 + 6.49294i −0.356464 + 0.446992i −0.927438 0.373976i \(-0.877994\pi\)
0.570974 + 0.820968i \(0.306566\pi\)
\(212\) −23.3253 + 29.2489i −1.60198 + 2.00883i
\(213\) 8.81758 + 4.24632i 0.604171 + 0.290953i
\(214\) 8.56440 + 10.7394i 0.585450 + 0.734132i
\(215\) 18.6995 1.27530
\(216\) −1.09855 1.37753i −0.0747466 0.0937292i
\(217\) −2.44021 10.6913i −0.165652 0.725771i
\(218\) −7.22175 31.6406i −0.489119 2.14297i
\(219\) −0.189373 0.237466i −0.0127966 0.0160465i
\(220\) −23.5850 −1.59010
\(221\) 11.4922 + 14.4108i 0.773052 + 0.969376i
\(222\) 10.8540 + 5.22699i 0.728470 + 0.350812i
\(223\) 15.5947 19.5551i 1.04430 1.30951i 0.0948805 0.995489i \(-0.469753\pi\)
0.949417 0.314019i \(-0.101675\pi\)
\(224\) 6.19592 7.76944i 0.413983 0.519118i
\(225\) −0.670784 + 0.323033i −0.0447189 + 0.0215355i
\(226\) 5.80053 + 25.4138i 0.385845 + 1.69050i
\(227\) −0.677325 + 2.96756i −0.0449556 + 0.196964i −0.992419 0.122901i \(-0.960780\pi\)
0.947463 + 0.319865i \(0.103637\pi\)
\(228\) −14.2371 6.85620i −0.942872 0.454063i
\(229\) 19.7389 9.50577i 1.30439 0.628159i 0.352845 0.935682i \(-0.385214\pi\)
0.951541 + 0.307523i \(0.0995001\pi\)
\(230\) −1.18622 + 5.19716i −0.0782169 + 0.342691i
\(231\) 4.74457 0.312170
\(232\) 7.83370 5.35357i 0.514308 0.351479i
\(233\) 9.96464 0.652805 0.326403 0.945231i \(-0.394163\pi\)
0.326403 + 0.945231i \(0.394163\pi\)
\(234\) 2.94320 12.8950i 0.192403 0.842974i
\(235\) −0.903184 + 0.434951i −0.0589173 + 0.0283731i
\(236\) −8.99590 4.33220i −0.585583 0.282002i
\(237\) −0.891504 + 3.90593i −0.0579094 + 0.253718i
\(238\) 2.01389 + 8.82343i 0.130541 + 0.571938i
\(239\) 7.01041 3.37604i 0.453466 0.218378i −0.193187 0.981162i \(-0.561882\pi\)
0.646653 + 0.762784i \(0.276168\pi\)
\(240\) 2.60917 3.27179i 0.168421 0.211193i
\(241\) −14.4582 + 18.1300i −0.931334 + 1.16786i 0.0542254 + 0.998529i \(0.482731\pi\)
−0.985560 + 0.169328i \(0.945840\pi\)
\(242\) 2.60043 + 1.25230i 0.167162 + 0.0805009i
\(243\) 0.623490 + 0.781831i 0.0399969 + 0.0501545i
\(244\) 20.2147 1.29411
\(245\) 7.72936 + 9.69231i 0.493811 + 0.619219i
\(246\) −3.34467 14.6540i −0.213248 0.934302i
\(247\) −7.56789 33.1571i −0.481533 2.10974i
\(248\) −8.91103 11.1741i −0.565851 0.709555i
\(249\) −4.31434 −0.273410
\(250\) −13.9380 17.4777i −0.881518 1.10539i
\(251\) −1.06363 0.512217i −0.0671357 0.0323308i 0.400015 0.916509i \(-0.369005\pi\)
−0.467150 + 0.884178i \(0.654719\pi\)
\(252\) 2.36339 2.96360i 0.148880 0.186689i
\(253\) 2.22050 2.78441i 0.139601 0.175055i
\(254\) −29.8060 + 14.3538i −1.87019 + 0.900637i
\(255\) 1.62899 + 7.13709i 0.102012 + 0.446942i
\(256\) 0.703222 3.08102i 0.0439514 0.192564i
\(257\) −14.3925 6.93107i −0.897781 0.432348i −0.0726939 0.997354i \(-0.523160\pi\)
−0.825087 + 0.565006i \(0.808874\pi\)
\(258\) −15.4067 + 7.41949i −0.959181 + 0.461917i
\(259\) −1.65348 + 7.24438i −0.102742 + 0.450144i
\(260\) −40.5546 −2.51509
\(261\) −4.44609 + 3.03847i −0.275206 + 0.188076i
\(262\) −22.8970 −1.41458
\(263\) −3.25116 + 14.2443i −0.200475 + 0.878339i 0.770173 + 0.637835i \(0.220170\pi\)
−0.970648 + 0.240504i \(0.922687\pi\)
\(264\) 5.57120 2.68295i 0.342883 0.165124i
\(265\) −28.8120 13.8751i −1.76991 0.852343i
\(266\) 3.71590 16.2804i 0.227837 0.998218i
\(267\) −3.11361 13.6416i −0.190550 0.834854i
\(268\) −21.0008 + 10.1135i −1.28283 + 0.617778i
\(269\) 13.7882 17.2899i 0.840681 1.05418i −0.157099 0.987583i \(-0.550214\pi\)
0.997780 0.0665980i \(-0.0212145\pi\)
\(270\) 3.27531 4.10711i 0.199329 0.249951i
\(271\) 20.8260 + 10.0293i 1.26509 + 0.609236i 0.941516 0.336967i \(-0.109401\pi\)
0.323574 + 0.946203i \(0.395115\pi\)
\(272\) −3.32504 4.16947i −0.201610 0.252812i
\(273\) 8.15831 0.493764
\(274\) 5.01814 + 6.29255i 0.303157 + 0.380147i
\(275\) −0.581425 2.54739i −0.0350613 0.153613i
\(276\) −0.633143 2.77398i −0.0381107 0.166974i
\(277\) 11.6674 + 14.6304i 0.701024 + 0.879056i 0.997100 0.0761086i \(-0.0242496\pi\)
−0.296076 + 0.955164i \(0.595678\pi\)
\(278\) −12.6714 −0.759980
\(279\) 5.05754 + 6.34195i 0.302787 + 0.379683i
\(280\) −5.14366 2.47706i −0.307392 0.148032i
\(281\) −5.40308 + 6.77525i −0.322321 + 0.404177i −0.916422 0.400213i \(-0.868936\pi\)
0.594102 + 0.804390i \(0.297508\pi\)
\(282\) 0.571565 0.716720i 0.0340362 0.0426800i
\(283\) −5.03188 + 2.42322i −0.299114 + 0.144046i −0.577421 0.816446i \(-0.695941\pi\)
0.278307 + 0.960492i \(0.410227\pi\)
\(284\) 6.10619 + 26.7530i 0.362336 + 1.58750i
\(285\) 3.00572 13.1689i 0.178043 0.780059i
\(286\) 41.8224 + 20.1406i 2.47301 + 1.19094i
\(287\) 8.35301 4.02260i 0.493063 0.237446i
\(288\) −1.63569 + 7.16642i −0.0963839 + 0.422285i
\(289\) −7.67081 −0.451224
\(290\) 20.7587 + 19.2188i 1.21899 + 1.12856i
\(291\) −3.80357 −0.222969
\(292\) 0.189504 0.830272i 0.0110899 0.0485880i
\(293\) 4.25166 2.04749i 0.248385 0.119616i −0.305549 0.952176i \(-0.598840\pi\)
0.553934 + 0.832560i \(0.313126\pi\)
\(294\) −10.2139 4.91878i −0.595689 0.286869i
\(295\) 1.89921 8.32097i 0.110576 0.484466i
\(296\) 2.15497 + 9.44155i 0.125255 + 0.548779i
\(297\) −3.16198 + 1.52273i −0.183477 + 0.0883578i
\(298\) 11.7307 14.7098i 0.679540 0.852117i
\(299\) 3.81816 4.78782i 0.220810 0.276887i
\(300\) −1.88080 0.905745i −0.108588 0.0522932i
\(301\) −6.57628 8.24640i −0.379051 0.475315i
\(302\) −26.1712 −1.50598
\(303\) −0.0263249 0.0330104i −0.00151233 0.00189640i
\(304\) 2.18961 + 9.59333i 0.125583 + 0.550215i
\(305\) 3.84508 + 16.8464i 0.220168 + 0.964621i
\(306\) −4.17395 5.23397i −0.238609 0.299206i
\(307\) 11.7362 0.669821 0.334910 0.942250i \(-0.391294\pi\)
0.334910 + 0.942250i \(0.391294\pi\)
\(308\) 8.29442 + 10.4009i 0.472618 + 0.592645i
\(309\) −10.6137 5.11131i −0.603795 0.290772i
\(310\) 26.5682 33.3155i 1.50897 1.89219i
\(311\) 10.4770 13.1378i 0.594097 0.744974i −0.390348 0.920667i \(-0.627645\pi\)
0.984445 + 0.175693i \(0.0562167\pi\)
\(312\) 9.57970 4.61334i 0.542344 0.261179i
\(313\) 2.66132 + 11.6600i 0.150427 + 0.659063i 0.992761 + 0.120107i \(0.0383239\pi\)
−0.842334 + 0.538956i \(0.818819\pi\)
\(314\) −5.97623 + 26.1836i −0.337258 + 1.47762i
\(315\) 2.91933 + 1.40588i 0.164486 + 0.0792121i
\(316\) −10.1210 + 4.87400i −0.569349 + 0.274184i
\(317\) 3.14555 13.7815i 0.176671 0.774048i −0.806481 0.591260i \(-0.798631\pi\)
0.983152 0.182788i \(-0.0585122\pi\)
\(318\) 29.2438 1.63991
\(319\) −6.92410 17.5854i −0.387675 0.984592i
\(320\) 30.2451 1.69075
\(321\) 1.39458 6.11004i 0.0778377 0.341029i
\(322\) 2.70909 1.30463i 0.150972 0.0727042i
\(323\) −15.5089 7.46871i −0.862941 0.415570i
\(324\) −0.623923 + 2.73358i −0.0346624 + 0.151866i
\(325\) −0.999763 4.38025i −0.0554569 0.242973i
\(326\) −15.6623 + 7.54257i −0.867455 + 0.417744i
\(327\) −9.23220 + 11.5768i −0.510542 + 0.640199i
\(328\) 7.53363 9.44687i 0.415975 0.521616i
\(329\) 0.509444 + 0.245335i 0.0280866 + 0.0135258i
\(330\) 11.4948 + 14.4140i 0.632769 + 0.793467i
\(331\) 23.0236 1.26549 0.632747 0.774359i \(-0.281927\pi\)
0.632747 + 0.774359i \(0.281927\pi\)
\(332\) −7.54230 9.45774i −0.413937 0.519061i
\(333\) −1.22307 5.35864i −0.0670241 0.293652i
\(334\) 6.30346 + 27.6172i 0.344910 + 1.51115i
\(335\) −12.4229 15.5778i −0.678735 0.851107i
\(336\) −2.36044 −0.128773
\(337\) −1.59382 1.99859i −0.0868212 0.108870i 0.736524 0.676412i \(-0.236466\pi\)
−0.823345 + 0.567542i \(0.807895\pi\)
\(338\) 46.2425 + 22.2692i 2.51526 + 1.21129i
\(339\) 7.41532 9.29852i 0.402745 0.505026i
\(340\) −12.7979 + 16.0480i −0.694062 + 0.870326i
\(341\) −25.6490 + 12.3519i −1.38897 + 0.668892i
\(342\) 2.74864 + 12.0426i 0.148629 + 0.651188i
\(343\) 3.66178 16.0433i 0.197717 0.866257i
\(344\) −12.3852 5.96440i −0.667765 0.321579i
\(345\) 2.19133 1.05529i 0.117977 0.0568148i
\(346\) 1.29419 5.67022i 0.0695761 0.304833i
\(347\) −0.891885 −0.0478789 −0.0239394 0.999713i \(-0.507621\pi\)
−0.0239394 + 0.999713i \(0.507621\pi\)
\(348\) −14.4334 4.43473i −0.773713 0.237726i
\(349\) −0.755575 −0.0404450 −0.0202225 0.999796i \(-0.506437\pi\)
−0.0202225 + 0.999796i \(0.506437\pi\)
\(350\) 0.490893 2.15074i 0.0262393 0.114962i
\(351\) −5.43705 + 2.61834i −0.290208 + 0.139757i
\(352\) −23.2429 11.1932i −1.23885 0.596598i
\(353\) −4.28143 + 18.7582i −0.227878 + 0.998397i 0.723489 + 0.690336i \(0.242537\pi\)
−0.951367 + 0.308061i \(0.900320\pi\)
\(354\) 1.73677 + 7.60928i 0.0923082 + 0.404429i
\(355\) −21.1337 + 10.1775i −1.12166 + 0.540164i
\(356\) 24.4615 30.6737i 1.29646 1.62570i
\(357\) 2.57453 3.22836i 0.136259 0.170863i
\(358\) −26.4588 12.7419i −1.39839 0.673430i
\(359\) 10.9825 + 13.7716i 0.579634 + 0.726838i 0.982050 0.188619i \(-0.0604010\pi\)
−0.402416 + 0.915457i \(0.631830\pi\)
\(360\) 4.22294 0.222569
\(361\) 7.95667 + 9.97735i 0.418772 + 0.525124i
\(362\) 0.738351 + 3.23493i 0.0388068 + 0.170024i
\(363\) −0.293028 1.28384i −0.0153800 0.0673842i
\(364\) 14.2623 + 17.8844i 0.747548 + 0.937395i
\(365\) 0.727972 0.0381038
\(366\) −9.85219 12.3543i −0.514982 0.645767i
\(367\) −3.42176 1.64783i −0.178614 0.0860162i 0.342440 0.939540i \(-0.388747\pi\)
−0.521054 + 0.853524i \(0.674461\pi\)
\(368\) −1.10471 + 1.38526i −0.0575867 + 0.0722115i
\(369\) −4.27578 + 5.36166i −0.222588 + 0.279117i
\(370\) −26.0144 + 12.5279i −1.35243 + 0.651294i
\(371\) 4.01379 + 17.5856i 0.208386 + 0.912998i
\(372\) −5.06105 + 22.1739i −0.262403 + 1.14966i
\(373\) 7.47141 + 3.59804i 0.386855 + 0.186299i 0.617194 0.786811i \(-0.288269\pi\)
−0.230339 + 0.973110i \(0.573984\pi\)
\(374\) 21.1679 10.1939i 1.09457 0.527115i
\(375\) −2.26959 + 9.94371i −0.117201 + 0.513491i
\(376\) 0.736934 0.0380045
\(377\) −11.9060 30.2382i −0.613192 1.55734i
\(378\) −2.96308 −0.152404
\(379\) 1.98764 8.70843i 0.102098 0.447322i −0.897877 0.440247i \(-0.854891\pi\)
0.999975 0.00707478i \(-0.00225199\pi\)
\(380\) 34.1230 16.4328i 1.75047 0.842983i
\(381\) 13.5990 + 6.54894i 0.696698 + 0.335512i
\(382\) −5.66660 + 24.8270i −0.289929 + 1.27026i
\(383\) −7.97804 34.9541i −0.407659 1.78607i −0.594947 0.803765i \(-0.702827\pi\)
0.187288 0.982305i \(-0.440030\pi\)
\(384\) −11.6737 + 5.62176i −0.595721 + 0.286884i
\(385\) −7.09011 + 8.89072i −0.361345 + 0.453113i
\(386\) 8.42040 10.5588i 0.428587 0.537431i
\(387\) 7.02933 + 3.38515i 0.357321 + 0.172077i
\(388\) −6.64938 8.33806i −0.337571 0.423301i
\(389\) 11.3446 0.575194 0.287597 0.957752i \(-0.407144\pi\)
0.287597 + 0.957752i \(0.407144\pi\)
\(390\) 19.7654 + 24.7850i 1.00086 + 1.25504i
\(391\) −0.689705 3.02180i −0.0348799 0.152819i
\(392\) −2.02790 8.88482i −0.102425 0.448751i
\(393\) 6.51346 + 8.16762i 0.328560 + 0.412002i
\(394\) 5.53800 0.279001
\(395\) −5.98699 7.50744i −0.301238 0.377740i
\(396\) −8.86583 4.26956i −0.445525 0.214553i
\(397\) −15.0481 + 18.8697i −0.755242 + 0.947043i −0.999744 0.0226053i \(-0.992804\pi\)
0.244503 + 0.969649i \(0.421375\pi\)
\(398\) −18.1503 + 22.7598i −0.909792 + 1.14084i
\(399\) −6.86447 + 3.30576i −0.343654 + 0.165495i
\(400\) 0.289261 + 1.26734i 0.0144631 + 0.0633668i
\(401\) −4.30720 + 18.8711i −0.215091 + 0.942376i 0.745957 + 0.665994i \(0.231992\pi\)
−0.961048 + 0.276381i \(0.910865\pi\)
\(402\) 16.4162 + 7.90562i 0.818765 + 0.394297i
\(403\) −44.1035 + 21.2391i −2.19695 + 1.05800i
\(404\) 0.0263432 0.115417i 0.00131062 0.00574222i
\(405\) −2.39677 −0.119097
\(406\) 1.17492 15.9133i 0.0583105 0.789766i
\(407\) 19.2900 0.956169
\(408\) 1.19752 5.24666i 0.0592859 0.259749i
\(409\) −10.3124 + 4.96618i −0.509915 + 0.245562i −0.671106 0.741361i \(-0.734181\pi\)
0.161192 + 0.986923i \(0.448466\pi\)
\(410\) 32.4578 + 15.6308i 1.60298 + 0.771952i
\(411\) 0.817124 3.58006i 0.0403058 0.176591i
\(412\) −7.35003 32.2026i −0.362110 1.58651i
\(413\) −4.33742 + 2.08879i −0.213431 + 0.102783i
\(414\) −1.38674 + 1.73892i −0.0681548 + 0.0854634i
\(415\) 6.44719 8.08452i 0.316480 0.396853i
\(416\) −39.9662 19.2467i −1.95951 0.943648i
\(417\) 3.60461 + 4.52003i 0.176518 + 0.221347i
\(418\) −43.3508 −2.12036
\(419\) −13.1672 16.5111i −0.643259 0.806621i 0.348147 0.937440i \(-0.386811\pi\)
−0.991406 + 0.130819i \(0.958239\pi\)
\(420\) 2.02164 + 8.85739i 0.0986460 + 0.432196i
\(421\) −6.12223 26.8233i −0.298379 1.30729i −0.872540 0.488543i \(-0.837529\pi\)
0.574161 0.818743i \(-0.305329\pi\)
\(422\) 11.3489 + 14.2311i 0.552455 + 0.692757i
\(423\) −0.418254 −0.0203362
\(424\) 14.6573 + 18.3797i 0.711823 + 0.892598i
\(425\) −2.04882 0.986662i −0.0993826 0.0478601i
\(426\) 13.3741 16.7706i 0.647978 0.812539i
\(427\) 6.07692 7.62022i 0.294083 0.368768i
\(428\) 15.8322 7.62438i 0.765278 0.368538i
\(429\) −4.71275 20.6479i −0.227534 0.996890i
\(430\) 9.12007 39.9576i 0.439809 1.92693i
\(431\) 1.75647 + 0.845873i 0.0846064 + 0.0407443i 0.475708 0.879603i \(-0.342192\pi\)
−0.391102 + 0.920347i \(0.627906\pi\)
\(432\) 1.57310 0.757565i 0.0756858 0.0364483i
\(433\) −1.74340 + 7.63835i −0.0837826 + 0.367076i −0.999387 0.0350044i \(-0.988855\pi\)
0.915605 + 0.402080i \(0.131713\pi\)
\(434\) −24.0355 −1.15374
\(435\) 0.950372 12.8720i 0.0455669 0.617164i
\(436\) −41.5179 −1.98835
\(437\) −1.27260 + 5.57563i −0.0608768 + 0.266719i
\(438\) −0.599783 + 0.288840i −0.0286587 + 0.0138013i
\(439\) −2.15322 1.03694i −0.102768 0.0494903i 0.381794 0.924248i \(-0.375306\pi\)
−0.484561 + 0.874757i \(0.661021\pi\)
\(440\) −3.29789 + 14.4490i −0.157221 + 0.688829i
\(441\) 1.15096 + 5.04267i 0.0548074 + 0.240127i
\(442\) 36.3983 17.5285i 1.73129 0.833746i
\(443\) 23.9106 29.9830i 1.13603 1.42453i 0.245623 0.969366i \(-0.421008\pi\)
0.890405 0.455168i \(-0.150421\pi\)
\(444\) 9.60884 12.0491i 0.456016 0.571825i
\(445\) 30.2155 + 14.5510i 1.43235 + 0.689785i
\(446\) −34.1801 42.8604i −1.61847 2.02950i
\(447\) −8.58416 −0.406017
\(448\) −10.6367 13.3379i −0.502535 0.630159i
\(449\) 6.97471 + 30.5582i 0.329157 + 1.44213i 0.820741 + 0.571301i \(0.193561\pi\)
−0.491584 + 0.870830i \(0.663582\pi\)
\(450\) 0.363111 + 1.59090i 0.0171172 + 0.0749955i
\(451\) −15.0060 18.8170i −0.706606 0.886056i
\(452\) 33.3473 1.56852
\(453\) 7.44486 + 9.33556i 0.349790 + 0.438623i
\(454\) 6.01080 + 2.89465i 0.282101 + 0.135853i
\(455\) −12.1915 + 15.2876i −0.571545 + 0.716695i
\(456\) −6.19111 + 7.76341i −0.289925 + 0.363555i
\(457\) 29.0691 13.9989i 1.35980 0.654843i 0.395204 0.918593i \(-0.370674\pi\)
0.964591 + 0.263750i \(0.0849595\pi\)
\(458\) −10.6852 46.8147i −0.499285 2.18751i
\(459\) −0.679662 + 2.97779i −0.0317239 + 0.138991i
\(460\) 6.14422 + 2.95890i 0.286476 + 0.137960i
\(461\) 5.11576 2.46362i 0.238265 0.114742i −0.310942 0.950429i \(-0.600644\pi\)
0.549206 + 0.835687i \(0.314930\pi\)
\(462\) 2.31400 10.1383i 0.107657 0.471677i
\(463\) 23.2339 1.07977 0.539886 0.841738i \(-0.318467\pi\)
0.539886 + 0.841738i \(0.318467\pi\)
\(464\) 3.44477 + 8.74879i 0.159919 + 0.406152i
\(465\) −19.4418 −0.901592
\(466\) 4.85991 21.2927i 0.225131 0.986364i
\(467\) −10.8811 + 5.24005i −0.503516 + 0.242481i −0.668358 0.743839i \(-0.733003\pi\)
0.164842 + 0.986320i \(0.447288\pi\)
\(468\) −15.2448 7.34153i −0.704693 0.339362i
\(469\) −2.50083 + 10.9569i −0.115478 + 0.505941i
\(470\) 0.488915 + 2.14208i 0.0225520 + 0.0988067i
\(471\) 11.0400 5.31659i 0.508697 0.244976i
\(472\) −3.91195 + 4.90543i −0.180062 + 0.225791i
\(473\) −17.0720 + 21.4076i −0.784970 + 0.984321i
\(474\) 7.91149 + 3.80997i 0.363387 + 0.174998i
\(475\) 2.61609 + 3.28047i 0.120034 + 0.150518i
\(476\) 11.5779 0.530671
\(477\) −8.31891 10.4316i −0.380897 0.477629i
\(478\) −3.79490 16.6266i −0.173575 0.760481i
\(479\) 6.78931 + 29.7459i 0.310212 + 1.35913i 0.854161 + 0.520008i \(0.174071\pi\)
−0.543950 + 0.839118i \(0.683072\pi\)
\(480\) −10.9846 13.7743i −0.501378 0.628708i
\(481\) 33.1692 1.51239
\(482\) 31.6891 + 39.7369i 1.44340 + 1.80997i
\(483\) −1.23603 0.595239i −0.0562411 0.0270843i
\(484\) 2.30212 2.88677i 0.104642 0.131217i
\(485\) 5.68392 7.12741i 0.258093 0.323639i
\(486\) 1.97472 0.950976i 0.0895752 0.0431371i
\(487\) 5.23476 + 22.9350i 0.237210 + 1.03928i 0.943503 + 0.331364i \(0.107509\pi\)
−0.706293 + 0.707919i \(0.749634\pi\)
\(488\) 2.82662 12.3842i 0.127955 0.560607i
\(489\) 7.14595 + 3.44131i 0.323151 + 0.155621i
\(490\) 24.4805 11.7892i 1.10592 0.532581i
\(491\) −6.13907 + 26.8970i −0.277052 + 1.21385i 0.624447 + 0.781067i \(0.285324\pi\)
−0.901500 + 0.432779i \(0.857533\pi\)
\(492\) −19.2285 −0.866889
\(493\) −15.7229 4.83091i −0.708123 0.217573i
\(494\) −74.5419 −3.35380
\(495\) 1.87175 8.20067i 0.0841288 0.368593i
\(496\) 12.7604 6.14511i 0.572961 0.275924i
\(497\) 11.9206 + 5.74064i 0.534710 + 0.257503i
\(498\) −2.10417 + 9.21898i −0.0942902 + 0.413113i
\(499\) 8.53765 + 37.4059i 0.382198 + 1.67452i 0.690580 + 0.723256i \(0.257355\pi\)
−0.308383 + 0.951262i \(0.599788\pi\)
\(500\) −25.7659 + 12.4082i −1.15229 + 0.554912i
\(501\) 8.05825 10.1047i 0.360016 0.451446i
\(502\) −1.61327 + 2.02297i −0.0720036 + 0.0902896i
\(503\) 4.46853 + 2.15193i 0.199242 + 0.0959498i 0.530844 0.847469i \(-0.321875\pi\)
−0.331602 + 0.943419i \(0.607589\pi\)
\(504\) −1.48513 1.86230i −0.0661530 0.0829533i
\(505\) 0.101196 0.00450318
\(506\) −4.86683 6.10281i −0.216357 0.271303i
\(507\) −5.21082 22.8301i −0.231421 1.01392i
\(508\) 9.41733 + 41.2600i 0.417827 + 1.83062i
\(509\) −10.2436 12.8450i −0.454038 0.569345i 0.501144 0.865364i \(-0.332913\pi\)
−0.955182 + 0.296018i \(0.904341\pi\)
\(510\) 16.0452 0.710493
\(511\) −0.256014 0.321032i −0.0113254 0.0142016i
\(512\) 17.1068 + 8.23820i 0.756020 + 0.364080i
\(513\) 3.51382 4.40620i 0.155139 0.194538i
\(514\) −21.8299 + 27.3739i −0.962878 + 1.20741i
\(515\) 25.4387 12.2506i 1.12096 0.539828i
\(516\) 4.86783 + 21.3273i 0.214294 + 0.938884i
\(517\) 0.326634 1.43108i 0.0143653 0.0629386i
\(518\) 14.6735 + 7.06640i 0.644718 + 0.310480i
\(519\) −2.39079 + 1.15134i −0.104944 + 0.0505383i
\(520\) −5.67074 + 24.8451i −0.248678 + 1.08953i
\(521\) −30.7040 −1.34517 −0.672583 0.740021i \(-0.734815\pi\)
−0.672583 + 0.740021i \(0.734815\pi\)
\(522\) 4.32424 + 10.9824i 0.189267 + 0.480687i
\(523\) 37.0601 1.62052 0.810262 0.586068i \(-0.199325\pi\)
0.810262 + 0.586068i \(0.199325\pi\)
\(524\) −6.51798 + 28.5571i −0.284739 + 1.24752i
\(525\) −0.906838 + 0.436710i −0.0395776 + 0.0190596i
\(526\) 28.8518 + 13.8943i 1.25800 + 0.605821i
\(527\) −5.51319 + 24.1548i −0.240158 + 1.05220i
\(528\) 1.36354 + 5.97405i 0.0593404 + 0.259987i
\(529\) 19.7945 9.53252i 0.860630 0.414458i
\(530\) −43.7008 + 54.7991i −1.89824 + 2.38032i
\(531\) 2.22026 2.78412i 0.0963512 0.120821i
\(532\) −19.2472 9.26895i −0.834471 0.401860i
\(533\) −25.8029 32.3558i −1.11765 1.40149i
\(534\) −30.6683 −1.32715
\(535\) 9.36542 + 11.7439i 0.404903 + 0.507732i
\(536\) 3.25931 + 14.2800i 0.140781 + 0.616801i
\(537\) 2.98150 + 13.0628i 0.128661 + 0.563702i
\(538\) −30.2206 37.8955i −1.30290 1.63379i
\(539\) −18.1525 −0.781886
\(540\) −4.19002 5.25412i −0.180310 0.226101i
\(541\) −30.6558 14.7631i −1.31800 0.634714i −0.363128 0.931739i \(-0.618291\pi\)
−0.954870 + 0.297025i \(0.904006\pi\)
\(542\) 31.5880 39.6101i 1.35682 1.70140i
\(543\) 0.943898 1.18361i 0.0405065 0.0507936i
\(544\) −20.2284 + 9.74148i −0.867285 + 0.417663i
\(545\) −7.89720 34.5999i −0.338279 1.48210i
\(546\) 3.97894 17.4329i 0.170283 0.746058i
\(547\) −15.4934 7.46124i −0.662451 0.319020i 0.0722738 0.997385i \(-0.476974\pi\)
−0.734725 + 0.678365i \(0.762689\pi\)
\(548\) 9.27656 4.46735i 0.396275 0.190836i
\(549\) −1.60427 + 7.02878i −0.0684687 + 0.299981i
\(550\) −5.72689 −0.244196
\(551\) 22.2704 + 20.6183i 0.948750 + 0.878369i
\(552\) −1.78797 −0.0761009
\(553\) −1.20523 + 5.28046i −0.0512516 + 0.224548i
\(554\) 36.9530 17.7956i 1.56998 0.756063i
\(555\) 11.8691 + 5.71587i 0.503816 + 0.242625i
\(556\) −3.60711 + 15.8038i −0.152975 + 0.670229i
\(557\) 6.60546 + 28.9404i 0.279882 + 1.22624i 0.897942 + 0.440114i \(0.145062\pi\)
−0.618060 + 0.786131i \(0.712081\pi\)
\(558\) 16.0183 7.71400i 0.678108 0.326560i
\(559\) −29.3553 + 36.8104i −1.24160 + 1.55692i
\(560\) 3.52736 4.42316i 0.149058 0.186913i
\(561\) −9.65788 4.65099i −0.407756 0.196365i
\(562\) 11.8423 + 14.8498i 0.499539 + 0.626402i
\(563\) −27.8621 −1.17425 −0.587125 0.809497i \(-0.699740\pi\)
−0.587125 + 0.809497i \(0.699740\pi\)
\(564\) −0.731188 0.916881i −0.0307886 0.0386077i
\(565\) 6.34305 + 27.7907i 0.266854 + 1.16916i
\(566\) 2.72387 + 11.9341i 0.114493 + 0.501627i
\(567\) 0.842900 + 1.05696i 0.0353985 + 0.0443883i
\(568\) 17.2436 0.723526
\(569\) −6.10300 7.65292i −0.255851 0.320827i 0.637272 0.770639i \(-0.280063\pi\)
−0.893124 + 0.449811i \(0.851491\pi\)
\(570\) −26.6737 12.8454i −1.11724 0.538034i
\(571\) −20.1541 + 25.2725i −0.843424 + 1.05762i 0.154153 + 0.988047i \(0.450735\pi\)
−0.997577 + 0.0695735i \(0.977836\pi\)
\(572\) 37.0248 46.4276i 1.54808 1.94124i
\(573\) 10.4680 5.04115i 0.437309 0.210597i
\(574\) −4.52168 19.8108i −0.188731 0.826886i
\(575\) −0.168118 + 0.736574i −0.00701101 + 0.0307172i
\(576\) 11.3694 + 5.47523i 0.473726 + 0.228135i
\(577\) 39.2874 18.9198i 1.63555 0.787641i 0.635677 0.771955i \(-0.280721\pi\)
0.999877 0.0156861i \(-0.00499325\pi\)
\(578\) −3.74118 + 16.3912i −0.155613 + 0.681783i
\(579\) −6.16179 −0.256075
\(580\) 29.8789 20.4193i 1.24065 0.847866i
\(581\) −5.83259 −0.241977
\(582\) −1.85506 + 8.12757i −0.0768949 + 0.336898i
\(583\) 42.1888 20.3170i 1.74728 0.841446i
\(584\) −0.482155 0.232194i −0.0199517 0.00960824i
\(585\) 3.21848 14.1011i 0.133068 0.583008i
\(586\) −2.30153 10.0837i −0.0950752 0.416552i
\(587\) 39.3393 18.9448i 1.62371 0.781935i 0.623705 0.781660i \(-0.285627\pi\)
1.00000 0.000275397i \(-8.76615e-5\pi\)
\(588\) −9.04226 + 11.3386i −0.372896 + 0.467597i
\(589\) 28.5030 35.7416i 1.17444 1.47271i
\(590\) −16.8542 8.11654i −0.693876 0.334153i
\(591\) −1.57538 1.97547i −0.0648026 0.0812599i
\(592\) −9.59684 −0.394428
\(593\) 14.9685 + 18.7699i 0.614682 + 0.770787i 0.987585 0.157083i \(-0.0502091\pi\)
−0.372903 + 0.927870i \(0.621638\pi\)
\(594\) 1.71166 + 7.49926i 0.0702302 + 0.307699i
\(595\) 2.20225 + 9.64868i 0.0902834 + 0.395557i
\(596\) −15.0068 18.8179i −0.614701 0.770811i
\(597\) 13.2818 0.543589
\(598\) −8.36854 10.4938i −0.342215 0.429124i
\(599\) −3.27503 1.57717i −0.133814 0.0644415i 0.365779 0.930702i \(-0.380803\pi\)
−0.499593 + 0.866260i \(0.666517\pi\)
\(600\) −0.817883 + 1.02559i −0.0333899 + 0.0418696i
\(601\) −9.51453 + 11.9308i −0.388106 + 0.486669i −0.937053 0.349188i \(-0.886458\pi\)
0.548947 + 0.835857i \(0.315029\pi\)
\(602\) −20.8285 + 10.0305i −0.848905 + 0.408811i
\(603\) −1.84985 8.10474i −0.0753319 0.330051i
\(604\) −7.45003 + 32.6407i −0.303137 + 1.32813i
\(605\) 2.84364 + 1.36943i 0.115611 + 0.0556751i
\(606\) −0.0833766 + 0.0401520i −0.00338694 + 0.00163106i
\(607\) 0.643106 2.81763i 0.0261029 0.114364i −0.960198 0.279320i \(-0.909891\pi\)
0.986301 + 0.164956i \(0.0527482\pi\)
\(608\) 41.4267 1.68007
\(609\) −6.01070 + 4.10773i −0.243566 + 0.166453i
\(610\) 37.8730 1.53343
\(611\) 0.561648 2.46074i 0.0227219 0.0995509i
\(612\) −7.71599 + 3.71582i −0.311900 + 0.150203i
\(613\) 3.96789 + 1.91083i 0.160261 + 0.0771778i 0.512295 0.858810i \(-0.328795\pi\)
−0.352034 + 0.935987i \(0.614510\pi\)
\(614\) 5.72394 25.0782i 0.230999 1.01207i
\(615\) −3.65749 16.0245i −0.147484 0.646172i
\(616\) 7.53174 3.62710i 0.303463 0.146140i
\(617\) 4.33910 5.44106i 0.174686 0.219049i −0.686779 0.726866i \(-0.740976\pi\)
0.861465 + 0.507817i \(0.169547\pi\)
\(618\) −16.0985 + 20.1868i −0.647575 + 0.812033i
\(619\) −11.8459 5.70468i −0.476127 0.229291i 0.180400 0.983593i \(-0.442261\pi\)
−0.656527 + 0.754303i \(0.727975\pi\)
\(620\) −33.9880 42.6196i −1.36499 1.71165i
\(621\) 1.01478 0.0407216
\(622\) −22.9633 28.7950i −0.920743 1.15458i
\(623\) −4.20932 18.4422i −0.168643 0.738872i
\(624\) 2.34461 + 10.2724i 0.0938595 + 0.411225i
\(625\) −17.5626 22.0228i −0.702505 0.880914i
\(626\) 26.2134 1.04770
\(627\) 12.3319 + 15.4637i 0.492489 + 0.617561i
\(628\) 30.9549 + 14.9071i 1.23524 + 0.594858i
\(629\) 10.4673 13.1255i 0.417357 0.523349i
\(630\) 4.42791 5.55243i 0.176412 0.221214i
\(631\) 11.9773 5.76796i 0.476808 0.229619i −0.180014 0.983664i \(-0.557614\pi\)
0.656823 + 0.754045i \(0.271900\pi\)
\(632\) 1.57077 + 6.88198i 0.0624818 + 0.273750i
\(633\) 1.84799 8.09656i 0.0734509 0.321809i
\(634\) −27.9146 13.4430i −1.10863 0.533888i
\(635\) −32.5937 + 15.6963i −1.29344 + 0.622889i
\(636\) 8.32469 36.4728i 0.330095 1.44624i
\(637\) −31.2134 −1.23672
\(638\) −40.9539 + 6.21892i −1.62138 + 0.246209i
\(639\) −9.78678 −0.387159
\(640\) 6.91029 30.2760i 0.273153 1.19676i
\(641\) −18.1431 + 8.73725i −0.716609 + 0.345101i −0.756402 0.654107i \(-0.773045\pi\)
0.0397927 + 0.999208i \(0.487330\pi\)
\(642\) −12.3759 5.95993i −0.488439 0.235220i
\(643\) −9.82444 + 43.0437i −0.387438 + 1.69748i 0.285997 + 0.958231i \(0.407675\pi\)
−0.673435 + 0.739247i \(0.735182\pi\)
\(644\) −0.855950 3.75016i −0.0337292 0.147777i
\(645\) −16.8477 + 8.11343i −0.663378 + 0.319466i
\(646\) −23.5233 + 29.4973i −0.925511 + 1.16055i
\(647\) 11.3676 14.2546i 0.446908 0.560404i −0.506442 0.862274i \(-0.669039\pi\)
0.953349 + 0.301870i \(0.0976108\pi\)
\(648\) 1.58744 + 0.764473i 0.0623607 + 0.0300313i
\(649\) 7.79210 + 9.77098i 0.305866 + 0.383544i
\(650\) −9.84742 −0.386248
\(651\) 6.83732 + 8.57373i 0.267976 + 0.336031i
\(652\) 4.94858 + 21.6811i 0.193801 + 0.849099i
\(653\) 3.38155 + 14.8156i 0.132330 + 0.579778i 0.996998 + 0.0774324i \(0.0246722\pi\)
−0.864667 + 0.502345i \(0.832471\pi\)
\(654\) 20.2349 + 25.3738i 0.791247 + 0.992193i
\(655\) −25.0385 −0.978336
\(656\) 7.46555 + 9.36150i 0.291481 + 0.365505i
\(657\) 0.273652 + 0.131784i 0.0106762 + 0.00514137i
\(658\) 0.772703 0.968939i 0.0301231 0.0377732i
\(659\) −10.4628 + 13.1200i −0.407574 + 0.511082i −0.942678 0.333704i \(-0.891701\pi\)
0.535103 + 0.844787i \(0.320273\pi\)
\(660\) 21.2494 10.2332i 0.827131 0.398325i
\(661\) 0.299039 + 1.31018i 0.0116313 + 0.0509599i 0.980411 0.196965i \(-0.0631085\pi\)
−0.968779 + 0.247925i \(0.920251\pi\)
\(662\) 11.2290 49.1975i 0.436428 1.91211i
\(663\) −16.6068 7.99740i −0.644953 0.310593i
\(664\) −6.84877 + 3.29820i −0.265784 + 0.127995i
\(665\) 4.06345 17.8031i 0.157574 0.690376i
\(666\) −12.0470 −0.466811
\(667\) −0.402381 + 5.44991i −0.0155803 + 0.211021i
\(668\) 36.2386 1.40211
\(669\) −5.56568 + 24.3848i −0.215182 + 0.942772i
\(670\) −39.3459 + 18.9480i −1.52006 + 0.732024i
\(671\) −22.7964 10.9782i −0.880047 0.423808i
\(672\) −2.21130 + 9.68834i −0.0853027 + 0.373736i
\(673\) −2.65230 11.6205i −0.102239 0.447937i −0.999973 0.00739895i \(-0.997645\pi\)
0.897734 0.440538i \(-0.145212\pi\)
\(674\) −5.04797 + 2.43098i −0.194441 + 0.0936377i
\(675\) 0.464197 0.582085i 0.0178669 0.0224044i
\(676\) 40.9378 51.3344i 1.57453 1.97440i
\(677\) −14.6012 7.03155i −0.561169 0.270245i 0.131723 0.991287i \(-0.457949\pi\)
−0.692891 + 0.721042i \(0.743663\pi\)
\(678\) −16.2527 20.3803i −0.624182 0.782700i
\(679\) −5.14208 −0.197335
\(680\) 8.04205 + 10.0844i 0.308398 + 0.386719i
\(681\) −0.677325 2.96756i −0.0259552 0.113717i
\(682\) 13.8844 + 60.8315i 0.531661 + 2.32936i
\(683\) −17.9645 22.5268i −0.687393 0.861964i 0.308619 0.951186i \(-0.400133\pi\)
−0.996012 + 0.0892221i \(0.971562\pi\)
\(684\) 15.8019 0.604202
\(685\) 5.48748 + 6.88109i 0.209666 + 0.262913i
\(686\) −32.4958 15.6492i −1.24070 0.597487i
\(687\) −13.6598 + 17.1288i −0.521152 + 0.653505i
\(688\) 8.49337 10.6503i 0.323807 0.406041i
\(689\) 72.5438 34.9353i 2.76370 1.33093i
\(690\) −1.18622 5.19716i −0.0451585 0.197853i
\(691\) 5.64168 24.7178i 0.214620 0.940310i −0.746762 0.665092i \(-0.768393\pi\)
0.961382 0.275219i \(-0.0887503\pi\)
\(692\) −6.70349 3.22823i −0.254828 0.122719i
\(693\) −4.27471 + 2.05859i −0.162383 + 0.0781994i
\(694\) −0.434987 + 1.90580i −0.0165119 + 0.0723432i
\(695\) −13.8566 −0.525609
\(696\) −4.73509 + 8.22231i −0.179483 + 0.311666i
\(697\) −20.9463 −0.793399
\(698\) −0.368506 + 1.61453i −0.0139482 + 0.0611109i
\(699\) −8.97783 + 4.32349i −0.339573 + 0.163530i
\(700\) −2.54267 1.22448i −0.0961038 0.0462811i
\(701\) −2.93968 + 12.8796i −0.111030 + 0.486455i 0.888585 + 0.458712i \(0.151689\pi\)
−0.999615 + 0.0277426i \(0.991168\pi\)
\(702\) 2.94320 + 12.8950i 0.111084 + 0.486691i
\(703\) −27.9089 + 13.4402i −1.05260 + 0.506907i
\(704\) −27.6127 + 34.6252i −1.04069 + 1.30499i
\(705\) 0.625023 0.783754i 0.0235397 0.0295179i
\(706\) 37.9948 + 18.2973i 1.42995 + 0.688629i
\(707\) −0.0355889 0.0446270i −0.00133846 0.00167837i
\(708\) 9.98469 0.375248
\(709\) −22.2400 27.8881i −0.835240 1.04736i −0.998155 0.0607181i \(-0.980661\pi\)
0.162915 0.986640i \(-0.447911\pi\)
\(710\) 11.4402 + 50.1228i 0.429343 + 1.88107i
\(711\) −0.891504 3.90593i −0.0334340 0.146484i
\(712\) −15.3713 19.2751i −0.576065 0.722363i
\(713\) 8.23153 0.308273
\(714\) −5.64280 7.07584i −0.211176 0.264807i
\(715\) 45.7341 + 22.0244i 1.71036 + 0.823665i
\(716\) −23.4236 + 29.3723i −0.875381 + 1.09769i
\(717\) −4.85135 + 6.08341i −0.181177 + 0.227189i
\(718\) 34.7839 16.7510i 1.29812 0.625143i
\(719\) −0.450188 1.97240i −0.0167892 0.0735583i 0.965839 0.259142i \(-0.0834397\pi\)
−0.982629 + 0.185583i \(0.940583\pi\)
\(720\) −0.931202 + 4.07986i −0.0347038 + 0.152047i
\(721\) −14.3488 6.91002i −0.534377 0.257342i
\(722\) 25.2004 12.1359i 0.937863 0.451651i
\(723\) 5.16007 22.6077i 0.191905 0.840791i
\(724\) 4.24478 0.157756
\(725\) 2.94205 + 2.72380i 0.109265 + 0.101159i
\(726\) −2.88626 −0.107119
\(727\) 2.34647 10.2806i 0.0870258 0.381285i −0.912594 0.408868i \(-0.865924\pi\)
0.999620 + 0.0275826i \(0.00878092\pi\)
\(728\) 12.9509 6.23681i 0.479991 0.231152i
\(729\) −0.900969 0.433884i −0.0333692 0.0160698i
\(730\) 0.355044 1.55555i 0.0131408 0.0575734i
\(731\) 5.30270 + 23.2326i 0.196127 + 0.859291i
\(732\) −18.2128 + 8.77083i −0.673165 + 0.324179i
\(733\) −11.8578 + 14.8692i −0.437979 + 0.549208i −0.951009 0.309162i \(-0.899951\pi\)
0.513030 + 0.858370i \(0.328523\pi\)
\(734\) −5.18998 + 6.50802i −0.191566 + 0.240216i
\(735\) −11.1693 5.37883i −0.411984 0.198401i
\(736\) 4.65083 + 5.83195i 0.171432 + 0.214969i
\(737\) 29.1754 1.07469
\(738\) 9.37156 + 11.7516i 0.344972 + 0.432581i
\(739\) 9.57638 + 41.9569i 0.352273 + 1.54341i 0.771919 + 0.635721i \(0.219297\pi\)
−0.419646 + 0.907688i \(0.637846\pi\)
\(740\) 8.21938 + 36.0115i 0.302151 + 1.32381i
\(741\) 21.2048 + 26.5899i 0.778976 + 0.976805i
\(742\) 39.5349 1.45137
\(743\) −2.07331 2.59985i −0.0760625 0.0953794i 0.742344 0.670019i \(-0.233714\pi\)
−0.818407 + 0.574639i \(0.805142\pi\)
\(744\) 12.8768 + 6.20115i 0.472087 + 0.227345i
\(745\) 12.8279 16.0856i 0.469976 0.589331i
\(746\) 11.3323 14.2103i 0.414905 0.520275i
\(747\) 3.88709 1.87192i 0.142221 0.0684900i
\(748\) −6.68810 29.3025i −0.244541 1.07140i
\(749\) 1.88534 8.26021i 0.0688888 0.301821i
\(750\) 20.1410 + 9.69941i 0.735447 + 0.354172i
\(751\) −18.4506 + 8.88532i −0.673271 + 0.324230i −0.739095 0.673601i \(-0.764747\pi\)
0.0658243 + 0.997831i \(0.479032\pi\)
\(752\) −0.162501 + 0.711965i −0.00592582 + 0.0259627i
\(753\) 1.18054 0.0430212
\(754\) −70.4204 + 10.6935i −2.56456 + 0.389433i
\(755\) −28.6190 −1.04155
\(756\) −0.843485 + 3.69555i −0.0306773 + 0.134406i
\(757\) 7.59189 3.65606i 0.275932 0.132882i −0.290801 0.956784i \(-0.593922\pi\)
0.566732 + 0.823902i \(0.308207\pi\)
\(758\) −17.6390 8.49448i −0.640676 0.308533i
\(759\) −0.792486 + 3.47211i −0.0287654 + 0.126030i
\(760\) −5.29586 23.2027i −0.192101 0.841650i
\(761\) 23.5526 11.3423i 0.853780 0.411159i 0.0448010 0.998996i \(-0.485735\pi\)
0.808979 + 0.587837i \(0.200020\pi\)
\(762\) 20.6264 25.8647i 0.747215 0.936978i
\(763\) −12.4811 + 15.6508i −0.451845 + 0.566596i
\(764\) 29.3512 + 14.1348i 1.06189 + 0.511378i
\(765\) −4.56434 5.72350i −0.165024 0.206934i