Properties

Label 87.2.g.a.25.2
Level $87$
Weight $2$
Character 87.25
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 25.2
Root \(1.03105 + 0.496527i\) of defining polynomial
Character \(\chi\) \(=\) 87.25
Dual form 87.2.g.a.7.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0321271 - 0.140758i) q^{2} +(-0.900969 + 0.433884i) q^{3} +(1.78316 + 0.858723i) q^{4} +(-0.345850 + 1.51527i) q^{5} +(0.0321271 + 0.140758i) q^{6} +(1.37625 - 0.662766i) q^{7} +(0.358196 - 0.449164i) q^{8} +(0.623490 - 0.781831i) q^{9} +O(q^{10})\) \(q+(0.0321271 - 0.140758i) q^{2} +(-0.900969 + 0.433884i) q^{3} +(1.78316 + 0.858723i) q^{4} +(-0.345850 + 1.51527i) q^{5} +(0.0321271 + 0.140758i) q^{6} +(1.37625 - 0.662766i) q^{7} +(0.358196 - 0.449164i) q^{8} +(0.623490 - 0.781831i) q^{9} +(0.202175 + 0.0973624i) q^{10} +(-0.478737 - 0.600317i) q^{11} -1.97916 q^{12} +(-1.63237 - 2.04693i) q^{13} +(-0.0490748 - 0.215011i) q^{14} +(-0.345850 - 1.51527i) q^{15} +(2.41625 + 3.02988i) q^{16} -3.51434 q^{17} +(-0.0900182 - 0.112879i) q^{18} +(-4.72829 - 2.27702i) q^{19} +(-1.91790 + 2.40497i) q^{20} +(-0.952393 + 1.19426i) q^{21} +(-0.0998798 + 0.0480996i) q^{22} +(-1.89083 - 8.28425i) q^{23} +(-0.127839 + 0.560098i) q^{24} +(2.32842 + 1.12131i) q^{25} +(-0.340565 + 0.164008i) q^{26} +(-0.222521 + 0.974928i) q^{27} +3.02320 q^{28} +(3.40207 + 4.17443i) q^{29} -0.224397 q^{30} +(0.315006 - 1.38013i) q^{31} +(1.53932 - 0.741300i) q^{32} +(0.691794 + 0.333151i) q^{33} +(-0.112906 + 0.494672i) q^{34} +(0.528293 + 2.31460i) q^{35} +(1.78316 - 0.858723i) q^{36} +(-1.87409 + 2.35004i) q^{37} +(-0.472416 + 0.592391i) q^{38} +(2.35885 + 1.13596i) q^{39} +(0.556722 + 0.698107i) q^{40} +5.79055 q^{41} +(0.137505 + 0.172425i) q^{42} +(-0.955986 - 4.18845i) q^{43} +(-0.338157 - 1.48156i) q^{44} +(0.969050 + 1.21515i) q^{45} -1.22682 q^{46} +(1.10631 + 1.38727i) q^{47} +(-3.49158 - 1.68146i) q^{48} +(-2.90963 + 3.64856i) q^{49} +(0.232638 - 0.291719i) q^{50} +(3.16631 - 1.52482i) q^{51} +(-1.15303 - 5.05176i) q^{52} +(-1.50686 + 6.60199i) q^{53} +(0.130080 + 0.0626432i) q^{54} +(1.07521 - 0.517795i) q^{55} +(0.195276 - 0.855561i) q^{56} +5.24800 q^{57} +(0.696884 - 0.344757i) q^{58} +14.9605 q^{59} +(0.684491 - 2.99895i) q^{60} +(-12.3585 + 5.95153i) q^{61} +(-0.184144 - 0.0886793i) q^{62} +(0.339905 - 1.48922i) q^{63} +(1.66981 + 7.31591i) q^{64} +(3.66621 - 1.76555i) q^{65} +(0.0691190 - 0.0866725i) q^{66} +(-4.54833 + 5.70342i) q^{67} +(-6.26662 - 3.01785i) q^{68} +(5.29798 + 6.64345i) q^{69} +0.342772 q^{70} +(-2.99945 - 3.76119i) q^{71} +(-0.127839 - 0.560098i) q^{72} +(-2.04705 - 8.96872i) q^{73} +(0.270578 + 0.339294i) q^{74} -2.58435 q^{75} +(-6.47595 - 8.12058i) q^{76} +(-1.05673 - 0.508894i) q^{77} +(0.235679 - 0.295532i) q^{78} +(0.340352 - 0.426788i) q^{79} +(-5.42674 + 2.61338i) q^{80} +(-0.222521 - 0.974928i) q^{81} +(0.186034 - 0.815067i) q^{82} +(-10.4943 - 5.05376i) q^{83} +(-2.72381 + 1.31172i) q^{84} +(1.21543 - 5.32517i) q^{85} -0.620271 q^{86} +(-4.87638 - 2.28493i) q^{87} -0.441122 q^{88} +(-3.06588 + 13.4325i) q^{89} +(0.202175 - 0.0973624i) q^{90} +(-3.60319 - 1.73520i) q^{91} +(3.74224 - 16.3958i) q^{92} +(0.315006 + 1.38013i) q^{93} +(0.230813 - 0.111154i) q^{94} +(5.08558 - 6.37712i) q^{95} +(-1.06525 + 1.33578i) q^{96} +(1.60034 + 0.770683i) q^{97} +(0.420086 + 0.526771i) q^{98} -0.767834 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0321271 0.140758i 0.0227173 0.0995310i −0.962298 0.271996i \(-0.912316\pi\)
0.985016 + 0.172465i \(0.0551733\pi\)
\(3\) −0.900969 + 0.433884i −0.520175 + 0.250503i
\(4\) 1.78316 + 0.858723i 0.891579 + 0.429362i
\(5\) −0.345850 + 1.51527i −0.154669 + 0.677649i 0.836822 + 0.547475i \(0.184411\pi\)
−0.991491 + 0.130174i \(0.958446\pi\)
\(6\) 0.0321271 + 0.140758i 0.0131158 + 0.0574642i
\(7\) 1.37625 0.662766i 0.520173 0.250502i −0.155326 0.987863i \(-0.549643\pi\)
0.675499 + 0.737361i \(0.263928\pi\)
\(8\) 0.358196 0.449164i 0.126641 0.158803i
\(9\) 0.623490 0.781831i 0.207830 0.260610i
\(10\) 0.202175 + 0.0973624i 0.0639334 + 0.0307887i
\(11\) −0.478737 0.600317i −0.144345 0.181002i 0.704404 0.709800i \(-0.251215\pi\)
−0.848748 + 0.528797i \(0.822643\pi\)
\(12\) −1.97916 −0.571333
\(13\) −1.63237 2.04693i −0.452739 0.567716i 0.502112 0.864803i \(-0.332557\pi\)
−0.954851 + 0.297086i \(0.903985\pi\)
\(14\) −0.0490748 0.215011i −0.0131158 0.0574641i
\(15\) −0.345850 1.51527i −0.0892981 0.391241i
\(16\) 2.41625 + 3.02988i 0.604063 + 0.757471i
\(17\) −3.51434 −0.852353 −0.426176 0.904640i \(-0.640140\pi\)
−0.426176 + 0.904640i \(0.640140\pi\)
\(18\) −0.0900182 0.112879i −0.0212175 0.0266059i
\(19\) −4.72829 2.27702i −1.08474 0.522385i −0.195913 0.980621i \(-0.562767\pi\)
−0.888831 + 0.458236i \(0.848481\pi\)
\(20\) −1.91790 + 2.40497i −0.428856 + 0.537768i
\(21\) −0.952393 + 1.19426i −0.207829 + 0.260610i
\(22\) −0.0998798 + 0.0480996i −0.0212945 + 0.0102549i
\(23\) −1.89083 8.28425i −0.394264 1.72739i −0.649371 0.760472i \(-0.724968\pi\)
0.255106 0.966913i \(-0.417890\pi\)
\(24\) −0.127839 + 0.560098i −0.0260950 + 0.114330i
\(25\) 2.32842 + 1.12131i 0.465684 + 0.224261i
\(26\) −0.340565 + 0.164008i −0.0667904 + 0.0321645i
\(27\) −0.222521 + 0.974928i −0.0428242 + 0.187625i
\(28\) 3.02320 0.571331
\(29\) 3.40207 + 4.17443i 0.631749 + 0.775173i
\(30\) −0.224397 −0.0409692
\(31\) 0.315006 1.38013i 0.0565768 0.247879i −0.938729 0.344655i \(-0.887996\pi\)
0.995306 + 0.0967760i \(0.0308531\pi\)
\(32\) 1.53932 0.741300i 0.272117 0.131044i
\(33\) 0.691794 + 0.333151i 0.120426 + 0.0579941i
\(34\) −0.112906 + 0.494672i −0.0193631 + 0.0848355i
\(35\) 0.528293 + 2.31460i 0.0892978 + 0.391239i
\(36\) 1.78316 0.858723i 0.297193 0.143121i
\(37\) −1.87409 + 2.35004i −0.308099 + 0.386344i −0.911641 0.410987i \(-0.865184\pi\)
0.603542 + 0.797331i \(0.293756\pi\)
\(38\) −0.472416 + 0.592391i −0.0766360 + 0.0960984i
\(39\) 2.35885 + 1.13596i 0.377718 + 0.181899i
\(40\) 0.556722 + 0.698107i 0.0880254 + 0.110380i
\(41\) 5.79055 0.904332 0.452166 0.891934i \(-0.350651\pi\)
0.452166 + 0.891934i \(0.350651\pi\)
\(42\) 0.137505 + 0.172425i 0.0212174 + 0.0266058i
\(43\) −0.955986 4.18845i −0.145787 0.638733i −0.994028 0.109123i \(-0.965196\pi\)
0.848242 0.529609i \(-0.177661\pi\)
\(44\) −0.338157 1.48156i −0.0509790 0.223354i
\(45\) 0.969050 + 1.21515i 0.144458 + 0.181144i
\(46\) −1.22682 −0.180885
\(47\) 1.10631 + 1.38727i 0.161372 + 0.202355i 0.855943 0.517070i \(-0.172977\pi\)
−0.694571 + 0.719424i \(0.744406\pi\)
\(48\) −3.49158 1.68146i −0.503967 0.242698i
\(49\) −2.90963 + 3.64856i −0.415661 + 0.521223i
\(50\) 0.232638 0.291719i 0.0329000 0.0412553i
\(51\) 3.16631 1.52482i 0.443372 0.213517i
\(52\) −1.15303 5.05176i −0.159897 0.700552i
\(53\) −1.50686 + 6.60199i −0.206983 + 0.906853i 0.759578 + 0.650417i \(0.225406\pi\)
−0.966561 + 0.256437i \(0.917451\pi\)
\(54\) 0.130080 + 0.0626432i 0.0177016 + 0.00852466i
\(55\) 1.07521 0.517795i 0.144982 0.0698194i
\(56\) 0.195276 0.855561i 0.0260949 0.114329i
\(57\) 5.24800 0.695115
\(58\) 0.696884 0.344757i 0.0915054 0.0452688i
\(59\) 14.9605 1.94769 0.973845 0.227213i \(-0.0729614\pi\)
0.973845 + 0.227213i \(0.0729614\pi\)
\(60\) 0.684491 2.99895i 0.0883674 0.387163i
\(61\) −12.3585 + 5.95153i −1.58234 + 0.762016i −0.998748 0.0500301i \(-0.984068\pi\)
−0.583594 + 0.812046i \(0.698354\pi\)
\(62\) −0.184144 0.0886793i −0.0233864 0.0112623i
\(63\) 0.339905 1.48922i 0.0428240 0.187624i
\(64\) 1.66981 + 7.31591i 0.208726 + 0.914489i
\(65\) 3.66621 1.76555i 0.454737 0.218990i
\(66\) 0.0691190 0.0866725i 0.00850796 0.0106686i
\(67\) −4.54833 + 5.70342i −0.555666 + 0.696784i −0.977750 0.209773i \(-0.932727\pi\)
0.422084 + 0.906557i \(0.361299\pi\)
\(68\) −6.26662 3.01785i −0.759939 0.365968i
\(69\) 5.29798 + 6.64345i 0.637801 + 0.799778i
\(70\) 0.342772 0.0409690
\(71\) −2.99945 3.76119i −0.355969 0.446371i 0.571314 0.820731i \(-0.306434\pi\)
−0.927283 + 0.374360i \(0.877862\pi\)
\(72\) −0.127839 0.560098i −0.0150659 0.0660082i
\(73\) −2.04705 8.96872i −0.239589 1.04971i −0.941386 0.337332i \(-0.890476\pi\)
0.701796 0.712378i \(-0.252382\pi\)
\(74\) 0.270578 + 0.339294i 0.0314540 + 0.0394421i
\(75\) −2.58435 −0.298415
\(76\) −6.47595 8.12058i −0.742842 0.931495i
\(77\) −1.05673 0.508894i −0.120426 0.0579939i
\(78\) 0.235679 0.295532i 0.0266853 0.0334624i
\(79\) 0.340352 0.426788i 0.0382926 0.0480174i −0.762316 0.647204i \(-0.775938\pi\)
0.800609 + 0.599187i \(0.204509\pi\)
\(80\) −5.42674 + 2.61338i −0.606728 + 0.292185i
\(81\) −0.222521 0.974928i −0.0247245 0.108325i
\(82\) 0.186034 0.815067i 0.0205440 0.0900090i
\(83\) −10.4943 5.05376i −1.15189 0.554723i −0.242292 0.970203i \(-0.577899\pi\)
−0.909602 + 0.415481i \(0.863613\pi\)
\(84\) −2.72381 + 1.31172i −0.297192 + 0.143120i
\(85\) 1.21543 5.32517i 0.131832 0.577596i
\(86\) −0.620271 −0.0668856
\(87\) −4.87638 2.28493i −0.522803 0.244970i
\(88\) −0.441122 −0.0470238
\(89\) −3.06588 + 13.4325i −0.324982 + 1.42384i 0.503583 + 0.863947i \(0.332015\pi\)
−0.828565 + 0.559893i \(0.810842\pi\)
\(90\) 0.202175 0.0973624i 0.0213111 0.0102629i
\(91\) −3.60319 1.73520i −0.377717 0.181899i
\(92\) 3.74224 16.3958i 0.390155 1.70938i
\(93\) 0.315006 + 1.38013i 0.0326646 + 0.143113i
\(94\) 0.230813 0.111154i 0.0238065 0.0114646i
\(95\) 5.08558 6.37712i 0.521770 0.654278i
\(96\) −1.06525 + 1.33578i −0.108721 + 0.136332i
\(97\) 1.60034 + 0.770683i 0.162490 + 0.0782510i 0.513361 0.858173i \(-0.328400\pi\)
−0.350871 + 0.936424i \(0.614114\pi\)
\(98\) 0.420086 + 0.526771i 0.0424351 + 0.0532119i
\(99\) −0.767834 −0.0771702
\(100\) 3.18904 + 3.99893i 0.318904 + 0.399893i
\(101\) 0.993780 + 4.35404i 0.0988848 + 0.433243i 1.00000 0.000337172i \(-0.000107325\pi\)
−0.901115 + 0.433580i \(0.857250\pi\)
\(102\) −0.112906 0.494672i −0.0111793 0.0489798i
\(103\) 6.43434 + 8.06841i 0.633995 + 0.795004i 0.990238 0.139389i \(-0.0445139\pi\)
−0.356243 + 0.934393i \(0.615942\pi\)
\(104\) −1.50412 −0.147491
\(105\) −1.48024 1.85617i −0.144457 0.181143i
\(106\) 0.880873 + 0.424206i 0.0855579 + 0.0412025i
\(107\) −9.78294 + 12.2674i −0.945753 + 1.18594i 0.0366812 + 0.999327i \(0.488321\pi\)
−0.982434 + 0.186610i \(0.940250\pi\)
\(108\) −1.23398 + 1.54737i −0.118740 + 0.148895i
\(109\) 8.86268 4.26804i 0.848891 0.408804i 0.0417249 0.999129i \(-0.486715\pi\)
0.807166 + 0.590325i \(0.201000\pi\)
\(110\) −0.0383403 0.167980i −0.00365561 0.0160163i
\(111\) 0.668856 2.93045i 0.0634850 0.278146i
\(112\) 5.33346 + 2.56846i 0.503965 + 0.242697i
\(113\) 11.4046 5.49216i 1.07285 0.516659i 0.187829 0.982202i \(-0.439855\pi\)
0.885026 + 0.465542i \(0.154141\pi\)
\(114\) 0.168603 0.738699i 0.0157911 0.0691855i
\(115\) 13.2068 1.23154
\(116\) 2.48175 + 10.3651i 0.230424 + 0.962376i
\(117\) −2.61812 −0.242046
\(118\) 0.480637 2.10581i 0.0442463 0.193856i
\(119\) −4.83661 + 2.32919i −0.443371 + 0.213516i
\(120\) −0.804486 0.387420i −0.0734392 0.0353664i
\(121\) 2.31654 10.1494i 0.210594 0.922675i
\(122\) 0.440684 + 1.93076i 0.0398976 + 0.174803i
\(123\) −5.21710 + 2.51243i −0.470411 + 0.226538i
\(124\) 1.74686 2.19049i 0.156872 0.196712i
\(125\) −7.34962 + 9.21613i −0.657370 + 0.824316i
\(126\) −0.198700 0.0956888i −0.0177016 0.00852464i
\(127\) 12.0574 + 15.1195i 1.06992 + 1.34164i 0.936534 + 0.350578i \(0.114015\pi\)
0.133390 + 0.991064i \(0.457414\pi\)
\(128\) 4.50046 0.397788
\(129\) 2.67861 + 3.35888i 0.235839 + 0.295733i
\(130\) −0.130731 0.572770i −0.0114659 0.0502353i
\(131\) −3.74018 16.3868i −0.326781 1.43172i −0.825227 0.564801i \(-0.808953\pi\)
0.498446 0.866921i \(-0.333904\pi\)
\(132\) 0.947494 + 1.18812i 0.0824688 + 0.103413i
\(133\) −8.01644 −0.695113
\(134\) 0.656678 + 0.823448i 0.0567283 + 0.0711351i
\(135\) −1.40032 0.674358i −0.120520 0.0580395i
\(136\) −1.25882 + 1.57851i −0.107943 + 0.135357i
\(137\) 11.3794 14.2693i 0.972210 1.21911i −0.00348811 0.999994i \(-0.501110\pi\)
0.975698 0.219119i \(-0.0703183\pi\)
\(138\) 1.10533 0.532298i 0.0940918 0.0453122i
\(139\) 1.52781 + 6.69377i 0.129587 + 0.567758i 0.997476 + 0.0710004i \(0.0226192\pi\)
−0.867889 + 0.496758i \(0.834524\pi\)
\(140\) −1.04557 + 4.58096i −0.0883671 + 0.387162i
\(141\) −1.59867 0.769879i −0.134632 0.0648355i
\(142\) −0.625781 + 0.301360i −0.0525144 + 0.0252896i
\(143\) −0.447330 + 1.95988i −0.0374076 + 0.163893i
\(144\) 3.87536 0.322947
\(145\) −7.50199 + 3.71132i −0.623007 + 0.308209i
\(146\) −1.32819 −0.109921
\(147\) 1.03843 4.54968i 0.0856486 0.375251i
\(148\) −5.35983 + 2.58116i −0.440576 + 0.212170i
\(149\) 1.64542 + 0.792394i 0.134798 + 0.0649154i 0.500067 0.865987i \(-0.333309\pi\)
−0.365269 + 0.930902i \(0.619023\pi\)
\(150\) −0.0830277 + 0.363768i −0.00677918 + 0.0297015i
\(151\) −1.46012 6.39722i −0.118823 0.520599i −0.998948 0.0458562i \(-0.985398\pi\)
0.880125 0.474742i \(-0.157459\pi\)
\(152\) −2.71641 + 1.30816i −0.220330 + 0.106105i
\(153\) −2.19116 + 2.74762i −0.177144 + 0.222132i
\(154\) −0.105581 + 0.132394i −0.00850793 + 0.0106686i
\(155\) 1.98232 + 0.954637i 0.159224 + 0.0766783i
\(156\) 3.23072 + 4.05119i 0.258665 + 0.324355i
\(157\) 20.8825 1.66661 0.833304 0.552815i \(-0.186447\pi\)
0.833304 + 0.552815i \(0.186447\pi\)
\(158\) −0.0491393 0.0616187i −0.00390931 0.00490212i
\(159\) −1.50686 6.60199i −0.119502 0.523572i
\(160\) 0.590892 + 2.58887i 0.0467141 + 0.204668i
\(161\) −8.09277 10.1480i −0.637799 0.799775i
\(162\) −0.144378 −0.0113434
\(163\) −0.155754 0.195310i −0.0121996 0.0152979i 0.775694 0.631109i \(-0.217400\pi\)
−0.787894 + 0.615811i \(0.788828\pi\)
\(164\) 10.3255 + 4.97248i 0.806283 + 0.388285i
\(165\) −0.744070 + 0.933034i −0.0579257 + 0.0726366i
\(166\) −1.04851 + 1.31479i −0.0813800 + 0.102047i
\(167\) −12.0865 + 5.82055i −0.935281 + 0.450408i −0.838502 0.544898i \(-0.816568\pi\)
−0.0967789 + 0.995306i \(0.530854\pi\)
\(168\) 0.195276 + 0.855561i 0.0150659 + 0.0660080i
\(169\) 1.36749 5.99135i 0.105191 0.460873i
\(170\) −0.710512 0.342165i −0.0544938 0.0262428i
\(171\) −4.72829 + 2.27702i −0.361581 + 0.174128i
\(172\) 1.89204 8.28959i 0.144267 0.632075i
\(173\) −3.51856 −0.267511 −0.133755 0.991014i \(-0.542704\pi\)
−0.133755 + 0.991014i \(0.542704\pi\)
\(174\) −0.478287 + 0.612982i −0.0362588 + 0.0464700i
\(175\) 3.94765 0.298414
\(176\) 0.662141 2.90103i 0.0499108 0.218673i
\(177\) −13.4789 + 6.49111i −1.01314 + 0.487902i
\(178\) 1.79223 + 0.863094i 0.134333 + 0.0646916i
\(179\) 0.543093 2.37945i 0.0405927 0.177848i −0.950568 0.310517i \(-0.899498\pi\)
0.991160 + 0.132669i \(0.0423548\pi\)
\(180\) 0.684491 + 2.99895i 0.0510189 + 0.223529i
\(181\) 0.583248 0.280877i 0.0433525 0.0208775i −0.412082 0.911147i \(-0.635198\pi\)
0.455434 + 0.890269i \(0.349484\pi\)
\(182\) −0.360004 + 0.451431i −0.0266853 + 0.0334623i
\(183\) 8.55234 10.7243i 0.632207 0.792762i
\(184\) −4.39827 2.11810i −0.324245 0.156148i
\(185\) −2.91278 3.65251i −0.214152 0.268538i
\(186\) 0.204385 0.0149862
\(187\) 1.68244 + 2.10972i 0.123032 + 0.154278i
\(188\) 0.781447 + 3.42374i 0.0569929 + 0.249702i
\(189\) 0.339905 + 1.48922i 0.0247245 + 0.108325i
\(190\) −0.734246 0.920715i −0.0532678 0.0667957i
\(191\) −20.7888 −1.50422 −0.752112 0.659035i \(-0.770965\pi\)
−0.752112 + 0.659035i \(0.770965\pi\)
\(192\) −4.67870 5.86691i −0.337656 0.423408i
\(193\) −18.2385 8.78319i −1.31284 0.632228i −0.359219 0.933253i \(-0.616957\pi\)
−0.953616 + 0.301025i \(0.902671\pi\)
\(194\) 0.159894 0.200501i 0.0114797 0.0143951i
\(195\) −2.53709 + 3.18141i −0.181685 + 0.227826i
\(196\) −8.32143 + 4.00739i −0.594388 + 0.286242i
\(197\) −0.766446 3.35802i −0.0546070 0.239249i 0.940258 0.340464i \(-0.110584\pi\)
−0.994865 + 0.101215i \(0.967727\pi\)
\(198\) −0.0246683 + 0.108079i −0.00175310 + 0.00768083i
\(199\) −10.8360 5.21833i −0.768142 0.369918i 0.00841481 0.999965i \(-0.497321\pi\)
−0.776557 + 0.630047i \(0.783036\pi\)
\(200\) 1.33768 0.644194i 0.0945884 0.0455514i
\(201\) 1.62328 7.11205i 0.114497 0.501645i
\(202\) 0.644793 0.0453675
\(203\) 7.44877 + 3.49028i 0.522801 + 0.244970i
\(204\) 6.95542 0.486977
\(205\) −2.00266 + 8.77424i −0.139872 + 0.612819i
\(206\) 1.34241 0.646471i 0.0935302 0.0450418i
\(207\) −7.65580 3.68684i −0.532115 0.256253i
\(208\) 2.25774 9.89179i 0.156546 0.685873i
\(209\) 0.896669 + 3.92857i 0.0620239 + 0.271745i
\(210\) −0.308827 + 0.148723i −0.0213111 + 0.0102629i
\(211\) 2.59412 3.25292i 0.178586 0.223940i −0.684479 0.729033i \(-0.739970\pi\)
0.863065 + 0.505092i \(0.168542\pi\)
\(212\) −8.35626 + 10.4784i −0.573910 + 0.719660i
\(213\) 4.33433 + 2.08730i 0.296983 + 0.143020i
\(214\) 1.41244 + 1.77115i 0.0965525 + 0.121073i
\(215\) 6.67725 0.455385
\(216\) 0.358196 + 0.449164i 0.0243722 + 0.0305617i
\(217\) −0.481178 2.10818i −0.0326645 0.143113i
\(218\) −0.316029 1.38461i −0.0214042 0.0937778i
\(219\) 5.73571 + 7.19236i 0.387584 + 0.486014i
\(220\) 2.36191 0.159240
\(221\) 5.73671 + 7.19361i 0.385893 + 0.483895i
\(222\) −0.390996 0.188294i −0.0262419 0.0126374i
\(223\) −2.93272 + 3.67751i −0.196389 + 0.246264i −0.870269 0.492577i \(-0.836055\pi\)
0.673880 + 0.738841i \(0.264627\pi\)
\(224\) 1.62718 2.04042i 0.108721 0.136332i
\(225\) 2.32842 1.12131i 0.155228 0.0747538i
\(226\) −0.406670 1.78174i −0.0270513 0.118519i
\(227\) 3.04552 13.3433i 0.202138 0.885625i −0.767494 0.641056i \(-0.778497\pi\)
0.969632 0.244568i \(-0.0786463\pi\)
\(228\) 9.35802 + 4.50658i 0.619750 + 0.298456i
\(229\) −18.1945 + 8.76201i −1.20233 + 0.579010i −0.924338 0.381575i \(-0.875382\pi\)
−0.277988 + 0.960584i \(0.589668\pi\)
\(230\) 0.424296 1.85896i 0.0279773 0.122576i
\(231\) 1.17288 0.0771700
\(232\) 3.09361 0.0328216i 0.203106 0.00215484i
\(233\) −7.28500 −0.477257 −0.238628 0.971111i \(-0.576698\pi\)
−0.238628 + 0.971111i \(0.576698\pi\)
\(234\) −0.0841127 + 0.368522i −0.00549862 + 0.0240910i
\(235\) −2.48471 + 1.19657i −0.162085 + 0.0780559i
\(236\) 26.6769 + 12.8469i 1.73652 + 0.836263i
\(237\) −0.121470 + 0.532196i −0.00789034 + 0.0345698i
\(238\) 0.172466 + 0.755621i 0.0111793 + 0.0489796i
\(239\) 21.0551 10.1396i 1.36194 0.655878i 0.396875 0.917873i \(-0.370095\pi\)
0.965069 + 0.261995i \(0.0843805\pi\)
\(240\) 3.75542 4.70915i 0.242412 0.303974i
\(241\) 15.8736 19.9049i 1.02251 1.28219i 0.0637504 0.997966i \(-0.479694\pi\)
0.958759 0.284220i \(-0.0917347\pi\)
\(242\) −1.35419 0.652143i −0.0870506 0.0419213i
\(243\) 0.623490 + 0.781831i 0.0399969 + 0.0501545i
\(244\) −27.1478 −1.73796
\(245\) −4.52225 5.67072i −0.288916 0.362289i
\(246\) 0.186034 + 0.815067i 0.0118611 + 0.0519667i
\(247\) 3.05742 + 13.3954i 0.194539 + 0.852331i
\(248\) −0.507071 0.635847i −0.0321991 0.0403763i
\(249\) 11.6477 0.738145
\(250\) 1.06112 + 1.33061i 0.0671113 + 0.0841549i
\(251\) 11.7619 + 5.66425i 0.742406 + 0.357524i 0.766550 0.642184i \(-0.221972\pi\)
−0.0241437 + 0.999708i \(0.507686\pi\)
\(252\) 1.88493 2.36363i 0.118740 0.148895i
\(253\) −4.06796 + 5.10107i −0.255751 + 0.320701i
\(254\) 2.51557 1.21143i 0.157841 0.0760121i
\(255\) 1.21543 + 5.32517i 0.0761135 + 0.333475i
\(256\) −3.19503 + 13.9984i −0.199690 + 0.874897i
\(257\) −1.23614 0.595293i −0.0771082 0.0371333i 0.394932 0.918710i \(-0.370768\pi\)
−0.472040 + 0.881577i \(0.656482\pi\)
\(258\) 0.558845 0.269126i 0.0347922 0.0167550i
\(259\) −1.02169 + 4.47632i −0.0634848 + 0.278145i
\(260\) 8.05354 0.499459
\(261\) 5.38486 0.0571304i 0.333315 0.00353629i
\(262\) −2.42674 −0.149924
\(263\) −4.61815 + 20.2334i −0.284767 + 1.24765i 0.606836 + 0.794827i \(0.292439\pi\)
−0.891603 + 0.452819i \(0.850418\pi\)
\(264\) 0.397437 0.191396i 0.0244606 0.0117796i
\(265\) −9.48264 4.56660i −0.582514 0.280524i
\(266\) −0.257545 + 1.12838i −0.0157911 + 0.0691853i
\(267\) −3.06588 13.4325i −0.187629 0.822054i
\(268\) −13.0080 + 6.26434i −0.794592 + 0.382656i
\(269\) 0.597581 0.749343i 0.0364352 0.0456883i −0.763280 0.646068i \(-0.776412\pi\)
0.799715 + 0.600379i \(0.204984\pi\)
\(270\) −0.139909 + 0.175441i −0.00851462 + 0.0106770i
\(271\) 19.0251 + 9.16200i 1.15569 + 0.556552i 0.910739 0.412983i \(-0.135513\pi\)
0.244953 + 0.969535i \(0.421227\pi\)
\(272\) −8.49153 10.6480i −0.514874 0.645632i
\(273\) 3.99924 0.242045
\(274\) −1.64294 2.06018i −0.0992535 0.124460i
\(275\) −0.441560 1.93460i −0.0266271 0.116661i
\(276\) 3.74224 + 16.3958i 0.225256 + 0.986912i
\(277\) 6.49558 + 8.14520i 0.390282 + 0.489398i 0.937693 0.347466i \(-0.112958\pi\)
−0.547411 + 0.836864i \(0.684386\pi\)
\(278\) 0.991286 0.0594534
\(279\) −0.882627 1.10678i −0.0528415 0.0662612i
\(280\) 1.22887 + 0.591792i 0.0734390 + 0.0353663i
\(281\) 2.08541 2.61502i 0.124405 0.155999i −0.715728 0.698379i \(-0.753905\pi\)
0.840133 + 0.542380i \(0.182477\pi\)
\(282\) −0.159727 + 0.200292i −0.00951162 + 0.0119272i
\(283\) 14.2126 6.84442i 0.844850 0.406858i 0.0391866 0.999232i \(-0.487523\pi\)
0.805663 + 0.592374i \(0.201809\pi\)
\(284\) −2.11867 9.28249i −0.125720 0.550814i
\(285\) −1.81502 + 7.95213i −0.107513 + 0.471044i
\(286\) 0.261498 + 0.125931i 0.0154627 + 0.00744643i
\(287\) 7.96923 3.83778i 0.470409 0.226537i
\(288\) 0.380182 1.66569i 0.0224024 0.0981514i
\(289\) −4.64941 −0.273495
\(290\) 0.281381 + 1.17520i 0.0165233 + 0.0690101i
\(291\) −1.77624 −0.104125
\(292\) 4.05143 17.7505i 0.237092 1.03877i
\(293\) 14.2429 6.85902i 0.832079 0.400708i 0.0311843 0.999514i \(-0.490072\pi\)
0.800894 + 0.598806i \(0.204358\pi\)
\(294\) −0.607042 0.292336i −0.0354034 0.0170494i
\(295\) −5.17409 + 22.6692i −0.301247 + 1.31985i
\(296\) 0.384259 + 1.68355i 0.0223346 + 0.0978543i
\(297\) 0.691794 0.333151i 0.0401420 0.0193314i
\(298\) 0.164398 0.206149i 0.00952335 0.0119419i
\(299\) −13.8707 + 17.3934i −0.802166 + 1.00588i
\(300\) −4.60830 2.21924i −0.266060 0.128128i
\(301\) −4.09164 5.13075i −0.235838 0.295732i
\(302\) −0.947370 −0.0545150
\(303\) −2.78451 3.49167i −0.159966 0.200591i
\(304\) −4.52562 19.8280i −0.259562 1.13721i
\(305\) −4.74398 20.7848i −0.271640 1.19013i
\(306\) 0.316354 + 0.396696i 0.0180848 + 0.0226776i
\(307\) 8.83474 0.504225 0.252113 0.967698i \(-0.418875\pi\)
0.252113 + 0.967698i \(0.418875\pi\)
\(308\) −1.44732 1.81488i −0.0824685 0.103412i
\(309\) −9.29790 4.47763i −0.528939 0.254723i
\(310\) 0.198059 0.248358i 0.0112490 0.0141058i
\(311\) −8.09774 + 10.1542i −0.459181 + 0.575795i −0.956485 0.291782i \(-0.905752\pi\)
0.497304 + 0.867576i \(0.334323\pi\)
\(312\) 1.35516 0.652612i 0.0767210 0.0369469i
\(313\) −4.25967 18.6628i −0.240771 1.05489i −0.940317 0.340299i \(-0.889472\pi\)
0.699546 0.714587i \(-0.253385\pi\)
\(314\) 0.670895 2.93938i 0.0378608 0.165879i
\(315\) 2.13902 + 1.03010i 0.120520 + 0.0580393i
\(316\) 0.973393 0.468762i 0.0547577 0.0263699i
\(317\) −5.92875 + 25.9755i −0.332992 + 1.45893i 0.480315 + 0.877096i \(0.340522\pi\)
−0.813307 + 0.581835i \(0.802335\pi\)
\(318\) −0.977695 −0.0548264
\(319\) 0.877286 4.04078i 0.0491186 0.226240i
\(320\) −11.6631 −0.651986
\(321\) 3.49149 15.2972i 0.194876 0.853808i
\(322\) −1.68841 + 0.813096i −0.0940915 + 0.0453121i
\(323\) 16.6168 + 8.00224i 0.924584 + 0.445256i
\(324\) 0.440403 1.92953i 0.0244669 0.107196i
\(325\) −1.50561 6.59650i −0.0835162 0.365908i
\(326\) −0.0324954 + 0.0156490i −0.00179975 + 0.000866715i
\(327\) −6.13316 + 7.69074i −0.339165 + 0.425299i
\(328\) 2.07415 2.60091i 0.114526 0.143611i
\(329\) 2.44200 + 1.17601i 0.134632 + 0.0648353i
\(330\) 0.107427 + 0.134709i 0.00591367 + 0.00741551i
\(331\) −2.21519 −0.121758 −0.0608789 0.998145i \(-0.519390\pi\)
−0.0608789 + 0.998145i \(0.519390\pi\)
\(332\) −14.3731 18.0233i −0.788827 0.989158i
\(333\) 0.668856 + 2.93045i 0.0366531 + 0.160588i
\(334\) 0.430985 + 1.88827i 0.0235825 + 0.103321i
\(335\) −7.06917 8.86446i −0.386230 0.484317i
\(336\) −5.91970 −0.322946
\(337\) 4.99853 + 6.26796i 0.272288 + 0.341438i 0.899109 0.437725i \(-0.144216\pi\)
−0.626821 + 0.779163i \(0.715644\pi\)
\(338\) −0.799398 0.384970i −0.0434815 0.0209396i
\(339\) −7.89223 + 9.89654i −0.428647 + 0.537506i
\(340\) 6.74016 8.45189i 0.365536 0.458368i
\(341\) −0.979321 + 0.471616i −0.0530332 + 0.0255394i
\(342\) 0.168603 + 0.738699i 0.00911702 + 0.0399443i
\(343\) −3.96557 + 17.3743i −0.214120 + 0.938123i
\(344\) −2.22373 1.07089i −0.119896 0.0577386i
\(345\) −11.8989 + 5.73022i −0.640616 + 0.308504i
\(346\) −0.113041 + 0.495265i −0.00607713 + 0.0266256i
\(347\) −26.2715 −1.41033 −0.705165 0.709044i \(-0.749127\pi\)
−0.705165 + 0.709044i \(0.749127\pi\)
\(348\) −6.73323 8.26185i −0.360939 0.442882i
\(349\) −3.86308 −0.206786 −0.103393 0.994641i \(-0.532970\pi\)
−0.103393 + 0.994641i \(0.532970\pi\)
\(350\) 0.126827 0.555663i 0.00677916 0.0297015i
\(351\) 2.35885 1.13596i 0.125906 0.0606331i
\(352\) −1.18195 0.569195i −0.0629979 0.0303382i
\(353\) −4.46526 + 19.5636i −0.237662 + 1.04126i 0.705442 + 0.708767i \(0.250748\pi\)
−0.943104 + 0.332497i \(0.892109\pi\)
\(354\) 0.480637 + 2.10581i 0.0255456 + 0.111923i
\(355\) 6.73657 3.24416i 0.357540 0.172182i
\(356\) −17.0017 + 21.3195i −0.901089 + 1.12993i
\(357\) 3.34703 4.19705i 0.177144 0.222131i
\(358\) −0.317478 0.152889i −0.0167792 0.00808046i
\(359\) −13.2185 16.5755i −0.697645 0.874819i 0.299200 0.954190i \(-0.403280\pi\)
−0.996845 + 0.0793713i \(0.974709\pi\)
\(360\) 0.892912 0.0470606
\(361\) 5.32557 + 6.67806i 0.280293 + 0.351477i
\(362\) −0.0207977 0.0911206i −0.00109310 0.00478919i
\(363\) 2.31654 + 10.1494i 0.121587 + 0.532706i
\(364\) −4.93499 6.18828i −0.258664 0.324354i
\(365\) 14.2980 0.748391
\(366\) −1.23477 1.54835i −0.0645424 0.0809336i
\(367\) 17.6518 + 8.50065i 0.921416 + 0.443730i 0.833576 0.552404i \(-0.186289\pi\)
0.0878394 + 0.996135i \(0.472004\pi\)
\(368\) 20.5316 25.7458i 1.07028 1.34209i
\(369\) 3.61035 4.52723i 0.187947 0.235678i
\(370\) −0.607700 + 0.292653i −0.0315928 + 0.0152143i
\(371\) 2.30176 + 10.0847i 0.119502 + 0.523570i
\(372\) −0.623446 + 2.73149i −0.0323242 + 0.141621i
\(373\) −0.177910 0.0856769i −0.00921182 0.00443618i 0.429272 0.903175i \(-0.358770\pi\)
−0.438484 + 0.898739i \(0.644484\pi\)
\(374\) 0.351012 0.169038i 0.0181504 0.00874076i
\(375\) 2.62305 11.4923i 0.135454 0.593461i
\(376\) 1.01939 0.0525711
\(377\) 2.99133 13.7780i 0.154061 0.709605i
\(378\) 0.220540 0.0113434
\(379\) 5.00474 21.9272i 0.257076 1.12632i −0.667284 0.744804i \(-0.732543\pi\)
0.924360 0.381521i \(-0.124600\pi\)
\(380\) 14.5446 7.00429i 0.746121 0.359313i
\(381\) −17.4235 8.39071i −0.892632 0.429869i
\(382\) −0.667884 + 2.92619i −0.0341719 + 0.149717i
\(383\) 0.134254 + 0.588207i 0.00686008 + 0.0300560i 0.978242 0.207467i \(-0.0665218\pi\)
−0.971382 + 0.237522i \(0.923665\pi\)
\(384\) −4.05478 + 1.95268i −0.206919 + 0.0996472i
\(385\) 1.13658 1.42523i 0.0579256 0.0726364i
\(386\) −1.82226 + 2.28504i −0.0927503 + 0.116305i
\(387\) −3.87071 1.86404i −0.196759 0.0947542i
\(388\) 2.19185 + 2.74850i 0.111275 + 0.139534i
\(389\) −21.8263 −1.10664 −0.553318 0.832970i \(-0.686638\pi\)
−0.553318 + 0.832970i \(0.686638\pi\)
\(390\) 0.366300 + 0.459326i 0.0185483 + 0.0232589i
\(391\) 6.64500 + 29.1137i 0.336052 + 1.47234i
\(392\) 0.596583 + 2.61380i 0.0301320 + 0.132017i
\(393\) 10.4798 + 13.1412i 0.528634 + 0.662886i
\(394\) −0.497292 −0.0250532
\(395\) 0.528987 + 0.663329i 0.0266162 + 0.0333757i
\(396\) −1.36917 0.659357i −0.0688033 0.0331339i
\(397\) 9.00827 11.2960i 0.452112 0.566931i −0.502578 0.864532i \(-0.667615\pi\)
0.954690 + 0.297601i \(0.0961865\pi\)
\(398\) −1.08265 + 1.35760i −0.0542684 + 0.0680504i
\(399\) 7.22256 3.47820i 0.361580 0.174128i
\(400\) 2.22861 + 9.76419i 0.111431 + 0.488210i
\(401\) 5.86987 25.7176i 0.293128 1.28428i −0.587019 0.809573i \(-0.699699\pi\)
0.880146 0.474702i \(-0.157444\pi\)
\(402\) −0.948927 0.456979i −0.0473282 0.0227920i
\(403\) −3.33924 + 1.60809i −0.166339 + 0.0801049i
\(404\) −1.96685 + 8.61731i −0.0978542 + 0.428727i
\(405\) 1.55424 0.0772306
\(406\) 0.730592 0.936342i 0.0362587 0.0464699i
\(407\) 2.30796 0.114402
\(408\) 0.449269 1.96838i 0.0222421 0.0974491i
\(409\) 28.0056 13.4868i 1.38479 0.666878i 0.414772 0.909925i \(-0.363861\pi\)
0.970014 + 0.243048i \(0.0781471\pi\)
\(410\) 1.17070 + 0.563782i 0.0578170 + 0.0278432i
\(411\) −4.06127 + 17.7936i −0.200328 + 0.877693i
\(412\) 4.54491 + 19.9126i 0.223912 + 0.981022i
\(413\) 20.5894 9.91531i 1.01314 0.487901i
\(414\) −0.764911 + 0.959168i −0.0375933 + 0.0471405i
\(415\) 11.2872 14.1538i 0.554069 0.694781i
\(416\) −4.03014 1.94081i −0.197594 0.0951562i
\(417\) −4.28083 5.36799i −0.209633 0.262871i
\(418\) 0.581785 0.0284560
\(419\) 12.6866 + 15.9085i 0.619782 + 0.777182i 0.988314 0.152433i \(-0.0487109\pi\)
−0.368532 + 0.929615i \(0.620139\pi\)
\(420\) −1.04557 4.58096i −0.0510188 0.223528i
\(421\) 1.89714 + 8.31193i 0.0924611 + 0.405099i 0.999886 0.0151163i \(-0.00481185\pi\)
−0.907425 + 0.420215i \(0.861955\pi\)
\(422\) −0.374533 0.469650i −0.0182320 0.0228622i
\(423\) 1.77439 0.0862738
\(424\) 2.42562 + 3.04164i 0.117799 + 0.147715i
\(425\) −8.18286 3.94066i −0.396927 0.191150i
\(426\) 0.433054 0.543033i 0.0209815 0.0263100i
\(427\) −13.0639 + 16.3816i −0.632205 + 0.792760i
\(428\) −27.9788 + 13.4739i −1.35241 + 0.651286i
\(429\) −0.447330 1.95988i −0.0215973 0.0946240i
\(430\) 0.214521 0.939877i 0.0103451 0.0453249i
\(431\) 4.29075 + 2.06632i 0.206678 + 0.0995309i 0.534359 0.845257i \(-0.320553\pi\)
−0.327681 + 0.944788i \(0.606267\pi\)
\(432\) −3.49158 + 1.68146i −0.167989 + 0.0808992i
\(433\) −0.940217 + 4.11936i −0.0451839 + 0.197964i −0.992482 0.122389i \(-0.960944\pi\)
0.947298 + 0.320353i \(0.103802\pi\)
\(434\) −0.312202 −0.0149862
\(435\) 5.14878 6.59878i 0.246865 0.316387i
\(436\) 19.4686 0.932377
\(437\) −9.92306 + 43.4758i −0.474684 + 2.07973i
\(438\) 1.19665 0.576278i 0.0571783 0.0275356i
\(439\) −24.6771 11.8839i −1.17777 0.567186i −0.260512 0.965471i \(-0.583891\pi\)
−0.917262 + 0.398285i \(0.869606\pi\)
\(440\) 0.152562 0.668418i 0.00727311 0.0318656i
\(441\) 1.03843 + 4.54968i 0.0494492 + 0.216651i
\(442\) 1.19686 0.576379i 0.0569290 0.0274155i
\(443\) 0.484554 0.607611i 0.0230219 0.0288685i −0.770187 0.637818i \(-0.779837\pi\)
0.793209 + 0.608949i \(0.208409\pi\)
\(444\) 3.70912 4.65109i 0.176027 0.220731i
\(445\) −19.2935 9.29125i −0.914598 0.440447i
\(446\) 0.423420 + 0.530952i 0.0200495 + 0.0251413i
\(447\) −1.82628 −0.0863801
\(448\) 7.14681 + 8.96182i 0.337655 + 0.423406i
\(449\) 0.695827 + 3.04862i 0.0328381 + 0.143873i 0.988689 0.149978i \(-0.0479202\pi\)
−0.955851 + 0.293851i \(0.905063\pi\)
\(450\) −0.0830277 0.363768i −0.00391396 0.0171482i
\(451\) −2.77215 3.47616i −0.130535 0.163686i
\(452\) 25.0524 1.17837
\(453\) 4.09118 + 5.13017i 0.192220 + 0.241037i
\(454\) −1.78033 0.857362i −0.0835551 0.0402380i
\(455\) 3.87546 4.85967i 0.181684 0.227825i
\(456\) 1.87982 2.35721i 0.0880304 0.110387i
\(457\) 25.7939 12.4217i 1.20659 0.581061i 0.281039 0.959696i \(-0.409321\pi\)
0.925546 + 0.378635i \(0.123607\pi\)
\(458\) 0.648787 + 2.84252i 0.0303158 + 0.132822i
\(459\) 0.782014 3.42623i 0.0365013 0.159923i
\(460\) 23.5498 + 11.3410i 1.09801 + 0.528776i
\(461\) 25.1273 12.1007i 1.17029 0.563584i 0.255226 0.966882i \(-0.417850\pi\)
0.915069 + 0.403297i \(0.132136\pi\)
\(462\) 0.0376813 0.165093i 0.00175309 0.00768080i
\(463\) −18.3196 −0.851382 −0.425691 0.904869i \(-0.639969\pi\)
−0.425691 + 0.904869i \(0.639969\pi\)
\(464\) −4.42778 + 20.3944i −0.205555 + 0.946784i
\(465\) −2.20021 −0.102032
\(466\) −0.234046 + 1.02542i −0.0108420 + 0.0475018i
\(467\) 19.7132 9.49337i 0.912218 0.439301i 0.0819314 0.996638i \(-0.473891\pi\)
0.830286 + 0.557337i \(0.188177\pi\)
\(468\) −4.66852 2.24824i −0.215803 0.103925i
\(469\) −2.47959 + 10.8638i −0.114497 + 0.501644i
\(470\) 0.0886008 + 0.388186i 0.00408685 + 0.0179057i
\(471\) −18.8145 + 9.06059i −0.866927 + 0.417490i
\(472\) 5.35879 6.71971i 0.246658 0.309300i
\(473\) −2.05673 + 2.57906i −0.0945686 + 0.118585i
\(474\) 0.0710083 + 0.0341958i 0.00326152 + 0.00157067i
\(475\) −8.45619 10.6037i −0.387997 0.486533i
\(476\) −10.6246 −0.486976
\(477\) 4.22213 + 5.29439i 0.193318 + 0.242413i
\(478\) −0.750793 3.28944i −0.0343405 0.150455i
\(479\) −5.21867 22.8645i −0.238447 1.04471i −0.942408 0.334467i \(-0.891444\pi\)
0.703960 0.710239i \(-0.251413\pi\)
\(480\) −1.65564 2.07611i −0.0755694 0.0947611i
\(481\) 7.86958 0.358822
\(482\) −2.29180 2.87383i −0.104389 0.130899i
\(483\) 11.6944 + 5.63172i 0.532113 + 0.256252i
\(484\) 12.8463 16.1087i 0.583922 0.732216i
\(485\) −1.72127 + 2.15840i −0.0781588 + 0.0980081i
\(486\) 0.130080 0.0626432i 0.00590055 0.00284155i
\(487\) 7.92727 + 34.7316i 0.359219 + 1.57384i 0.755145 + 0.655558i \(0.227567\pi\)
−0.395926 + 0.918282i \(0.629576\pi\)
\(488\) −1.75355 + 7.68280i −0.0793794 + 0.347784i
\(489\) 0.225072 + 0.108389i 0.0101781 + 0.00490151i
\(490\) −0.943486 + 0.454359i −0.0426224 + 0.0205259i
\(491\) −0.624505 + 2.73613i −0.0281835 + 0.123480i −0.987063 0.160334i \(-0.948743\pi\)
0.958879 + 0.283814i \(0.0915999\pi\)
\(492\) −11.4604 −0.516675
\(493\) −11.9560 14.6704i −0.538473 0.660721i
\(494\) 1.98374 0.0892527
\(495\) 0.265555 1.16347i 0.0119358 0.0522943i
\(496\) 4.94277 2.38031i 0.221937 0.106879i
\(497\) −6.62078 3.18840i −0.296982 0.143019i
\(498\) 0.374208 1.63951i 0.0167687 0.0734683i
\(499\) −9.04769 39.6405i −0.405030 1.77455i −0.606527 0.795063i \(-0.707438\pi\)
0.201497 0.979489i \(-0.435420\pi\)
\(500\) −21.0196 + 10.1225i −0.940026 + 0.452693i
\(501\) 8.36411 10.4883i 0.373681 0.468581i
\(502\) 1.17517 1.47361i 0.0524502 0.0657705i
\(503\) 16.7015 + 8.04304i 0.744685 + 0.358621i 0.767441 0.641120i \(-0.221530\pi\)
−0.0227560 + 0.999741i \(0.507244\pi\)
\(504\) −0.547152 0.686107i −0.0243721 0.0305616i
\(505\) −6.94123 −0.308881
\(506\) 0.587324 + 0.736481i 0.0261097 + 0.0327406i
\(507\) 1.36749 + 5.99135i 0.0607323 + 0.266085i
\(508\) 8.51679 + 37.3145i 0.377871 + 1.65556i
\(509\) −26.5311 33.2689i −1.17597 1.47462i −0.848053 0.529911i \(-0.822225\pi\)
−0.327916 0.944707i \(-0.606346\pi\)
\(510\) 0.788609 0.0349202
\(511\) −8.76142 10.9865i −0.387582 0.486013i
\(512\) 9.97729 + 4.80481i 0.440938 + 0.212345i
\(513\) 3.27208 4.10306i 0.144466 0.181154i
\(514\) −0.123506 + 0.154871i −0.00544761 + 0.00683108i
\(515\) −14.4511 + 6.95929i −0.636793 + 0.306663i
\(516\) 1.89204 + 8.28959i 0.0832926 + 0.364929i
\(517\) 0.303171 1.32828i 0.0133334 0.0584176i
\(518\) 0.597254 + 0.287623i 0.0262419 + 0.0126374i
\(519\) 3.17011 1.52664i 0.139152 0.0670123i
\(520\) 0.520199 2.27914i 0.0228122 0.0999469i
\(521\) −27.6372 −1.21081 −0.605404 0.795919i \(-0.706988\pi\)
−0.605404 + 0.795919i \(0.706988\pi\)
\(522\) 0.164958 0.759798i 0.00722004 0.0332555i
\(523\) −21.3122 −0.931919 −0.465959 0.884806i \(-0.654291\pi\)
−0.465959 + 0.884806i \(0.654291\pi\)
\(524\) 7.40240 32.4320i 0.323375 1.41680i
\(525\) −3.55671 + 1.71282i −0.155227 + 0.0747536i
\(526\) 2.69965 + 1.30008i 0.117710 + 0.0566863i
\(527\) −1.10704 + 4.85025i −0.0482233 + 0.211280i
\(528\) 0.662141 + 2.90103i 0.0288160 + 0.126251i
\(529\) −44.3313 + 21.3488i −1.92745 + 0.928209i
\(530\) −0.947436 + 1.18805i −0.0411540 + 0.0516054i
\(531\) 9.32771 11.6966i 0.404788 0.507588i
\(532\) −14.2946 6.88390i −0.619748 0.298455i
\(533\) −9.45234 11.8529i −0.409426 0.513404i
\(534\) −1.98923 −0.0860823
\(535\) −15.2050 19.0665i −0.657370 0.824316i
\(536\) 0.932577 + 4.08589i 0.0402812 + 0.176483i
\(537\) 0.543093 + 2.37945i 0.0234362 + 0.102681i
\(538\) −0.0862775 0.108189i −0.00371969 0.00466434i
\(539\) 3.58324 0.154341
\(540\) −1.91790 2.40497i −0.0825333 0.103494i
\(541\) −19.9182 9.59210i −0.856350 0.412397i −0.0464196 0.998922i \(-0.514781\pi\)
−0.809931 + 0.586525i \(0.800495\pi\)
\(542\) 1.90085 2.38359i 0.0816484 0.102384i
\(543\) −0.403620 + 0.506124i −0.0173210 + 0.0217198i
\(544\) −5.40971 + 2.60518i −0.231939 + 0.111696i
\(545\) 3.40207 + 14.9054i 0.145729 + 0.638479i
\(546\) 0.128484 0.562925i 0.00549860 0.0240910i
\(547\) −14.8690 7.16051i −0.635751 0.306161i 0.0881066 0.996111i \(-0.471918\pi\)
−0.723857 + 0.689950i \(0.757633\pi\)
\(548\) 32.5447 15.6727i 1.39024 0.669505i
\(549\) −3.05229 + 13.3730i −0.130269 + 0.570744i
\(550\) −0.286497 −0.0122163
\(551\) −6.58070 27.4845i −0.280347 1.17088i
\(552\) 4.88171 0.207779
\(553\) 0.185548 0.812940i 0.00789031 0.0345697i
\(554\) 1.35519 0.652624i 0.0575764 0.0277273i
\(555\) 4.20909 + 2.02699i 0.178666 + 0.0860410i
\(556\) −3.02377 + 13.2480i −0.128236 + 0.561841i
\(557\) −1.21930 5.34211i −0.0516635 0.226353i 0.942505 0.334193i \(-0.108464\pi\)
−0.994168 + 0.107840i \(0.965607\pi\)
\(558\) −0.184144 + 0.0886793i −0.00779545 + 0.00375409i
\(559\) −7.01294 + 8.79395i −0.296616 + 0.371944i
\(560\) −5.73649 + 7.19333i −0.242411 + 0.303974i
\(561\) −2.43120 1.17080i −0.102645 0.0494314i
\(562\) −0.301087 0.377551i −0.0127006 0.0159260i
\(563\) 13.7797 0.580744 0.290372 0.956914i \(-0.406221\pi\)
0.290372 + 0.956914i \(0.406221\pi\)
\(564\) −2.18957 2.74563i −0.0921974 0.115612i
\(565\) 4.37782 + 19.1805i 0.184176 + 0.806929i
\(566\) −0.506798 2.22043i −0.0213023 0.0933315i
\(567\) −0.952393 1.19426i −0.0399968 0.0501544i
\(568\) −2.76378 −0.115966
\(569\) 22.4007 + 28.0895i 0.939085 + 1.17758i 0.983925 + 0.178581i \(0.0571506\pi\)
−0.0448404 + 0.998994i \(0.514278\pi\)
\(570\) 1.06102 + 0.510958i 0.0444411 + 0.0214017i
\(571\) −4.09271 + 5.13210i −0.171275 + 0.214772i −0.860059 0.510195i \(-0.829573\pi\)
0.688784 + 0.724966i \(0.258145\pi\)
\(572\) −2.48066 + 3.11064i −0.103721 + 0.130063i
\(573\) 18.7301 9.01992i 0.782459 0.376813i
\(574\) −0.284170 1.24503i −0.0118610 0.0519666i
\(575\) 4.88656 21.4094i 0.203783 0.892834i
\(576\) 6.76092 + 3.25589i 0.281705 + 0.135662i
\(577\) 7.26885 3.50050i 0.302606 0.145728i −0.276419 0.961037i \(-0.589148\pi\)
0.579025 + 0.815310i \(0.303433\pi\)
\(578\) −0.149372 + 0.654442i −0.00621307 + 0.0272212i
\(579\) 20.2432 0.841278
\(580\) −16.5642 + 0.175738i −0.687792 + 0.00729710i
\(581\) −17.7922 −0.738143
\(582\) −0.0570656 + 0.250021i −0.00236544 + 0.0103637i
\(583\) 4.68468 2.25602i 0.194019 0.0934348i
\(584\) −4.76167 2.29310i −0.197039 0.0948892i
\(585\) 0.905478 3.96716i 0.0374369 0.164022i
\(586\) −0.507879 2.22516i −0.0209803 0.0919206i
\(587\) 7.25462 3.49364i 0.299430 0.144198i −0.278136 0.960542i \(-0.589717\pi\)
0.577567 + 0.816344i \(0.304002\pi\)
\(588\) 5.75860 7.22106i 0.237481 0.297792i
\(589\) −4.63203 + 5.80838i −0.190860 + 0.239330i
\(590\) 3.02464 + 1.45659i 0.124522 + 0.0599668i
\(591\) 2.14753 + 2.69292i 0.0883377 + 0.110772i
\(592\) −11.6486 −0.478755
\(593\) 21.4831 + 26.9390i 0.882206 + 1.10625i 0.993654 + 0.112481i \(0.0358798\pi\)
−0.111448 + 0.993770i \(0.535549\pi\)
\(594\) −0.0246683 0.108079i −0.00101215 0.00443453i
\(595\) −1.85660 8.13430i −0.0761132 0.333474i
\(596\) 2.25360 + 2.82592i 0.0923110 + 0.115754i
\(597\) 12.0270 0.492234
\(598\) 2.00263 + 2.51122i 0.0818936 + 0.102691i
\(599\) 28.5373 + 13.7428i 1.16600 + 0.561517i 0.913802 0.406159i \(-0.133132\pi\)
0.252199 + 0.967675i \(0.418846\pi\)
\(600\) −0.925704 + 1.16080i −0.0377917 + 0.0473893i
\(601\) 2.41007 3.02214i 0.0983089 0.123275i −0.730244 0.683187i \(-0.760593\pi\)
0.828552 + 0.559911i \(0.189165\pi\)
\(602\) −0.853647 + 0.411095i −0.0347921 + 0.0167550i
\(603\) 1.62328 + 7.11205i 0.0661050 + 0.289625i
\(604\) 2.88981 12.6611i 0.117585 0.515173i
\(605\) 14.5779 + 7.02036i 0.592677 + 0.285418i
\(606\) −0.580938 + 0.279765i −0.0235990 + 0.0113647i
\(607\) −0.295851 + 1.29621i −0.0120082 + 0.0526115i −0.980577 0.196134i \(-0.937161\pi\)
0.968569 + 0.248746i \(0.0800183\pi\)
\(608\) −8.96633 −0.363633
\(609\) −8.22549 + 0.0872679i −0.333314 + 0.00353628i
\(610\) −3.07803 −0.124626
\(611\) 1.03374 4.52910i 0.0418205 0.183228i
\(612\) −6.26662 + 3.01785i −0.253313 + 0.121989i
\(613\) −2.72323 1.31144i −0.109990 0.0529684i 0.378080 0.925773i \(-0.376585\pi\)
−0.488070 + 0.872805i \(0.662299\pi\)
\(614\) 0.283835 1.24356i 0.0114546 0.0501860i
\(615\) −2.00266 8.77424i −0.0807551 0.353811i
\(616\) −0.607094 + 0.292361i −0.0244605 + 0.0117796i
\(617\) 1.20090 1.50588i 0.0483464 0.0606244i −0.757070 0.653333i \(-0.773370\pi\)
0.805417 + 0.592709i \(0.201942\pi\)
\(618\) −0.928977 + 1.16490i −0.0373689 + 0.0468592i
\(619\) −0.266348 0.128266i −0.0107054 0.00515546i 0.428523 0.903531i \(-0.359034\pi\)
−0.439229 + 0.898375i \(0.644748\pi\)
\(620\) 2.71503 + 3.40454i 0.109038 + 0.136729i
\(621\) 8.49729 0.340985
\(622\) 1.16914 + 1.46605i 0.0468781 + 0.0587832i
\(623\) 4.68319 + 20.5184i 0.187628 + 0.822052i
\(624\) 2.25774 + 9.89179i 0.0903818 + 0.395989i
\(625\) −3.36646 4.22141i −0.134658 0.168856i
\(626\) −2.76380 −0.110464
\(627\) −2.51241 3.15046i −0.100336 0.125817i
\(628\) 37.2368 + 17.9323i 1.48591 + 0.715577i
\(629\) 6.58620 8.25883i 0.262609 0.329301i
\(630\) 0.213715 0.267990i 0.00851459 0.0106770i
\(631\) −29.7396 + 14.3219i −1.18392 + 0.570144i −0.919050 0.394141i \(-0.871042\pi\)
−0.264867 + 0.964285i \(0.585328\pi\)
\(632\) −0.0697849 0.305748i −0.00277589 0.0121620i
\(633\) −0.925830 + 4.05633i −0.0367984 + 0.161225i
\(634\) 3.46579 + 1.66904i 0.137644 + 0.0662860i
\(635\) −27.0802 + 13.0411i −1.07465 + 0.517522i
\(636\) 2.98231 13.0664i 0.118256 0.518115i
\(637\) 12.2179 0.484093
\(638\) −0.540587 0.253303i −0.0214020 0.0100284i
\(639\) −4.81074 −0.190310
\(640\) −1.55649 + 6.81941i −0.0615255 + 0.269561i
\(641\) 19.3740 9.33001i 0.765226 0.368513i −0.0102034 0.999948i \(-0.503248\pi\)
0.775429 + 0.631435i \(0.217534\pi\)
\(642\) −2.04104 0.982911i −0.0805533 0.0387924i
\(643\) 3.70655 16.2394i 0.146172 0.640421i −0.847756 0.530387i \(-0.822047\pi\)
0.993928 0.110034i \(-0.0350961\pi\)
\(644\) −5.71634 25.0449i −0.225255 0.986909i
\(645\) −6.01600 + 2.89715i −0.236880 + 0.114075i
\(646\) 1.66023 2.08186i 0.0653209 0.0819098i
\(647\) −0.400169 + 0.501796i −0.0157323 + 0.0197276i −0.789635 0.613576i \(-0.789730\pi\)
0.773903 + 0.633304i \(0.218302\pi\)
\(648\) −0.517609 0.249267i −0.0203336 0.00979214i
\(649\) −7.16213 8.98103i −0.281138 0.352536i
\(650\) −0.976882 −0.0383165
\(651\) 1.34823 + 1.69063i 0.0528414 + 0.0662610i
\(652\) −0.110018 0.482018i −0.00430862 0.0188773i
\(653\) 9.30253 + 40.7570i 0.364036 + 1.59495i 0.742840 + 0.669469i \(0.233478\pi\)
−0.378804 + 0.925477i \(0.623664\pi\)
\(654\) 0.885493 + 1.11037i 0.0346255 + 0.0434190i
\(655\) 26.1239 1.02075
\(656\) 13.9914 + 17.5447i 0.546273 + 0.685005i
\(657\) −8.28835 3.99146i −0.323359 0.155722i
\(658\) 0.243987 0.305950i 0.00951159 0.0119272i
\(659\) −3.91860 + 4.91377i −0.152647 + 0.191413i −0.852275 0.523094i \(-0.824778\pi\)
0.699628 + 0.714507i \(0.253349\pi\)
\(660\) −2.12801 + 1.02480i −0.0828327 + 0.0398901i
\(661\) 4.51078 + 19.7630i 0.175449 + 0.768693i 0.983695 + 0.179847i \(0.0575603\pi\)
−0.808245 + 0.588846i \(0.799583\pi\)
\(662\) −0.0711676 + 0.311805i −0.00276601 + 0.0121187i
\(663\) −8.28979 3.99215i −0.321949 0.155042i
\(664\) −6.02897 + 2.90340i −0.233969 + 0.112674i
\(665\) 2.77248 12.1470i 0.107512 0.471042i
\(666\) 0.433973 0.0168161
\(667\) 28.1493 36.0767i 1.08995 1.39690i
\(668\) −26.5504 −1.02726
\(669\) 1.04668 4.58578i 0.0404668 0.177297i
\(670\) −1.47486 + 0.710253i −0.0569787 + 0.0274395i
\(671\) 9.48926 + 4.56979i 0.366329 + 0.176415i
\(672\) −0.580735 + 2.54437i −0.0224024 + 0.0981511i
\(673\) 4.83575 + 21.1868i 0.186405 + 0.816692i 0.978492 + 0.206284i \(0.0661371\pi\)
−0.792088 + 0.610407i \(0.791006\pi\)
\(674\) 1.04286 0.502213i 0.0401693 0.0193445i
\(675\) −1.61132 + 2.02053i −0.0620196 + 0.0777701i
\(676\) 7.58336 9.50923i 0.291668 0.365740i
\(677\) −14.2342 6.85484i −0.547066 0.263453i 0.139872 0.990170i \(-0.455331\pi\)
−0.686937 + 0.726717i \(0.741045\pi\)
\(678\) 1.13946 + 1.42884i 0.0437608 + 0.0548743i
\(679\) 2.71325 0.104125
\(680\) −1.95651 2.45338i −0.0750287 0.0940830i
\(681\) 3.04552 + 13.3433i 0.116704 + 0.511316i
\(682\) 0.0349210 + 0.152999i 0.00133719 + 0.00585863i
\(683\) −21.3231 26.7383i −0.815907 1.02311i −0.999197 0.0400557i \(-0.987246\pi\)
0.183291 0.983059i \(-0.441325\pi\)
\(684\) −10.3866 −0.397142
\(685\) 17.6863 + 22.1779i 0.675759 + 0.847376i
\(686\) 2.31817 + 1.11637i 0.0885081 + 0.0426232i
\(687\) 12.5910 15.7886i 0.480376 0.602372i
\(688\) 10.3806 13.0169i 0.395757 0.496263i
\(689\) 15.9736 7.69247i 0.608545 0.293060i
\(690\) 0.424296 + 1.85896i 0.0161527 + 0.0707695i
\(691\) 7.64507 33.4953i 0.290832 1.27422i −0.592537 0.805543i \(-0.701874\pi\)
0.883370 0.468677i \(-0.155269\pi\)
\(692\) −6.27414 3.02147i −0.238507 0.114859i
\(693\) −1.05673 + 0.508894i −0.0401419 + 0.0193313i
\(694\) −0.844028 + 3.69793i −0.0320389 + 0.140371i
\(695\) −10.6713 −0.404784
\(696\) −2.77301 + 1.37184i −0.105111 + 0.0519995i
\(697\) −20.3500 −0.770810
\(698\) −0.124109 + 0.543759i −0.00469761 + 0.0205816i
\(699\) 6.56356 3.16085i 0.248257 0.119554i
\(700\) 7.03928 + 3.38994i 0.266060 + 0.128128i
\(701\) −0.382708 + 1.67675i −0.0144547 + 0.0633301i −0.981641 0.190738i \(-0.938912\pi\)
0.967186 + 0.254069i \(0.0817689\pi\)
\(702\) −0.0841127 0.368522i −0.00317463 0.0139090i
\(703\) 14.2123 6.84430i 0.536029 0.258138i
\(704\) 3.59247 4.50481i 0.135396 0.169781i
\(705\) 1.71947 2.15615i 0.0647591 0.0812054i
\(706\) 2.61028 + 1.25704i 0.0982391 + 0.0473094i
\(707\) 4.25340 + 5.33359i 0.159965 + 0.200590i
\(708\) −29.6091 −1.11278
\(709\) 26.2297 + 32.8910i 0.985077 + 1.23525i 0.971915 + 0.235334i \(0.0756184\pi\)
0.0131625 + 0.999913i \(0.495810\pi\)
\(710\) −0.240215 1.05245i −0.00901512 0.0394978i
\(711\) −0.121470 0.532196i −0.00455549 0.0199589i
\(712\) 4.93520 + 6.18854i 0.184954 + 0.231925i
\(713\) −12.0290 −0.450489
\(714\) −0.483238 0.605961i −0.0180847 0.0226775i
\(715\) −2.81504 1.35565i −0.105276 0.0506984i
\(716\) 3.01171 3.77656i 0.112553 0.141137i
\(717\) −14.5706 + 18.2710i −0.544149 + 0.682342i
\(718\) −2.75780 + 1.32809i −0.102920 + 0.0495638i
\(719\) −0.447704 1.96152i −0.0166965 0.0731523i 0.965893 0.258940i \(-0.0833733\pi\)
−0.982590 + 0.185788i \(0.940516\pi\)
\(720\) −1.34030 + 5.87222i −0.0499499 + 0.218845i
\(721\) 14.2027 + 6.83967i 0.528937 + 0.254723i
\(722\) 1.11109 0.535071i 0.0413503 0.0199133i
\(723\) −5.66523 + 24.8210i −0.210692 + 0.923102i
\(724\) 1.28122 0.0476161
\(725\) 3.24063 + 13.5346i 0.120354 + 0.502662i
\(726\) 1.50304 0.0557829
\(727\) −1.63010 + 7.14193i −0.0604570 + 0.264880i −0.996119 0.0880183i \(-0.971947\pi\)
0.935662 + 0.352898i \(0.114804\pi\)
\(728\) −2.07004 + 0.996878i −0.0767207 + 0.0369468i
\(729\) −0.900969 0.433884i −0.0333692 0.0160698i
\(730\) 0.459353 2.01256i 0.0170014 0.0744881i
\(731\) 3.35966 + 14.7196i 0.124262 + 0.544425i
\(732\) 24.4594 11.7790i 0.904044 0.435365i
\(733\) 3.27009 4.10056i 0.120783 0.151458i −0.717764 0.696287i \(-0.754834\pi\)
0.838547 + 0.544829i \(0.183406\pi\)
\(734\) 1.76364 2.21153i 0.0650970 0.0816291i
\(735\) 6.53484 + 3.14701i 0.241041 + 0.116079i
\(736\) −9.05170 11.3505i −0.333650 0.418384i
\(737\) 5.60131 0.206327
\(738\) −0.521255 0.653633i −0.0191876 0.0240605i
\(739\) −5.24580 22.9833i −0.192970 0.845456i −0.974998 0.222213i \(-0.928672\pi\)
0.782028 0.623243i \(-0.214185\pi\)
\(740\) −2.05745 9.01428i −0.0756334 0.331372i
\(741\) −8.56670 10.7423i −0.314706 0.394628i
\(742\) 1.49345 0.0548262
\(743\) −12.1730 15.2644i −0.446582 0.559997i 0.506682 0.862133i \(-0.330872\pi\)
−0.953265 + 0.302136i \(0.902300\pi\)
\(744\) 0.732739 + 0.352869i 0.0268635 + 0.0129368i
\(745\) −1.76976 + 2.21921i −0.0648389 + 0.0813054i
\(746\) −0.0177754 + 0.0222897i −0.000650805 + 0.000816084i
\(747\) −10.4943 + 5.05376i −0.383965 + 0.184908i
\(748\) 1.18840 + 5.20671i 0.0434521 + 0.190376i
\(749\) −5.33333 + 23.3668i −0.194876 + 0.853805i
\(750\) −1.53337 0.738430i −0.0559906 0.0269637i
\(751\) −1.27601 + 0.614494i −0.0465622 + 0.0224232i −0.457020 0.889456i \(-0.651083\pi\)
0.410458 + 0.911880i \(0.365369\pi\)
\(752\) −1.53014 + 6.70400i −0.0557986 + 0.244470i
\(753\) −13.0548 −0.475742
\(754\) −1.84327 0.863702i −0.0671278 0.0314542i
\(755\) 10.1985 0.371161
\(756\) −0.672725 + 2.94740i −0.0244668 + 0.107196i
\(757\) −39.0305 + 18.7961i −1.41859 + 0.683156i −0.976838 0.213982i \(-0.931357\pi\)
−0.441751 + 0.897138i \(0.645642\pi\)
\(758\) −2.92564 1.40892i −0.106264 0.0511741i
\(759\) 1.45184 6.36093i 0.0526984 0.230887i
\(760\) −1.04273 4.56852i −0.0378240 0.165718i
\(761\) −0.433634 + 0.208827i −0.0157192 + 0.00756998i −0.441727 0.897150i \(-0.645634\pi\)
0.426008 + 0.904720i \(0.359920\pi\)
\(762\) −1.74083 + 2.18293i −0.0630635 + 0.0790791i
\(763\) 9.36853 11.7478i 0.339164 0.425298i
\(764\) −37.0697 17.8518i −1.34113 0.645856i