Properties

Label 87.2.g.a.25.1
Level $87$
Weight $2$
Character 87.25
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 25.1
Root \(-1.38228 - 0.665671i\) of defining polynomial
Character \(\chi\) \(=\) 87.25
Dual form 87.2.g.a.7.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.563916 + 2.47068i) q^{2} +(-0.900969 + 0.433884i) q^{3} +(-3.98431 - 1.91874i) q^{4} +(-0.242440 + 1.06220i) q^{5} +(-0.563916 - 2.47068i) q^{6} +(-1.55919 + 0.750867i) q^{7} +(3.82730 - 4.79928i) q^{8} +(0.623490 - 0.781831i) q^{9} +O(q^{10})\) \(q+(-0.563916 + 2.47068i) q^{2} +(-0.900969 + 0.433884i) q^{3} +(-3.98431 - 1.91874i) q^{4} +(-0.242440 + 1.06220i) q^{5} +(-0.563916 - 2.47068i) q^{6} +(-1.55919 + 0.750867i) q^{7} +(3.82730 - 4.79928i) q^{8} +(0.623490 - 0.781831i) q^{9} +(-2.48764 - 1.19798i) q^{10} +(3.92495 + 4.92173i) q^{11} +4.42225 q^{12} +(-0.797744 - 1.00034i) q^{13} +(-0.975897 - 4.27568i) q^{14} +(-0.242440 - 1.06220i) q^{15} +(4.18475 + 5.24750i) q^{16} -5.08291 q^{17} +(1.58006 + 1.98133i) q^{18} +(5.88048 + 2.83189i) q^{19} +(3.00404 - 3.76695i) q^{20} +(1.07899 - 1.35302i) q^{21} +(-14.3734 + 6.92184i) q^{22} +(1.00672 + 4.41072i) q^{23} +(-1.36595 + 5.98461i) q^{24} +(3.43536 + 1.65438i) q^{25} +(2.92138 - 1.40686i) q^{26} +(-0.222521 + 0.974928i) q^{27} +7.65302 q^{28} +(-1.89363 - 5.04125i) q^{29} +2.76107 q^{30} +(1.52535 - 6.68301i) q^{31} +(-4.26353 + 2.05321i) q^{32} +(-5.67172 - 2.73136i) q^{33} +(2.86633 - 12.5582i) q^{34} +(-0.419560 - 1.83821i) q^{35} +(-3.98431 + 1.91874i) q^{36} +(3.84958 - 4.82721i) q^{37} +(-10.3128 + 12.9318i) q^{38} +(1.15277 + 0.555147i) q^{39} +(4.16990 + 5.22889i) q^{40} +4.04550 q^{41} +(2.73440 + 3.42883i) q^{42} +(-0.407490 - 1.78533i) q^{43} +(-6.19468 - 27.1407i) q^{44} +(0.679302 + 0.851817i) q^{45} -11.4652 q^{46} +(0.945516 + 1.18564i) q^{47} +(-6.04713 - 2.91215i) q^{48} +(-2.49715 + 3.13133i) q^{49} +(-6.02469 + 7.55473i) q^{50} +(4.57954 - 2.20539i) q^{51} +(1.25907 + 5.51633i) q^{52} +(0.839814 - 3.67947i) q^{53} +(-2.28325 - 1.09956i) q^{54} +(-6.17942 + 2.97585i) q^{55} +(-2.36387 + 10.3568i) q^{56} -6.52684 q^{57} +(13.5231 - 1.83571i) q^{58} -8.72197 q^{59} +(-1.07213 + 4.69731i) q^{60} +(2.78187 - 1.33968i) q^{61} +(15.6514 + 7.53731i) q^{62} +(-0.385088 + 1.68718i) q^{63} +(0.318497 + 1.39543i) q^{64} +(1.25596 - 0.604841i) q^{65} +(9.94667 - 12.4727i) q^{66} +(-1.49443 + 1.87396i) q^{67} +(20.2519 + 9.75280i) q^{68} +(-2.82076 - 3.53712i) q^{69} +4.77822 q^{70} +(5.82579 + 7.30531i) q^{71} +(-1.36595 - 5.98461i) q^{72} +(0.400049 + 1.75273i) q^{73} +(9.75566 + 12.2332i) q^{74} -3.81296 q^{75} +(-17.9960 - 22.5663i) q^{76} +(-9.81531 - 4.72681i) q^{77} +(-2.02166 + 2.53508i) q^{78} +(-1.78668 + 2.24043i) q^{79} +(-6.58844 + 3.17283i) q^{80} +(-0.222521 - 0.974928i) q^{81} +(-2.28132 + 9.99513i) q^{82} +(-5.94056 - 2.86082i) q^{83} +(-6.89514 + 3.32052i) q^{84} +(1.23230 - 5.39906i) q^{85} +4.64077 q^{86} +(3.89342 + 3.72039i) q^{87} +38.6427 q^{88} +(-0.744447 + 3.26164i) q^{89} +(-2.48764 + 1.19798i) q^{90} +(1.99496 + 0.960721i) q^{91} +(4.45196 - 19.5053i) q^{92} +(1.52535 + 6.68301i) q^{93} +(-3.46252 + 1.66746i) q^{94} +(-4.43370 + 5.55968i) q^{95} +(2.95045 - 3.69975i) q^{96} +(-2.04297 - 0.983843i) q^{97} +(-6.32833 - 7.93547i) q^{98} +6.29513 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.563916 + 2.47068i −0.398749 + 1.74703i 0.233584 + 0.972337i \(0.424955\pi\)
−0.632333 + 0.774697i \(0.717903\pi\)
\(3\) −0.900969 + 0.433884i −0.520175 + 0.250503i
\(4\) −3.98431 1.91874i −1.99216 0.959372i
\(5\) −0.242440 + 1.06220i −0.108422 + 0.475030i 0.891342 + 0.453331i \(0.149765\pi\)
−0.999765 + 0.0216985i \(0.993093\pi\)
\(6\) −0.563916 2.47068i −0.230218 1.00865i
\(7\) −1.55919 + 0.750867i −0.589319 + 0.283801i −0.704683 0.709522i \(-0.748911\pi\)
0.115364 + 0.993323i \(0.463196\pi\)
\(8\) 3.82730 4.79928i 1.35315 1.69680i
\(9\) 0.623490 0.781831i 0.207830 0.260610i
\(10\) −2.48764 1.19798i −0.786659 0.378835i
\(11\) 3.92495 + 4.92173i 1.18342 + 1.48396i 0.838138 + 0.545458i \(0.183644\pi\)
0.345279 + 0.938500i \(0.387784\pi\)
\(12\) 4.42225 1.27659
\(13\) −0.797744 1.00034i −0.221255 0.277444i 0.658799 0.752319i \(-0.271065\pi\)
−0.880053 + 0.474875i \(0.842493\pi\)
\(14\) −0.975897 4.27568i −0.260819 1.14272i
\(15\) −0.242440 1.06220i −0.0625977 0.274259i
\(16\) 4.18475 + 5.24750i 1.04619 + 1.31188i
\(17\) −5.08291 −1.23279 −0.616393 0.787439i \(-0.711407\pi\)
−0.616393 + 0.787439i \(0.711407\pi\)
\(18\) 1.58006 + 1.98133i 0.372423 + 0.467004i
\(19\) 5.88048 + 2.83189i 1.34908 + 0.649680i 0.962173 0.272440i \(-0.0878307\pi\)
0.386903 + 0.922121i \(0.373545\pi\)
\(20\) 3.00404 3.76695i 0.671724 0.842316i
\(21\) 1.07899 1.35302i 0.235456 0.295252i
\(22\) −14.3734 + 6.92184i −3.06441 + 1.47574i
\(23\) 1.00672 + 4.41072i 0.209915 + 0.919699i 0.964622 + 0.263637i \(0.0849220\pi\)
−0.754707 + 0.656062i \(0.772221\pi\)
\(24\) −1.36595 + 5.98461i −0.278823 + 1.22160i
\(25\) 3.43536 + 1.65438i 0.687071 + 0.330876i
\(26\) 2.92138 1.40686i 0.572930 0.275908i
\(27\) −0.222521 + 0.974928i −0.0428242 + 0.187625i
\(28\) 7.65302 1.44629
\(29\) −1.89363 5.04125i −0.351638 0.936136i
\(30\) 2.76107 0.504100
\(31\) 1.52535 6.68301i 0.273961 1.20030i −0.631331 0.775514i \(-0.717491\pi\)
0.905292 0.424790i \(-0.139652\pi\)
\(32\) −4.26353 + 2.05321i −0.753692 + 0.362959i
\(33\) −5.67172 2.73136i −0.987319 0.475468i
\(34\) 2.86633 12.5582i 0.491572 2.15372i
\(35\) −0.419560 1.83821i −0.0709185 0.310714i
\(36\) −3.98431 + 1.91874i −0.664052 + 0.319791i
\(37\) 3.84958 4.82721i 0.632866 0.793589i −0.357224 0.934019i \(-0.616277\pi\)
0.990091 + 0.140429i \(0.0448483\pi\)
\(38\) −10.3128 + 12.9318i −1.67296 + 2.09782i
\(39\) 1.15277 + 0.555147i 0.184592 + 0.0888946i
\(40\) 4.16990 + 5.22889i 0.659319 + 0.826760i
\(41\) 4.04550 0.631801 0.315901 0.948792i \(-0.397693\pi\)
0.315901 + 0.948792i \(0.397693\pi\)
\(42\) 2.73440 + 3.42883i 0.421928 + 0.529080i
\(43\) −0.407490 1.78533i −0.0621417 0.272260i 0.934306 0.356471i \(-0.116020\pi\)
−0.996448 + 0.0842108i \(0.973163\pi\)
\(44\) −6.19468 27.1407i −0.933884 4.09161i
\(45\) 0.679302 + 0.851817i 0.101264 + 0.126981i
\(46\) −11.4652 −1.69045
\(47\) 0.945516 + 1.18564i 0.137918 + 0.172943i 0.845994 0.533193i \(-0.179008\pi\)
−0.708076 + 0.706136i \(0.750437\pi\)
\(48\) −6.04713 2.91215i −0.872828 0.420332i
\(49\) −2.49715 + 3.13133i −0.356736 + 0.447333i
\(50\) −6.02469 + 7.55473i −0.852020 + 1.06840i
\(51\) 4.57954 2.20539i 0.641264 0.308817i
\(52\) 1.25907 + 5.51633i 0.174601 + 0.764978i
\(53\) 0.839814 3.67947i 0.115357 0.505414i −0.883928 0.467622i \(-0.845111\pi\)
0.999286 0.0377912i \(-0.0120322\pi\)
\(54\) −2.28325 1.09956i −0.310711 0.149631i
\(55\) −6.17942 + 2.97585i −0.833233 + 0.401264i
\(56\) −2.36387 + 10.3568i −0.315885 + 1.38398i
\(57\) −6.52684 −0.864502
\(58\) 13.5231 1.83571i 1.77568 0.241041i
\(59\) −8.72197 −1.13550 −0.567752 0.823200i \(-0.692187\pi\)
−0.567752 + 0.823200i \(0.692187\pi\)
\(60\) −1.07213 + 4.69731i −0.138411 + 0.606420i
\(61\) 2.78187 1.33968i 0.356182 0.171528i −0.247232 0.968956i \(-0.579521\pi\)
0.603414 + 0.797428i \(0.293807\pi\)
\(62\) 15.6514 + 7.53731i 1.98773 + 0.957240i
\(63\) −0.385088 + 1.68718i −0.0485166 + 0.212565i
\(64\) 0.318497 + 1.39543i 0.0398121 + 0.174428i
\(65\) 1.25596 0.604841i 0.155783 0.0750213i
\(66\) 9.94667 12.4727i 1.22435 1.53529i
\(67\) −1.49443 + 1.87396i −0.182574 + 0.228941i −0.864693 0.502300i \(-0.832487\pi\)
0.682119 + 0.731241i \(0.261059\pi\)
\(68\) 20.2519 + 9.75280i 2.45590 + 1.18270i
\(69\) −2.82076 3.53712i −0.339580 0.425820i
\(70\) 4.77822 0.571107
\(71\) 5.82579 + 7.30531i 0.691394 + 0.866980i 0.996348 0.0853867i \(-0.0272126\pi\)
−0.304954 + 0.952367i \(0.598641\pi\)
\(72\) −1.36595 5.98461i −0.160978 0.705293i
\(73\) 0.400049 + 1.75273i 0.0468222 + 0.205142i 0.992928 0.118715i \(-0.0378775\pi\)
−0.946106 + 0.323857i \(0.895020\pi\)
\(74\) 9.75566 + 12.2332i 1.13407 + 1.42208i
\(75\) −3.81296 −0.440282
\(76\) −17.9960 22.5663i −2.06428 2.58853i
\(77\) −9.81531 4.72681i −1.11856 0.538669i
\(78\) −2.02166 + 2.53508i −0.228908 + 0.287041i
\(79\) −1.78668 + 2.24043i −0.201018 + 0.252068i −0.872115 0.489301i \(-0.837252\pi\)
0.671097 + 0.741369i \(0.265823\pi\)
\(80\) −6.58844 + 3.17283i −0.736610 + 0.354733i
\(81\) −0.222521 0.974928i −0.0247245 0.108325i
\(82\) −2.28132 + 9.99513i −0.251930 + 1.10378i
\(83\) −5.94056 2.86082i −0.652061 0.314016i 0.0784490 0.996918i \(-0.475003\pi\)
−0.730510 + 0.682902i \(0.760717\pi\)
\(84\) −6.89514 + 3.32052i −0.752321 + 0.362299i
\(85\) 1.23230 5.39906i 0.133662 0.585610i
\(86\) 4.64077 0.500427
\(87\) 3.89342 + 3.72039i 0.417418 + 0.398868i
\(88\) 38.6427 4.11933
\(89\) −0.744447 + 3.26164i −0.0789113 + 0.345733i −0.998936 0.0461286i \(-0.985312\pi\)
0.920024 + 0.391861i \(0.128169\pi\)
\(90\) −2.48764 + 1.19798i −0.262220 + 0.126278i
\(91\) 1.99496 + 0.960721i 0.209128 + 0.100711i
\(92\) 4.45196 19.5053i 0.464149 2.03357i
\(93\) 1.52535 + 6.68301i 0.158172 + 0.692996i
\(94\) −3.46252 + 1.66746i −0.357132 + 0.171986i
\(95\) −4.43370 + 5.55968i −0.454888 + 0.570411i
\(96\) 2.95045 3.69975i 0.301129 0.377604i
\(97\) −2.04297 0.983843i −0.207432 0.0998941i 0.327283 0.944926i \(-0.393867\pi\)
−0.534715 + 0.845032i \(0.679581\pi\)
\(98\) −6.32833 7.93547i −0.639257 0.801604i
\(99\) 6.29513 0.632685
\(100\) −10.5132 13.1831i −1.05132 1.31831i
\(101\) −2.79423 12.2423i −0.278036 1.21816i −0.900273 0.435326i \(-0.856633\pi\)
0.622237 0.782829i \(-0.286224\pi\)
\(102\) 2.86633 + 12.5582i 0.283809 + 1.24345i
\(103\) 1.73041 + 2.16986i 0.170502 + 0.213803i 0.859740 0.510732i \(-0.170626\pi\)
−0.689237 + 0.724536i \(0.742054\pi\)
\(104\) −7.85412 −0.770160
\(105\) 1.17558 + 1.47413i 0.114725 + 0.143860i
\(106\) 8.61719 + 4.14982i 0.836976 + 0.403066i
\(107\) 6.20858 7.78532i 0.600206 0.752635i −0.385204 0.922832i \(-0.625869\pi\)
0.985410 + 0.170197i \(0.0544403\pi\)
\(108\) 2.75723 3.45746i 0.265314 0.332694i
\(109\) 4.25748 2.05029i 0.407793 0.196383i −0.218731 0.975785i \(-0.570192\pi\)
0.626523 + 0.779403i \(0.284477\pi\)
\(110\) −3.86770 16.9455i −0.368771 1.61569i
\(111\) −1.37390 + 6.01944i −0.130405 + 0.571340i
\(112\) −10.4650 5.03967i −0.988849 0.476205i
\(113\) 0.494143 0.237967i 0.0464851 0.0223860i −0.410497 0.911862i \(-0.634645\pi\)
0.456982 + 0.889476i \(0.348930\pi\)
\(114\) 3.68059 16.1257i 0.344719 1.51031i
\(115\) −4.92913 −0.459644
\(116\) −2.12804 + 23.7193i −0.197584 + 2.20228i
\(117\) −1.27948 −0.118288
\(118\) 4.91846 21.5492i 0.452781 1.98376i
\(119\) 7.92522 3.81659i 0.726504 0.349866i
\(120\) −6.02568 2.90181i −0.550067 0.264898i
\(121\) −6.37048 + 27.9109i −0.579135 + 2.53735i
\(122\) 1.74117 + 7.62857i 0.157638 + 0.690659i
\(123\) −3.64487 + 1.75528i −0.328647 + 0.158268i
\(124\) −18.9005 + 23.7004i −1.69731 + 2.12836i
\(125\) −5.98666 + 7.50703i −0.535463 + 0.671449i
\(126\) −3.95133 1.90286i −0.352012 0.169520i
\(127\) 8.88268 + 11.1385i 0.788211 + 0.988385i 0.999939 + 0.0110562i \(0.00351937\pi\)
−0.211728 + 0.977329i \(0.567909\pi\)
\(128\) −13.0916 −1.15714
\(129\) 1.14176 + 1.43172i 0.100527 + 0.126056i
\(130\) 0.786108 + 3.44416i 0.0689462 + 0.302073i
\(131\) −1.52161 6.66661i −0.132944 0.582464i −0.996885 0.0788714i \(-0.974868\pi\)
0.863941 0.503593i \(-0.167989\pi\)
\(132\) 17.3571 + 21.7651i 1.51074 + 1.89441i
\(133\) −11.2952 −0.979415
\(134\) −3.78722 4.74902i −0.327166 0.410253i
\(135\) −0.981619 0.472723i −0.0844843 0.0406855i
\(136\) −19.4538 + 24.3943i −1.66815 + 2.09179i
\(137\) 8.40101 10.5345i 0.717746 0.900026i −0.280462 0.959865i \(-0.590488\pi\)
0.998208 + 0.0598397i \(0.0190590\pi\)
\(138\) 10.3298 4.97455i 0.879328 0.423462i
\(139\) −2.62174 11.4866i −0.222373 0.974278i −0.955686 0.294388i \(-0.904884\pi\)
0.733313 0.679891i \(-0.237973\pi\)
\(140\) −1.85540 + 8.12903i −0.156810 + 0.687028i
\(141\) −1.36631 0.657980i −0.115064 0.0554119i
\(142\) −21.3343 + 10.2741i −1.79034 + 0.862180i
\(143\) 1.79230 7.85257i 0.149879 0.656665i
\(144\) 6.71181 0.559317
\(145\) 5.81390 0.789213i 0.482818 0.0655405i
\(146\) −4.55603 −0.377060
\(147\) 0.891224 3.90471i 0.0735069 0.322055i
\(148\) −24.6001 + 11.8468i −2.02212 + 0.973799i
\(149\) −0.686505 0.330603i −0.0562406 0.0270841i 0.405552 0.914072i \(-0.367079\pi\)
−0.461793 + 0.886988i \(0.652794\pi\)
\(150\) 2.15019 9.42059i 0.175562 0.769188i
\(151\) −4.10254 17.9744i −0.333860 1.46274i −0.811589 0.584228i \(-0.801397\pi\)
0.477730 0.878507i \(-0.341460\pi\)
\(152\) 36.0974 17.3836i 2.92789 1.41000i
\(153\) −3.16914 + 3.97398i −0.256210 + 0.321277i
\(154\) 17.2134 21.5850i 1.38710 1.73937i
\(155\) 6.72887 + 3.24046i 0.540476 + 0.260280i
\(156\) −3.52783 4.42376i −0.282452 0.354184i
\(157\) 10.9681 0.875353 0.437676 0.899133i \(-0.355802\pi\)
0.437676 + 0.899133i \(0.355802\pi\)
\(158\) −4.52784 5.67773i −0.360216 0.451696i
\(159\) 0.839814 + 3.67947i 0.0666016 + 0.291801i
\(160\) −1.14726 5.02649i −0.0906991 0.397379i
\(161\) −4.88153 6.12125i −0.384719 0.482422i
\(162\) 2.53422 0.199107
\(163\) 14.8705 + 18.6470i 1.16475 + 1.46055i 0.861590 + 0.507604i \(0.169469\pi\)
0.303155 + 0.952941i \(0.401960\pi\)
\(164\) −16.1185 7.76228i −1.25865 0.606132i
\(165\) 4.27629 5.36230i 0.332909 0.417455i
\(166\) 10.4181 13.0639i 0.808605 1.01396i
\(167\) 12.9629 6.24261i 1.00310 0.483068i 0.141111 0.989994i \(-0.454932\pi\)
0.861990 + 0.506926i \(0.169218\pi\)
\(168\) −2.36387 10.3568i −0.182376 0.799043i
\(169\) 2.52849 11.0780i 0.194499 0.852156i
\(170\) 12.6444 + 6.08923i 0.969783 + 0.467023i
\(171\) 5.88048 2.83189i 0.449692 0.216560i
\(172\) −1.80202 + 7.89518i −0.137403 + 0.602002i
\(173\) −3.94904 −0.300240 −0.150120 0.988668i \(-0.547966\pi\)
−0.150120 + 0.988668i \(0.547966\pi\)
\(174\) −11.3874 + 7.52139i −0.863280 + 0.570195i
\(175\) −6.59859 −0.498807
\(176\) −9.40189 + 41.1924i −0.708694 + 3.10499i
\(177\) 7.85822 3.78432i 0.590660 0.284447i
\(178\) −7.63865 3.67858i −0.572541 0.275721i
\(179\) −3.65240 + 16.0022i −0.272993 + 1.19606i 0.633467 + 0.773770i \(0.281631\pi\)
−0.906460 + 0.422291i \(0.861226\pi\)
\(180\) −1.07213 4.69731i −0.0799119 0.350117i
\(181\) 15.0941 7.26893i 1.12193 0.540295i 0.221445 0.975173i \(-0.428923\pi\)
0.900489 + 0.434878i \(0.143208\pi\)
\(182\) −3.49862 + 4.38713i −0.259335 + 0.325196i
\(183\) −1.92511 + 2.41402i −0.142309 + 0.178449i
\(184\) 25.0213 + 12.0496i 1.84460 + 0.888310i
\(185\) 4.19417 + 5.25932i 0.308362 + 0.386673i
\(186\) −17.3717 −1.27376
\(187\) −19.9502 25.0167i −1.45890 1.82940i
\(188\) −1.49229 6.53816i −0.108837 0.476844i
\(189\) −0.385088 1.68718i −0.0280111 0.122724i
\(190\) −11.2359 14.0894i −0.815141 1.02215i
\(191\) −2.95004 −0.213457 −0.106729 0.994288i \(-0.534038\pi\)
−0.106729 + 0.994288i \(0.534038\pi\)
\(192\) −0.892409 1.11905i −0.0644041 0.0807601i
\(193\) 4.39974 + 2.11880i 0.316700 + 0.152515i 0.585480 0.810687i \(-0.300906\pi\)
−0.268780 + 0.963202i \(0.586620\pi\)
\(194\) 3.58282 4.49272i 0.257232 0.322559i
\(195\) −0.869155 + 1.08989i −0.0622415 + 0.0780483i
\(196\) 15.9577 7.68480i 1.13983 0.548914i
\(197\) 0.560429 + 2.45540i 0.0399289 + 0.174940i 0.990961 0.134153i \(-0.0428315\pi\)
−0.951032 + 0.309094i \(0.899974\pi\)
\(198\) −3.54993 + 15.5532i −0.252282 + 1.10532i
\(199\) −23.0213 11.0865i −1.63193 0.785898i −0.999940 0.0109244i \(-0.996523\pi\)
−0.631994 0.774974i \(-0.717763\pi\)
\(200\) 21.0880 10.1554i 1.49114 0.718097i
\(201\) 0.533357 2.33679i 0.0376201 0.164825i
\(202\) 31.8225 2.23903
\(203\) 6.73784 + 6.43840i 0.472903 + 0.451887i
\(204\) −22.4779 −1.57377
\(205\) −0.980791 + 4.29713i −0.0685014 + 0.300124i
\(206\) −6.33684 + 3.05166i −0.441509 + 0.212619i
\(207\) 4.07612 + 1.96296i 0.283310 + 0.136435i
\(208\) 1.91093 8.37234i 0.132499 0.580517i
\(209\) 9.14279 + 40.0572i 0.632420 + 2.77081i
\(210\) −4.30503 + 2.07319i −0.297075 + 0.143064i
\(211\) −1.15041 + 1.44257i −0.0791974 + 0.0993104i −0.819852 0.572576i \(-0.805944\pi\)
0.740654 + 0.671886i \(0.234516\pi\)
\(212\) −10.4060 + 13.0488i −0.714689 + 0.896192i
\(213\) −8.41851 4.05414i −0.576827 0.277785i
\(214\) 15.7339 + 19.7297i 1.07555 + 1.34869i
\(215\) 1.99517 0.136069
\(216\) 3.82730 + 4.79928i 0.260415 + 0.326550i
\(217\) 2.63973 + 11.5654i 0.179197 + 0.785112i
\(218\) 2.66476 + 11.6751i 0.180480 + 0.790735i
\(219\) −1.12091 1.40558i −0.0757443 0.0949803i
\(220\) 30.3306 2.04489
\(221\) 4.05486 + 5.08464i 0.272760 + 0.342030i
\(222\) −14.0973 6.78892i −0.946151 0.455642i
\(223\) −14.9944 + 18.8024i −1.00410 + 1.25910i −0.0384478 + 0.999261i \(0.512241\pi\)
−0.965652 + 0.259840i \(0.916330\pi\)
\(224\) 5.10597 6.40268i 0.341157 0.427797i
\(225\) 3.43536 1.65438i 0.229024 0.110292i
\(226\) 0.309284 + 1.35506i 0.0205733 + 0.0901374i
\(227\) 5.03786 22.0723i 0.334374 1.46499i −0.476191 0.879342i \(-0.657983\pi\)
0.810565 0.585648i \(-0.199160\pi\)
\(228\) 26.0050 + 12.5233i 1.72222 + 0.829378i
\(229\) 12.4353 5.98852i 0.821747 0.395733i 0.0247336 0.999694i \(-0.492126\pi\)
0.797013 + 0.603962i \(0.206412\pi\)
\(230\) 2.77962 12.1783i 0.183283 0.803013i
\(231\) 10.8942 0.716784
\(232\) −31.4418 10.2063i −2.06426 0.670076i
\(233\) −6.69816 −0.438811 −0.219405 0.975634i \(-0.570412\pi\)
−0.219405 + 0.975634i \(0.570412\pi\)
\(234\) 0.721521 3.16119i 0.0471673 0.206653i
\(235\) −1.48861 + 0.716879i −0.0971065 + 0.0467640i
\(236\) 34.7511 + 16.7352i 2.26210 + 1.08937i
\(237\) 0.637660 2.79377i 0.0414205 0.181475i
\(238\) 4.96040 + 21.7329i 0.321535 + 1.40874i
\(239\) −10.9580 + 5.27711i −0.708816 + 0.341348i −0.753313 0.657662i \(-0.771546\pi\)
0.0444976 + 0.999009i \(0.485831\pi\)
\(240\) 4.55934 5.71723i 0.294304 0.369046i
\(241\) 1.65610 2.07668i 0.106679 0.133771i −0.725626 0.688089i \(-0.758450\pi\)
0.832305 + 0.554319i \(0.187021\pi\)
\(242\) −65.3664 31.4788i −4.20191 2.02353i
\(243\) 0.623490 + 0.781831i 0.0399969 + 0.0501545i
\(244\) −13.6543 −0.874129
\(245\) −2.72069 3.41163i −0.173818 0.217961i
\(246\) −2.28132 9.99513i −0.145452 0.637266i
\(247\) −1.85827 8.14161i −0.118239 0.518038i
\(248\) −26.2356 32.8985i −1.66597 2.08905i
\(249\) 6.59352 0.417847
\(250\) −15.1715 19.0244i −0.959529 1.20321i
\(251\) 20.5109 + 9.87755i 1.29464 + 0.623465i 0.949111 0.314943i \(-0.101985\pi\)
0.345529 + 0.938408i \(0.387700\pi\)
\(252\) 4.77158 5.98337i 0.300581 0.376917i
\(253\) −17.7571 + 22.2667i −1.11638 + 1.39989i
\(254\) −32.5288 + 15.6651i −2.04104 + 0.982913i
\(255\) 1.23230 + 5.39906i 0.0771696 + 0.338102i
\(256\) 6.74555 29.5542i 0.421597 1.84714i
\(257\) −6.94501 3.34454i −0.433218 0.208627i 0.204549 0.978856i \(-0.434427\pi\)
−0.637767 + 0.770230i \(0.720142\pi\)
\(258\) −4.18119 + 2.01355i −0.260309 + 0.125358i
\(259\) −2.37763 + 10.4171i −0.147739 + 0.647285i
\(260\) −6.16469 −0.382318
\(261\) −5.12206 1.66267i −0.317048 0.102916i
\(262\) 17.3291 1.07060
\(263\) 0.171243 0.750263i 0.0105593 0.0462632i −0.969374 0.245590i \(-0.921018\pi\)
0.979933 + 0.199327i \(0.0638755\pi\)
\(264\) −34.8159 + 16.7665i −2.14277 + 1.03190i
\(265\) 3.70472 + 1.78410i 0.227579 + 0.109596i
\(266\) 6.36953 27.9067i 0.390541 1.71107i
\(267\) −0.744447 3.26164i −0.0455594 0.199609i
\(268\) 9.54994 4.59901i 0.583356 0.280929i
\(269\) 9.56842 11.9984i 0.583397 0.731556i −0.399291 0.916824i \(-0.630744\pi\)
0.982688 + 0.185268i \(0.0593152\pi\)
\(270\) 1.72150 2.15869i 0.104767 0.131374i
\(271\) −14.1724 6.82505i −0.860910 0.414592i −0.0492945 0.998784i \(-0.515697\pi\)
−0.811616 + 0.584192i \(0.801412\pi\)
\(272\) −21.2707 26.6726i −1.28972 1.61726i
\(273\) −2.21424 −0.134012
\(274\) 21.2900 + 26.6968i 1.28617 + 1.61281i
\(275\) 5.34118 + 23.4013i 0.322086 + 1.41115i
\(276\) 4.45196 + 19.5053i 0.267977 + 1.17408i
\(277\) −14.1068 17.6894i −0.847595 1.06285i −0.997250 0.0741120i \(-0.976388\pi\)
0.149655 0.988738i \(-0.452184\pi\)
\(278\) 29.8581 1.79077
\(279\) −4.27394 5.35936i −0.255874 0.320856i
\(280\) −10.4279 5.02180i −0.623184 0.300110i
\(281\) −13.7451 + 17.2358i −0.819965 + 1.02820i 0.179051 + 0.983840i \(0.442697\pi\)
−0.999015 + 0.0443636i \(0.985874\pi\)
\(282\) 2.39614 3.00467i 0.142688 0.178925i
\(283\) −4.66832 + 2.24815i −0.277503 + 0.133638i −0.567459 0.823402i \(-0.692074\pi\)
0.289956 + 0.957040i \(0.406359\pi\)
\(284\) −9.19474 40.2848i −0.545608 2.39046i
\(285\) 1.58237 6.93280i 0.0937314 0.410664i
\(286\) 18.3905 + 8.85638i 1.08745 + 0.523689i
\(287\) −6.30771 + 3.03763i −0.372332 + 0.179306i
\(288\) −1.05300 + 4.61351i −0.0620488 + 0.271854i
\(289\) 8.83596 0.519762
\(290\) −1.32866 + 14.8093i −0.0780216 + 0.869633i
\(291\) 2.26753 0.132925
\(292\) 1.76912 7.75102i 0.103530 0.453594i
\(293\) −3.38919 + 1.63215i −0.197999 + 0.0953511i −0.530256 0.847838i \(-0.677904\pi\)
0.332257 + 0.943189i \(0.392190\pi\)
\(294\) 9.14470 + 4.40385i 0.533330 + 0.256838i
\(295\) 2.11455 9.26447i 0.123114 0.539398i
\(296\) −8.43369 36.9504i −0.490198 2.14770i
\(297\) −5.67172 + 2.73136i −0.329106 + 0.158489i
\(298\) 1.20395 1.50970i 0.0697427 0.0874545i
\(299\) 3.60912 4.52569i 0.208721 0.261727i
\(300\) 15.1920 + 7.31609i 0.877111 + 0.422394i
\(301\) 1.97590 + 2.47770i 0.113889 + 0.142812i
\(302\) 46.7224 2.68857
\(303\) 7.82925 + 9.81757i 0.449779 + 0.564005i
\(304\) 9.74796 + 42.7086i 0.559084 + 2.44951i
\(305\) 0.748568 + 3.27969i 0.0428629 + 0.187795i
\(306\) −8.03129 10.0709i −0.459118 0.575716i
\(307\) −4.15007 −0.236857 −0.118428 0.992963i \(-0.537786\pi\)
−0.118428 + 0.992963i \(0.537786\pi\)
\(308\) 30.0377 + 37.6661i 1.71156 + 2.14623i
\(309\) −2.50051 1.20418i −0.142249 0.0685036i
\(310\) −11.8006 + 14.7975i −0.670232 + 0.840444i
\(311\) −5.11268 + 6.41109i −0.289913 + 0.363540i −0.905365 0.424635i \(-0.860402\pi\)
0.615451 + 0.788175i \(0.288974\pi\)
\(312\) 7.07632 3.40777i 0.400618 0.192927i
\(313\) 1.29402 + 5.66946i 0.0731421 + 0.320457i 0.998242 0.0592668i \(-0.0188763\pi\)
−0.925100 + 0.379723i \(0.876019\pi\)
\(314\) −6.18511 + 27.0987i −0.349046 + 1.52927i
\(315\) −1.69876 0.818081i −0.0957144 0.0460936i
\(316\) 11.4175 5.49839i 0.642285 0.309308i
\(317\) 2.46889 10.8169i 0.138666 0.607537i −0.857062 0.515212i \(-0.827713\pi\)
0.995729 0.0923249i \(-0.0294299\pi\)
\(318\) −9.56436 −0.536343
\(319\) 17.3793 29.1066i 0.973052 1.62966i
\(320\) −1.55944 −0.0871752
\(321\) −2.21582 + 9.70813i −0.123675 + 0.541855i
\(322\) 17.8764 8.60882i 0.996213 0.479751i
\(323\) −29.8900 14.3942i −1.66312 0.800917i
\(324\) −0.984044 + 4.31138i −0.0546691 + 0.239521i
\(325\) −1.08559 4.75630i −0.0602179 0.263832i
\(326\) −54.4564 + 26.2248i −3.01606 + 1.45246i
\(327\) −2.94627 + 3.69450i −0.162929 + 0.204307i
\(328\) 15.4833 19.4155i 0.854925 1.07204i
\(329\) −2.36450 1.13868i −0.130359 0.0627775i
\(330\) 10.8371 + 13.5892i 0.596560 + 0.748063i
\(331\) 16.7926 0.923002 0.461501 0.887140i \(-0.347311\pi\)
0.461501 + 0.887140i \(0.347311\pi\)
\(332\) 18.1798 + 22.7968i 0.997749 + 1.25114i
\(333\) −1.37390 6.01944i −0.0752891 0.329863i
\(334\) 8.11349 + 35.5475i 0.443950 + 1.94507i
\(335\) −1.62821 2.04171i −0.0889585 0.111550i
\(336\) 11.6153 0.633665
\(337\) 13.1418 + 16.4793i 0.715880 + 0.897685i 0.998097 0.0616653i \(-0.0196411\pi\)
−0.282217 + 0.959351i \(0.591070\pi\)
\(338\) 25.9444 + 12.4942i 1.41119 + 0.679593i
\(339\) −0.341958 + 0.428801i −0.0185726 + 0.0232893i
\(340\) −15.2693 + 19.1471i −0.828093 + 1.03840i
\(341\) 38.8789 18.7231i 2.10541 1.01391i
\(342\) 3.68059 + 16.1257i 0.199024 + 0.871980i
\(343\) 4.23794 18.5676i 0.228828 1.00256i
\(344\) −10.1279 4.87734i −0.546059 0.262968i
\(345\) 4.44099 2.13867i 0.239095 0.115142i
\(346\) 2.22693 9.75680i 0.119720 0.524529i
\(347\) −31.0309 −1.66583 −0.832914 0.553402i \(-0.813329\pi\)
−0.832914 + 0.553402i \(0.813329\pi\)
\(348\) −8.37411 22.2937i −0.448900 1.19507i
\(349\) −35.7539 −1.91386 −0.956931 0.290315i \(-0.906240\pi\)
−0.956931 + 0.290315i \(0.906240\pi\)
\(350\) 3.72105 16.3030i 0.198899 0.871432i
\(351\) 1.15277 0.555147i 0.0615305 0.0296315i
\(352\) −26.8395 12.9252i −1.43055 0.688915i
\(353\) 1.34141 5.87712i 0.0713962 0.312807i −0.926602 0.376042i \(-0.877285\pi\)
0.997999 + 0.0632352i \(0.0201418\pi\)
\(354\) 4.91846 + 21.5492i 0.261413 + 1.14533i
\(355\) −9.17209 + 4.41705i −0.486804 + 0.234432i
\(356\) 9.22436 11.5670i 0.488890 0.613048i
\(357\) −5.48443 + 6.87725i −0.290267 + 0.363983i
\(358\) −37.4766 18.0478i −1.98070 0.953856i
\(359\) −3.56260 4.46736i −0.188027 0.235778i 0.678879 0.734250i \(-0.262466\pi\)
−0.866906 + 0.498472i \(0.833895\pi\)
\(360\) 6.68800 0.352489
\(361\) 14.7142 + 18.4510i 0.774430 + 0.971104i
\(362\) 9.44738 + 41.3917i 0.496543 + 2.17550i
\(363\) −6.37048 27.9109i −0.334364 1.46494i
\(364\) −6.10516 7.65562i −0.319997 0.401264i
\(365\) −1.95874 −0.102525
\(366\) −4.87866 6.11764i −0.255011 0.319774i
\(367\) −24.6356 11.8639i −1.28597 0.619290i −0.339051 0.940768i \(-0.610106\pi\)
−0.946917 + 0.321478i \(0.895820\pi\)
\(368\) −18.9324 + 23.7405i −0.986921 + 1.23756i
\(369\) 2.52233 3.16290i 0.131307 0.164654i
\(370\) −15.3593 + 7.39663i −0.798490 + 0.384532i
\(371\) 1.45336 + 6.36758i 0.0754546 + 0.330588i
\(372\) 6.74549 29.5539i 0.349738 1.53230i
\(373\) 11.3717 + 5.47631i 0.588803 + 0.283552i 0.704468 0.709736i \(-0.251186\pi\)
−0.115665 + 0.993288i \(0.536900\pi\)
\(374\) 73.0585 35.1831i 3.77776 1.81927i
\(375\) 2.13661 9.36111i 0.110334 0.483406i
\(376\) 9.30899 0.480074
\(377\) −3.53233 + 5.91590i −0.181924 + 0.304684i
\(378\) 4.38564 0.225573
\(379\) 0.734451 3.21784i 0.0377262 0.165289i −0.952556 0.304365i \(-0.901556\pi\)
0.990282 + 0.139075i \(0.0444130\pi\)
\(380\) 28.3328 13.6444i 1.45344 0.699941i
\(381\) −12.8358 6.18142i −0.657600 0.316684i
\(382\) 1.66357 7.28859i 0.0851158 0.372917i
\(383\) −2.14467 9.39639i −0.109587 0.480133i −0.999702 0.0243974i \(-0.992233\pi\)
0.890115 0.455736i \(-0.150624\pi\)
\(384\) 11.7951 5.68022i 0.601916 0.289867i
\(385\) 7.40043 9.27984i 0.377161 0.472945i
\(386\) −7.71596 + 9.67551i −0.392732 + 0.492470i
\(387\) −1.64989 0.794547i −0.0838688 0.0403891i
\(388\) 6.25209 + 7.83988i 0.317402 + 0.398009i
\(389\) 10.7987 0.547518 0.273759 0.961798i \(-0.411733\pi\)
0.273759 + 0.961798i \(0.411733\pi\)
\(390\) −2.20263 2.76201i −0.111534 0.139860i
\(391\) −5.11706 22.4193i −0.258781 1.13379i
\(392\) 5.47079 + 23.9691i 0.276316 + 1.21062i
\(393\) 4.26346 + 5.34620i 0.215063 + 0.269680i
\(394\) −6.38254 −0.321548
\(395\) −1.94662 2.44098i −0.0979450 0.122819i
\(396\) −25.0818 12.0787i −1.26041 0.606980i
\(397\) 18.5378 23.2457i 0.930385 1.16667i −0.0553677 0.998466i \(-0.517633\pi\)
0.985753 0.168200i \(-0.0537955\pi\)
\(398\) 40.3731 50.6263i 2.02372 2.53767i
\(399\) 10.1766 4.90079i 0.509467 0.245346i
\(400\) 5.69472 + 24.9502i 0.284736 + 1.24751i
\(401\) −2.54450 + 11.1482i −0.127066 + 0.556713i 0.870813 + 0.491615i \(0.163593\pi\)
−0.997879 + 0.0650982i \(0.979264\pi\)
\(402\) 5.47269 + 2.63551i 0.272953 + 0.131447i
\(403\) −7.90212 + 3.80546i −0.393633 + 0.189564i
\(404\) −12.3568 + 54.1386i −0.614773 + 2.69350i
\(405\) 1.08952 0.0541384
\(406\) −19.7068 + 13.0163i −0.978032 + 0.645988i
\(407\) 38.8677 1.92660
\(408\) 6.94298 30.4192i 0.343729 1.50597i
\(409\) −26.9918 + 12.9985i −1.33466 + 0.642737i −0.958837 0.283956i \(-0.908353\pi\)
−0.375820 + 0.926693i \(0.622639\pi\)
\(410\) −10.0637 4.84644i −0.497012 0.239349i
\(411\) −2.99828 + 13.1363i −0.147894 + 0.647968i
\(412\) −2.73108 11.9656i −0.134550 0.589504i
\(413\) 13.5992 6.54904i 0.669174 0.322257i
\(414\) −7.14842 + 8.96384i −0.351326 + 0.440549i
\(415\) 4.47899 5.61647i 0.219865 0.275702i
\(416\) 5.45511 + 2.62704i 0.267459 + 0.128801i
\(417\) 7.34594 + 9.21152i 0.359732 + 0.451090i
\(418\) −104.124 −5.09288
\(419\) −12.7136 15.9424i −0.621101 0.778836i 0.367398 0.930064i \(-0.380249\pi\)
−0.988499 + 0.151228i \(0.951677\pi\)
\(420\) −1.85540 8.12903i −0.0905342 0.396656i
\(421\) 5.11531 + 22.4116i 0.249305 + 1.09228i 0.932253 + 0.361808i \(0.117840\pi\)
−0.682948 + 0.730467i \(0.739302\pi\)
\(422\) −2.91539 3.65578i −0.141919 0.177960i
\(423\) 1.51649 0.0737342
\(424\) −14.4446 18.1129i −0.701491 0.879641i
\(425\) −17.4616 8.40906i −0.847012 0.407899i
\(426\) 14.7638 18.5132i 0.715309 0.896969i
\(427\) −3.33155 + 4.17763i −0.161225 + 0.202170i
\(428\) −39.6750 + 19.1065i −1.91776 + 0.923545i
\(429\) 1.79230 + 7.85257i 0.0865329 + 0.379126i
\(430\) −1.12511 + 4.92942i −0.0542575 + 0.237718i
\(431\) 3.64629 + 1.75596i 0.175636 + 0.0845817i 0.519636 0.854388i \(-0.326068\pi\)
−0.344000 + 0.938970i \(0.611782\pi\)
\(432\) −6.04713 + 2.91215i −0.290943 + 0.140111i
\(433\) −0.585130 + 2.56362i −0.0281196 + 0.123200i −0.987040 0.160476i \(-0.948697\pi\)
0.958920 + 0.283676i \(0.0915541\pi\)
\(434\) −30.0630 −1.44307
\(435\) −4.89571 + 3.23361i −0.234731 + 0.155040i
\(436\) −20.8971 −1.00079
\(437\) −6.57069 + 28.7881i −0.314319 + 1.37712i
\(438\) 4.10484 1.97679i 0.196137 0.0944545i
\(439\) 23.4338 + 11.2851i 1.11843 + 0.538609i 0.899408 0.437110i \(-0.143998\pi\)
0.219025 + 0.975719i \(0.429712\pi\)
\(440\) −9.36854 + 41.0463i −0.446628 + 1.95680i
\(441\) 0.891224 + 3.90471i 0.0424392 + 0.185938i
\(442\) −14.8491 + 7.15095i −0.706300 + 0.340136i
\(443\) 11.7311 14.7103i 0.557360 0.698907i −0.420708 0.907196i \(-0.638218\pi\)
0.978067 + 0.208290i \(0.0667896\pi\)
\(444\) 17.0238 21.3472i 0.807913 1.01309i
\(445\) −3.28402 1.58150i −0.155678 0.0749704i
\(446\) −37.9991 47.6493i −1.79931 2.25626i
\(447\) 0.761963 0.0360396
\(448\) −1.54438 1.93659i −0.0729650 0.0914952i
\(449\) −2.75254 12.0597i −0.129900 0.569130i −0.997424 0.0717342i \(-0.977147\pi\)
0.867523 0.497396i \(-0.165710\pi\)
\(450\) 2.15019 + 9.42059i 0.101361 + 0.444091i
\(451\) 15.8784 + 19.9109i 0.747684 + 0.937567i
\(452\) −2.42542 −0.114082
\(453\) 11.4951 + 14.4143i 0.540085 + 0.677245i
\(454\) 51.6926 + 24.8939i 2.42606 + 1.16833i
\(455\) −1.50413 + 1.88612i −0.0705149 + 0.0884229i
\(456\) −24.9802 + 31.3242i −1.16980 + 1.46689i
\(457\) 18.1340 8.73289i 0.848275 0.408508i 0.0413378 0.999145i \(-0.486838\pi\)
0.806937 + 0.590638i \(0.201124\pi\)
\(458\) 7.78324 + 34.1006i 0.363687 + 1.59342i
\(459\) 1.13105 4.95547i 0.0527931 0.231301i
\(460\) 19.6392 + 9.45774i 0.915682 + 0.440969i
\(461\) −17.8198 + 8.58155i −0.829950 + 0.399683i −0.800096 0.599872i \(-0.795218\pi\)
−0.0298534 + 0.999554i \(0.509504\pi\)
\(462\) −6.14340 + 26.9160i −0.285817 + 1.25225i
\(463\) 2.22268 0.103297 0.0516484 0.998665i \(-0.483552\pi\)
0.0516484 + 0.998665i \(0.483552\pi\)
\(464\) 18.5296 31.0332i 0.860215 1.44068i
\(465\) −7.46849 −0.346343
\(466\) 3.77720 16.5490i 0.174975 0.766617i
\(467\) −4.17491 + 2.01053i −0.193192 + 0.0930362i −0.527979 0.849258i \(-0.677050\pi\)
0.334787 + 0.942294i \(0.391336\pi\)
\(468\) 5.09786 + 2.45500i 0.235649 + 0.113482i
\(469\) 0.923013 4.04398i 0.0426208 0.186734i
\(470\) −0.931724 4.08215i −0.0429772 0.188295i
\(471\) −9.88195 + 4.75890i −0.455336 + 0.219278i
\(472\) −33.3816 + 41.8592i −1.53651 + 1.92673i
\(473\) 7.18754 9.01289i 0.330484 0.414413i
\(474\) 6.54292 + 3.15091i 0.300526 + 0.144726i
\(475\) 15.5165 + 19.4571i 0.711947 + 0.892753i
\(476\) −38.8996 −1.78296
\(477\) −2.35311 2.95070i −0.107741 0.135103i
\(478\) −6.85863 30.0496i −0.313706 1.37444i
\(479\) 2.11528 + 9.26766i 0.0966498 + 0.423450i 0.999985 0.00548500i \(-0.00174594\pi\)
−0.903335 + 0.428935i \(0.858889\pi\)
\(480\) 3.21456 + 4.03093i 0.146724 + 0.183986i
\(481\) −7.89983 −0.360201
\(482\) 4.19691 + 5.26276i 0.191164 + 0.239712i
\(483\) 7.05402 + 3.39704i 0.320969 + 0.154570i
\(484\) 78.9358 98.9824i 3.58799 4.49920i
\(485\) 1.54033 1.93152i 0.0699430 0.0877057i
\(486\) −2.28325 + 1.09956i −0.103570 + 0.0498768i
\(487\) −1.69061 7.40706i −0.0766090 0.335646i 0.922070 0.387022i \(-0.126496\pi\)
−0.998679 + 0.0513764i \(0.983639\pi\)
\(488\) 4.21756 18.4783i 0.190920 0.836475i
\(489\) −21.4885 10.3483i −0.971742 0.467966i
\(490\) 9.96328 4.79807i 0.450095 0.216754i
\(491\) 5.01175 21.9579i 0.226177 0.990947i −0.726548 0.687115i \(-0.758877\pi\)
0.952726 0.303832i \(-0.0982662\pi\)
\(492\) 17.8902 0.806554
\(493\) 9.62515 + 25.6242i 0.433495 + 1.15406i
\(494\) 21.1632 0.952177
\(495\) −1.52619 + 6.68668i −0.0685972 + 0.300544i
\(496\) 41.4523 19.9624i 1.86126 0.896338i
\(497\) −14.5688 7.01598i −0.653501 0.314710i
\(498\) −3.71819 + 16.2905i −0.166616 + 0.729993i
\(499\) 6.40406 + 28.0580i 0.286685 + 1.25605i 0.889043 + 0.457823i \(0.151371\pi\)
−0.602358 + 0.798226i \(0.705772\pi\)
\(500\) 38.2568 18.4235i 1.71089 0.823923i
\(501\) −8.97062 + 11.2488i −0.400778 + 0.502559i
\(502\) −35.9707 + 45.1058i −1.60545 + 2.01317i
\(503\) 4.50964 + 2.17173i 0.201075 + 0.0968325i 0.531711 0.846926i \(-0.321549\pi\)
−0.330637 + 0.943758i \(0.607263\pi\)
\(504\) 6.62341 + 8.30550i 0.295030 + 0.369956i
\(505\) 13.6812 0.608805
\(506\) −45.0003 56.4285i −2.00051 2.50855i
\(507\) 2.52849 + 11.0780i 0.112294 + 0.491993i
\(508\) −14.0194 61.4230i −0.622010 2.72520i
\(509\) 3.10581 + 3.89456i 0.137663 + 0.172623i 0.845884 0.533367i \(-0.179074\pi\)
−0.708221 + 0.705990i \(0.750502\pi\)
\(510\) −14.0342 −0.621447
\(511\) −1.93982 2.43246i −0.0858126 0.107606i
\(512\) 45.6248 + 21.9717i 2.01635 + 0.971023i
\(513\) −4.06942 + 5.10289i −0.179669 + 0.225298i
\(514\) 12.1797 15.2728i 0.537223 0.673657i
\(515\) −2.72435 + 1.31198i −0.120049 + 0.0578126i
\(516\) −1.80202 7.89518i −0.0793297 0.347566i
\(517\) −2.12430 + 9.30715i −0.0934264 + 0.409328i
\(518\) −24.3964 11.7487i −1.07192 0.516209i
\(519\) 3.55796 1.71342i 0.156177 0.0752109i
\(520\) 1.90415 8.34263i 0.0835026 0.365849i
\(521\) 4.54404 0.199078 0.0995389 0.995034i \(-0.468263\pi\)
0.0995389 + 0.995034i \(0.468263\pi\)
\(522\) 6.99633 11.7174i 0.306221 0.512855i
\(523\) −3.08967 −0.135102 −0.0675510 0.997716i \(-0.521519\pi\)
−0.0675510 + 0.997716i \(0.521519\pi\)
\(524\) −6.72894 + 29.4814i −0.293955 + 1.28790i
\(525\) 5.94513 2.86302i 0.259467 0.124953i
\(526\) 1.75709 + 0.846171i 0.0766129 + 0.0368948i
\(527\) −7.75323 + 33.9691i −0.337736 + 1.47972i
\(528\) −9.40189 41.1924i −0.409165 1.79267i
\(529\) 2.28130 1.09862i 0.0991869 0.0477659i
\(530\) −6.49709 + 8.14709i −0.282215 + 0.353887i
\(531\) −5.43806 + 6.81911i −0.235992 + 0.295924i
\(532\) 45.0035 + 21.6725i 1.95115 + 0.939623i
\(533\) −3.22728 4.04688i −0.139789 0.175290i
\(534\) 8.47826 0.366890
\(535\) 6.76434 + 8.48222i 0.292448 + 0.366718i
\(536\) 3.27402 + 14.3444i 0.141416 + 0.619585i
\(537\) −3.65240 16.0022i −0.157613 0.690546i
\(538\) 24.2484 + 30.4066i 1.04542 + 1.31092i
\(539\) −25.2128 −1.08599
\(540\) 3.00404 + 3.76695i 0.129273 + 0.162104i
\(541\) −19.3355 9.31147i −0.831297 0.400331i −0.0306954 0.999529i \(-0.509772\pi\)
−0.800601 + 0.599197i \(0.795486\pi\)
\(542\) 24.8545 31.1666i 1.06759 1.33872i
\(543\) −10.4454 + 13.0982i −0.448256 + 0.562095i
\(544\) 21.6711 10.4363i 0.929141 0.447451i
\(545\) 1.14564 + 5.01936i 0.0490737 + 0.215006i
\(546\) 1.24864 5.47067i 0.0534370 0.234123i
\(547\) 13.0776 + 6.29785i 0.559158 + 0.269276i 0.692045 0.721855i \(-0.256710\pi\)
−0.132886 + 0.991131i \(0.542424\pi\)
\(548\) −53.6853 + 25.8535i −2.29332 + 1.10441i
\(549\) 0.687065 3.01023i 0.0293232 0.128473i
\(550\) −60.8290 −2.59376
\(551\) 3.14080 35.0075i 0.133803 1.49137i
\(552\) −27.7716 −1.18204
\(553\) 1.10352 4.83482i 0.0469263 0.205597i
\(554\) 51.6597 24.8780i 2.19481 1.05697i
\(555\) −6.06075 2.91870i −0.257265 0.123892i
\(556\) −11.5940 + 50.7965i −0.491694 + 2.15425i
\(557\) −5.37517 23.5502i −0.227753 0.997852i −0.951467 0.307752i \(-0.900423\pi\)
0.723714 0.690100i \(-0.242434\pi\)
\(558\) 15.6514 7.53731i 0.662576 0.319080i
\(559\) −1.46086 + 1.83187i −0.0617880 + 0.0774797i
\(560\) 7.89027 9.89408i 0.333425 0.418101i
\(561\) 28.8288 + 13.8832i 1.21715 + 0.586150i
\(562\) −34.8331 43.6793i −1.46935 1.84250i
\(563\) −7.54185 −0.317851 −0.158926 0.987291i \(-0.550803\pi\)
−0.158926 + 0.987291i \(0.550803\pi\)
\(564\) 4.18131 + 5.24319i 0.176065 + 0.220778i
\(565\) 0.132968 + 0.582571i 0.00559400 + 0.0245089i
\(566\) −2.92190 12.8017i −0.122817 0.538095i
\(567\) 1.07899 + 1.35302i 0.0453135 + 0.0568213i
\(568\) 57.3572 2.40666
\(569\) −12.5014 15.6763i −0.524086 0.657183i 0.447385 0.894341i \(-0.352355\pi\)
−0.971471 + 0.237159i \(0.923784\pi\)
\(570\) 16.2364 + 7.81904i 0.680068 + 0.327504i
\(571\) −2.84040 + 3.56175i −0.118867 + 0.149054i −0.837705 0.546123i \(-0.816103\pi\)
0.718838 + 0.695178i \(0.244674\pi\)
\(572\) −22.2081 + 27.8481i −0.928569 + 1.16439i
\(573\) 2.65789 1.27997i 0.111035 0.0534716i
\(574\) −3.94799 17.2973i −0.164786 0.721975i
\(575\) −3.83857 + 16.8179i −0.160080 + 0.701355i
\(576\) 1.28957 + 0.621023i 0.0537320 + 0.0258760i
\(577\) −17.6920 + 8.52003i −0.736528 + 0.354693i −0.764248 0.644922i \(-0.776890\pi\)
0.0277198 + 0.999616i \(0.491175\pi\)
\(578\) −4.98274 + 21.8308i −0.207255 + 0.908042i
\(579\) −4.88334 −0.202945
\(580\) −24.6787 8.01091i −1.02473 0.332635i
\(581\) 11.4106 0.473390
\(582\) −1.27870 + 5.60233i −0.0530036 + 0.232224i
\(583\) 21.4056 10.3084i 0.886529 0.426930i
\(584\) 9.94295 + 4.78827i 0.411442 + 0.198140i
\(585\) 0.310198 1.35906i 0.0128251 0.0561904i
\(586\) −2.12129 9.29399i −0.0876298 0.383931i
\(587\) 36.2181 17.4417i 1.49488 0.719897i 0.505176 0.863017i \(-0.331428\pi\)
0.989705 + 0.143120i \(0.0457135\pi\)
\(588\) −11.0430 + 13.8475i −0.455407 + 0.571063i
\(589\) 27.8954 34.9797i 1.14941 1.44131i
\(590\) 21.6971 + 10.4488i 0.893255 + 0.430169i
\(591\) −1.57029 1.96908i −0.0645930 0.0809971i
\(592\) 41.4403 1.70319
\(593\) 28.6572 + 35.9350i 1.17681 + 1.47567i 0.846975 + 0.531633i \(0.178421\pi\)
0.329834 + 0.944039i \(0.393007\pi\)
\(594\) −3.54993 15.5532i −0.145655 0.638157i
\(595\) 2.13258 + 9.34346i 0.0874274 + 0.383044i
\(596\) 2.10091 + 2.63445i 0.0860564 + 0.107911i
\(597\) 25.5517 1.04576
\(598\) 9.14628 + 11.4691i 0.374019 + 0.469005i
\(599\) 9.05961 + 4.36288i 0.370166 + 0.178262i 0.609713 0.792622i \(-0.291285\pi\)
−0.239547 + 0.970885i \(0.576999\pi\)
\(600\) −14.5933 + 18.2995i −0.595770 + 0.747072i
\(601\) −0.763319 + 0.957172i −0.0311364 + 0.0390439i −0.797156 0.603773i \(-0.793663\pi\)
0.766019 + 0.642817i \(0.222235\pi\)
\(602\) −7.23584 + 3.48460i −0.294911 + 0.142022i
\(603\) 0.533357 + 2.33679i 0.0217200 + 0.0951615i
\(604\) −18.1425 + 79.4873i −0.738206 + 3.23429i
\(605\) −28.1025 13.5334i −1.14253 0.550212i
\(606\) −28.6711 + 13.8073i −1.16468 + 0.560882i
\(607\) −6.84845 + 30.0050i −0.277970 + 1.21787i 0.622385 + 0.782711i \(0.286164\pi\)
−0.900355 + 0.435155i \(0.856693\pi\)
\(608\) −30.8860 −1.25259
\(609\) −8.86410 2.87736i −0.359191 0.116597i
\(610\) −8.52519 −0.345175
\(611\) 0.431762 1.89167i 0.0174672 0.0765289i
\(612\) 20.2519 9.75280i 0.818634 0.394233i
\(613\) 7.12528 + 3.43135i 0.287787 + 0.138591i 0.572208 0.820109i \(-0.306087\pi\)
−0.284421 + 0.958700i \(0.591801\pi\)
\(614\) 2.34029 10.2535i 0.0944464 0.413797i
\(615\) −0.980791 4.29713i −0.0395493 0.173277i
\(616\) −60.2514 + 29.0155i −2.42760 + 1.16907i
\(617\) −7.98066 + 10.0074i −0.321289 + 0.402884i −0.916079 0.400997i \(-0.868664\pi\)
0.594790 + 0.803881i \(0.297235\pi\)
\(618\) 4.38523 5.49891i 0.176400 0.221198i
\(619\) 38.2518 + 18.4211i 1.53747 + 0.740406i 0.995019 0.0996833i \(-0.0317830\pi\)
0.542449 + 0.840089i \(0.317497\pi\)
\(620\) −20.5923 25.8220i −0.827008 1.03704i
\(621\) −4.52415 −0.181548
\(622\) −12.9566 16.2471i −0.519513 0.651449i
\(623\) −1.28832 5.64450i −0.0516154 0.226142i
\(624\) 1.91093 + 8.37234i 0.0764985 + 0.335162i
\(625\) 5.36415 + 6.72643i 0.214566 + 0.269057i
\(626\) −14.7371 −0.589014
\(627\) −25.6175 32.1234i −1.02307 1.28288i
\(628\) −43.7005 21.0450i −1.74384 0.839789i
\(629\) −19.5670 + 24.5363i −0.780189 + 0.978326i
\(630\) 2.97917 3.73577i 0.118693 0.148836i
\(631\) −39.7014 + 19.1192i −1.58049 + 0.761123i −0.998638 0.0521737i \(-0.983385\pi\)
−0.581850 + 0.813296i \(0.697671\pi\)
\(632\) 3.91428 + 17.1496i 0.155702 + 0.682174i
\(633\) 0.410576 1.79885i 0.0163189 0.0714979i
\(634\) 25.3328 + 12.1996i 1.00610 + 0.484510i
\(635\) −13.9848 + 6.73475i −0.554972 + 0.267260i
\(636\) 3.71387 16.2715i 0.147265 0.645208i
\(637\) 5.12449 0.203040
\(638\) 62.1126 + 59.3522i 2.45906 + 2.34978i
\(639\) 9.34384 0.369636
\(640\) 3.17392 13.9058i 0.125460 0.549677i
\(641\) 36.3896 17.5243i 1.43730 0.692168i 0.456962 0.889486i \(-0.348938\pi\)
0.980339 + 0.197318i \(0.0632233\pi\)
\(642\) −22.7361 10.9491i −0.897324 0.432128i
\(643\) −1.71136 + 7.49794i −0.0674893 + 0.295690i −0.997397 0.0721025i \(-0.977029\pi\)
0.929908 + 0.367792i \(0.119886\pi\)
\(644\) 7.70444 + 33.7554i 0.303597 + 1.33015i
\(645\) −1.79758 + 0.865671i −0.0707798 + 0.0340858i
\(646\) 52.4190 65.7313i 2.06240 2.58616i
\(647\) −15.3144 + 19.2037i −0.602072 + 0.754975i −0.985699 0.168513i \(-0.946103\pi\)
0.383627 + 0.923488i \(0.374675\pi\)
\(648\) −5.53061 2.66340i −0.217263 0.104628i
\(649\) −34.2333 42.9272i −1.34377 1.68504i
\(650\) 12.3635 0.484935
\(651\) −7.39636 9.27475i −0.289886 0.363506i
\(652\) −23.4698 102.828i −0.919150 4.02706i
\(653\) −5.93369 25.9972i −0.232203 1.01735i −0.947807 0.318843i \(-0.896706\pi\)
0.715604 0.698506i \(-0.246152\pi\)
\(654\) −7.46648 9.36267i −0.291963 0.366109i
\(655\) 7.45016 0.291102
\(656\) 16.9294 + 21.2288i 0.660982 + 0.828845i
\(657\) 1.61977 + 0.780038i 0.0631931 + 0.0304322i
\(658\) 4.14669 5.19979i 0.161655 0.202709i
\(659\) −7.62974 + 9.56739i −0.297212 + 0.372693i −0.907906 0.419175i \(-0.862319\pi\)
0.610693 + 0.791867i \(0.290891\pi\)
\(660\) −27.3270 + 13.1600i −1.06370 + 0.512251i
\(661\) −8.99484 39.4090i −0.349859 1.53283i −0.777500 0.628883i \(-0.783512\pi\)
0.427641 0.903949i \(-0.359345\pi\)
\(662\) −9.46959 + 41.4890i −0.368046 + 1.61252i
\(663\) −5.85945 2.82176i −0.227562 0.109588i
\(664\) −36.4662 + 17.5612i −1.41516 + 0.681506i
\(665\) 2.73840 11.9977i 0.106191 0.465251i
\(666\) 15.6469 0.606303
\(667\) 20.3292 13.4274i 0.787149 0.519911i
\(668\) −63.6263 −2.46178
\(669\) 5.35144 23.4462i 0.206899 0.906482i
\(670\) 5.96258 2.87143i 0.230355 0.110933i
\(671\) 17.5122 + 8.43345i 0.676053 + 0.325570i
\(672\) −1.82230 + 7.98401i −0.0702967 + 0.307990i
\(673\) −10.7198 46.9663i −0.413216 1.81042i −0.568659 0.822573i \(-0.692538\pi\)
0.155443 0.987845i \(-0.450320\pi\)
\(674\) −48.1260 + 23.1762i −1.85374 + 0.892715i
\(675\) −2.37734 + 2.98109i −0.0915038 + 0.114742i
\(676\) −31.3302 + 39.2868i −1.20501 + 1.51103i
\(677\) −2.03915 0.982003i −0.0783709 0.0377415i 0.394288 0.918987i \(-0.370991\pi\)
−0.472659 + 0.881246i \(0.656706\pi\)
\(678\) −0.866594 1.08668i −0.0332814 0.0417335i
\(679\) 3.92412 0.150594
\(680\) −21.1952 26.5780i −0.812800 1.01922i
\(681\) 5.03786 + 22.0723i 0.193051 + 0.845812i
\(682\) 24.3343 + 106.616i 0.931808 + 4.08252i
\(683\) −17.4383 21.8669i −0.667258 0.836715i 0.326854 0.945075i \(-0.394011\pi\)
−0.994112 + 0.108360i \(0.965440\pi\)
\(684\) −28.8633 −1.10362
\(685\) 9.15302 + 11.4775i 0.349719 + 0.438534i
\(686\) 43.4848 + 20.9412i 1.66026 + 0.799539i
\(687\) −8.60549 + 10.7909i −0.328320 + 0.411700i
\(688\) 7.66329 9.60946i 0.292160 0.366357i
\(689\) −4.35068 + 2.09517i −0.165748 + 0.0798198i
\(690\) 2.77962 + 12.1783i 0.105818 + 0.463620i
\(691\) 2.65566 11.6352i 0.101026 0.442623i −0.898964 0.438024i \(-0.855679\pi\)
0.999989 0.00459992i \(-0.00146421\pi\)
\(692\) 15.7342 + 7.57719i 0.598124 + 0.288041i
\(693\) −9.81531 + 4.72681i −0.372853 + 0.179556i
\(694\) 17.4988 76.6675i 0.664247 2.91026i
\(695\) 12.8366 0.486921
\(696\) 32.7565 4.44656i 1.24163 0.168546i
\(697\) −20.5629 −0.778876
\(698\) 20.1622 88.3364i 0.763151 3.34358i
\(699\) 6.03483 2.90622i 0.228258 0.109923i
\(700\) 26.2909 + 12.6610i 0.993701 + 0.478541i
\(701\) 0.764903 3.35126i 0.0288900 0.126575i −0.958427 0.285339i \(-0.907894\pi\)
0.987317 + 0.158764i \(0.0507509\pi\)
\(702\) 0.721521 + 3.16119i 0.0272321 + 0.119311i
\(703\) 36.3075 17.4848i 1.36936 0.659451i
\(704\) −5.61783 + 7.04454i −0.211730 + 0.265501i
\(705\) 1.03015 1.29177i 0.0387978 0.0486509i
\(706\) 13.7640 + 6.62840i 0.518016 + 0.249463i
\(707\) 13.5491 + 16.9900i 0.509566 + 0.638975i
\(708\) −38.5708 −1.44958
\(709\) −16.5529 20.7566i −0.621656 0.779532i 0.366921 0.930252i \(-0.380412\pi\)
−0.988576 + 0.150721i \(0.951841\pi\)
\(710\) −5.74081 25.1521i −0.215449 0.943942i
\(711\) 0.637660 + 2.79377i 0.0239141 + 0.104775i
\(712\) 12.8043 + 16.0561i 0.479861 + 0.601727i
\(713\) 31.0125 1.16143
\(714\) −13.8987 17.4284i −0.520147 0.652243i
\(715\) 7.90646 + 3.80755i 0.295685 + 0.142394i
\(716\) 45.2564 56.7497i 1.69131 2.12084i
\(717\) 7.58319 9.50902i 0.283199 0.355121i
\(718\) 13.0464 6.28282i 0.486888 0.234473i
\(719\) 6.93957 + 30.4043i 0.258802 + 1.13389i 0.922534 + 0.385916i \(0.126115\pi\)
−0.663731 + 0.747971i \(0.731028\pi\)
\(720\) −1.62721 + 7.12928i −0.0606426 + 0.265692i
\(721\) −4.32732 2.08393i −0.161158 0.0776095i
\(722\) −53.8840 + 25.9492i −2.00535 + 0.965728i
\(723\) −0.591055 + 2.58958i −0.0219816 + 0.0963075i
\(724\) −74.0867 −2.75341
\(725\) 1.83484 20.4513i 0.0681443 0.759541i
\(726\) 72.5513 2.69263
\(727\) −3.81660 + 16.7216i −0.141550 + 0.620170i 0.853526 + 0.521051i \(0.174460\pi\)
−0.995076 + 0.0991196i \(0.968397\pi\)
\(728\) 12.2461 5.89740i 0.453870 0.218572i
\(729\) −0.900969 0.433884i −0.0333692 0.0160698i
\(730\) 1.10456 4.83941i 0.0408817 0.179114i
\(731\) 2.07124 + 9.07467i 0.0766074 + 0.335639i
\(732\) 12.3021 5.92440i 0.454700 0.218972i
\(733\) 13.3386 16.7261i 0.492673 0.617792i −0.471886 0.881659i \(-0.656427\pi\)
0.964559 + 0.263867i \(0.0849982\pi\)
\(734\) 43.2042 54.1764i 1.59470 1.99969i
\(735\) 3.93151 + 1.89331i 0.145016 + 0.0698359i
\(736\) −13.3483 16.7382i −0.492024 0.616979i
\(737\) −15.0887 −0.555800
\(738\) 6.39213 + 8.01548i 0.235297 + 0.295054i
\(739\) 3.85619 + 16.8951i 0.141852 + 0.621495i 0.995004 + 0.0998329i \(0.0318308\pi\)
−0.853152 + 0.521662i \(0.825312\pi\)
\(740\) −6.61959 29.0023i −0.243341 1.06615i
\(741\) 5.20675 + 6.52906i 0.191275 + 0.239851i
\(742\) −16.5518 −0.607636
\(743\) −32.5068 40.7623i −1.19256 1.49542i −0.824728 0.565529i \(-0.808672\pi\)
−0.367831 0.929893i \(-0.619900\pi\)
\(744\) 37.9116 + 18.2573i 1.38991 + 0.669344i
\(745\) 0.517602 0.649053i 0.0189635 0.0237795i
\(746\) −19.9429 + 25.0076i −0.730160 + 0.915592i
\(747\) −5.94056 + 2.86082i −0.217354 + 0.104672i
\(748\) 31.4870 + 137.954i 1.15128 + 5.04408i
\(749\) −3.83463 + 16.8006i −0.140114 + 0.613881i
\(750\) 21.9234 + 10.5578i 0.800530 + 0.385515i
\(751\) −21.6113 + 10.4075i −0.788607 + 0.379773i −0.784430 0.620218i \(-0.787044\pi\)
−0.00417787 + 0.999991i \(0.501330\pi\)
\(752\) −2.26490 + 9.92319i −0.0825926 + 0.361862i
\(753\) −22.7654 −0.829618
\(754\) −12.6244 12.0633i −0.459752 0.439320i
\(755\) 20.0870 0.731041
\(756\) −1.70296 + 7.46115i −0.0619360 + 0.271359i
\(757\) −42.7511 + 20.5878i −1.55381 + 0.748277i −0.996623 0.0821079i \(-0.973835\pi\)
−0.557190 + 0.830385i \(0.688120\pi\)
\(758\) 7.53608 + 3.62918i 0.273723 + 0.131818i
\(759\) 6.33743 27.7661i 0.230034 1.00784i
\(760\) 9.71338 + 42.5571i 0.352341 + 1.54371i
\(761\) −34.8798 + 16.7972i −1.26439 + 0.608899i −0.941333 0.337480i \(-0.890425\pi\)
−0.323059 + 0.946379i \(0.604711\pi\)
\(762\) 22.5106 28.2274i 0.815474 1.02257i
\(763\) −5.09873 + 6.39360i −0.184586 + 0.231464i
\(764\) 11.7539 + 5.66036i 0.425240 + 0.204785i
\(765\) −3.45283 4.32971i −0.124837 0.156541i