Properties

Label 87.2.g.a.16.3
Level $87$
Weight $2$
Character 87.16
Analytic conductor $0.695$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [87,2,Mod(7,87)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(87, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("87.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 16.3
Root \(-1.05678 - 1.32516i\) of defining polynomial
Character \(\chi\) \(=\) 87.16
Dual form 87.2.g.a.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.626118 + 0.301523i) q^{2} +(0.623490 - 0.781831i) q^{3} +(-0.945872 - 1.18609i) q^{4} +(1.81798 + 0.875492i) q^{5} +(0.626118 - 0.301523i) q^{6} +(-1.49319 + 1.87240i) q^{7} +(-0.543873 - 2.38286i) q^{8} +(-0.222521 - 0.974928i) q^{9} +O(q^{10})\) \(q+(0.626118 + 0.301523i) q^{2} +(0.623490 - 0.781831i) q^{3} +(-0.945872 - 1.18609i) q^{4} +(1.81798 + 0.875492i) q^{5} +(0.626118 - 0.301523i) q^{6} +(-1.49319 + 1.87240i) q^{7} +(-0.543873 - 2.38286i) q^{8} +(-0.222521 - 0.974928i) q^{9} +(0.874288 + 1.09632i) q^{10} +(0.213150 - 0.933871i) q^{11} -1.51706 q^{12} +(-1.45377 + 6.36940i) q^{13} +(-1.49948 + 0.722111i) q^{14} +(1.81798 - 0.875492i) q^{15} +(-0.297197 + 1.30211i) q^{16} -3.81642 q^{17} +(0.154638 - 0.677515i) q^{18} +(-2.69251 - 3.37631i) q^{19} +(-0.681165 - 2.98438i) q^{20} +(0.532912 + 2.33484i) q^{21} +(0.415040 - 0.520444i) q^{22} +(4.85446 - 2.33778i) q^{23} +(-2.20209 - 1.06047i) q^{24} +(-0.578892 - 0.725907i) q^{25} +(-2.83075 + 3.54965i) q^{26} +(-0.900969 - 0.433884i) q^{27} +3.63318 q^{28} +(5.32202 - 0.822256i) q^{29} +1.40225 q^{30} +(-2.46382 - 1.18651i) q^{31} +(-3.62649 + 4.54747i) q^{32} +(-0.597233 - 0.748906i) q^{33} +(-2.38953 - 1.15074i) q^{34} +(-4.35384 + 2.09670i) q^{35} +(-0.945872 + 1.18609i) q^{36} +(0.414041 + 1.81403i) q^{37} +(-0.667799 - 2.92582i) q^{38} +(4.07339 + 5.10787i) q^{39} +(1.09743 - 4.80814i) q^{40} +11.8282 q^{41} +(-0.370341 + 1.62257i) q^{42} +(3.33752 - 1.60727i) q^{43} +(-1.30926 + 0.630508i) q^{44} +(0.449003 - 1.96721i) q^{45} +3.74436 q^{46} +(0.719344 - 3.15165i) q^{47} +(0.832729 + 1.04421i) q^{48} +(0.281385 + 1.23283i) q^{49} +(-0.143577 - 0.629053i) q^{50} +(-2.37950 + 2.98379i) q^{51} +(8.92974 - 4.30034i) q^{52} +(-2.04315 - 0.983927i) q^{53} +(-0.433287 - 0.543325i) q^{54} +(1.20510 - 1.51115i) q^{55} +(5.27376 + 2.53971i) q^{56} -4.31846 q^{57} +(3.58014 + 1.08988i) q^{58} -9.30726 q^{59} +(-2.75798 - 1.32817i) q^{60} +(1.95684 - 2.45380i) q^{61} +(-1.18488 - 1.48579i) q^{62} +(2.15772 + 1.03910i) q^{63} +(-1.23512 + 0.594802i) q^{64} +(-8.21929 + 10.3067i) q^{65} +(-0.148126 - 0.648983i) q^{66} +(-2.69277 - 11.7978i) q^{67} +(3.60984 + 4.52660i) q^{68} +(1.19895 - 5.25295i) q^{69} -3.35822 q^{70} +(1.02436 - 4.48801i) q^{71} +(-2.20209 + 1.06047i) q^{72} +(-8.19102 + 3.94459i) q^{73} +(-0.287733 + 1.26064i) q^{74} -0.928470 q^{75} +(-1.45781 + 6.38710i) q^{76} +(1.43030 + 1.79354i) q^{77} +(1.01028 + 4.42634i) q^{78} +(-0.954127 - 4.18030i) q^{79} +(-1.68028 + 2.10701i) q^{80} +(-0.900969 + 0.433884i) q^{81} +(7.40582 + 3.56646i) q^{82} +(10.0888 + 12.6510i) q^{83} +(2.26525 - 2.84054i) q^{84} +(-6.93816 - 3.34124i) q^{85} +2.57431 q^{86} +(2.67536 - 4.67359i) q^{87} -2.34121 q^{88} +(-13.9137 - 6.70047i) q^{89} +(0.874288 - 1.09632i) q^{90} +(-9.75529 - 12.2327i) q^{91} +(-7.36451 - 3.54656i) q^{92} +(-2.46382 + 1.18651i) q^{93} +(1.40069 - 1.75641i) q^{94} +(-1.93900 - 8.49532i) q^{95} +(1.29428 + 5.67061i) q^{96} +(9.82817 + 12.3241i) q^{97} +(-0.195546 + 0.856741i) q^{98} -0.957887 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 3 q^{3} - 6 q^{4} - q^{5} - 4 q^{6} - 4 q^{7} - 15 q^{8} - 3 q^{9} - 14 q^{10} + 26 q^{11} + 22 q^{12} + 9 q^{13} - 10 q^{14} - q^{15} - 14 q^{16} + 4 q^{17} - 4 q^{18} - 10 q^{19} - q^{20} - 4 q^{21} - 8 q^{22} - 8 q^{23} - 8 q^{24} + 16 q^{25} + 5 q^{26} - 3 q^{27} + 80 q^{28} + 8 q^{29} - 12 q^{31} + 9 q^{32} - 16 q^{33} - 22 q^{34} + 9 q^{35} - 6 q^{36} - 16 q^{37} - 32 q^{38} + 2 q^{39} + 33 q^{40} + 24 q^{41} - 3 q^{42} - 31 q^{43} - 52 q^{44} + 6 q^{45} - 44 q^{46} + 5 q^{47} - 47 q^{49} - 7 q^{50} + 11 q^{51} + 80 q^{52} + 5 q^{53} + 3 q^{54} - 17 q^{55} + 45 q^{56} + 18 q^{57} + 54 q^{58} - 32 q^{59} + 27 q^{60} - 28 q^{61} + 69 q^{62} + 3 q^{63} - 75 q^{64} + 22 q^{65} + 34 q^{66} + 6 q^{67} + 38 q^{68} + 20 q^{69} - 12 q^{70} + 46 q^{71} - 8 q^{72} - q^{73} - 35 q^{74} + 2 q^{75} - 45 q^{76} - 36 q^{77} - 51 q^{78} - 15 q^{79} - 86 q^{80} - 3 q^{81} + 47 q^{82} - 16 q^{83} - 25 q^{84} + 19 q^{85} + 116 q^{86} + 43 q^{87} + 54 q^{88} - 72 q^{89} - 14 q^{90} - 47 q^{91} - 121 q^{92} - 12 q^{93} - 22 q^{94} - 72 q^{95} - 12 q^{96} + 43 q^{97} + 31 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.626118 + 0.301523i 0.442732 + 0.213209i 0.641950 0.766747i \(-0.278126\pi\)
−0.199218 + 0.979955i \(0.563840\pi\)
\(3\) 0.623490 0.781831i 0.359972 0.451391i
\(4\) −0.945872 1.18609i −0.472936 0.593043i
\(5\) 1.81798 + 0.875492i 0.813024 + 0.391532i 0.793721 0.608282i \(-0.208141\pi\)
0.0193032 + 0.999814i \(0.493855\pi\)
\(6\) 0.626118 0.301523i 0.255612 0.123096i
\(7\) −1.49319 + 1.87240i −0.564371 + 0.707699i −0.979359 0.202128i \(-0.935214\pi\)
0.414988 + 0.909827i \(0.363786\pi\)
\(8\) −0.543873 2.38286i −0.192288 0.842469i
\(9\) −0.222521 0.974928i −0.0741736 0.324976i
\(10\) 0.874288 + 1.09632i 0.276474 + 0.346688i
\(11\) 0.213150 0.933871i 0.0642671 0.281573i −0.932576 0.360975i \(-0.882444\pi\)
0.996843 + 0.0794022i \(0.0253012\pi\)
\(12\) −1.51706 −0.437938
\(13\) −1.45377 + 6.36940i −0.403205 + 1.76655i 0.211078 + 0.977469i \(0.432302\pi\)
−0.614283 + 0.789086i \(0.710555\pi\)
\(14\) −1.49948 + 0.722111i −0.400753 + 0.192992i
\(15\) 1.81798 0.875492i 0.469400 0.226051i
\(16\) −0.297197 + 1.30211i −0.0742994 + 0.325527i
\(17\) −3.81642 −0.925617 −0.462808 0.886458i \(-0.653158\pi\)
−0.462808 + 0.886458i \(0.653158\pi\)
\(18\) 0.154638 0.677515i 0.0364486 0.159692i
\(19\) −2.69251 3.37631i −0.617705 0.774578i 0.370315 0.928906i \(-0.379250\pi\)
−0.988020 + 0.154329i \(0.950678\pi\)
\(20\) −0.681165 2.98438i −0.152313 0.667328i
\(21\) 0.532912 + 2.33484i 0.116291 + 0.509504i
\(22\) 0.415040 0.520444i 0.0884868 0.110959i
\(23\) 4.85446 2.33778i 1.01222 0.487462i 0.147155 0.989113i \(-0.452988\pi\)
0.865070 + 0.501652i \(0.167274\pi\)
\(24\) −2.20209 1.06047i −0.449501 0.216468i
\(25\) −0.578892 0.725907i −0.115778 0.145181i
\(26\) −2.83075 + 3.54965i −0.555156 + 0.696144i
\(27\) −0.900969 0.433884i −0.173392 0.0835010i
\(28\) 3.63318 0.686607
\(29\) 5.32202 0.822256i 0.988274 0.152689i
\(30\) 1.40225 0.256015
\(31\) −2.46382 1.18651i −0.442515 0.213104i 0.199339 0.979931i \(-0.436120\pi\)
−0.641855 + 0.766826i \(0.721835\pi\)
\(32\) −3.62649 + 4.54747i −0.641079 + 0.803887i
\(33\) −0.597233 0.748906i −0.103965 0.130368i
\(34\) −2.38953 1.15074i −0.409800 0.197349i
\(35\) −4.35384 + 2.09670i −0.735934 + 0.354407i
\(36\) −0.945872 + 1.18609i −0.157645 + 0.197681i
\(37\) 0.414041 + 1.81403i 0.0680679 + 0.298225i 0.997491 0.0707903i \(-0.0225521\pi\)
−0.929423 + 0.369015i \(0.879695\pi\)
\(38\) −0.667799 2.92582i −0.108331 0.474631i
\(39\) 4.07339 + 5.10787i 0.652264 + 0.817913i
\(40\) 1.09743 4.80814i 0.173519 0.760234i
\(41\) 11.8282 1.84725 0.923624 0.383300i \(-0.125212\pi\)
0.923624 + 0.383300i \(0.125212\pi\)
\(42\) −0.370341 + 1.62257i −0.0571448 + 0.250368i
\(43\) 3.33752 1.60727i 0.508967 0.245106i −0.161733 0.986835i \(-0.551708\pi\)
0.670700 + 0.741729i \(0.265994\pi\)
\(44\) −1.30926 + 0.630508i −0.197379 + 0.0950526i
\(45\) 0.449003 1.96721i 0.0669335 0.293255i
\(46\) 3.74436 0.552075
\(47\) 0.719344 3.15165i 0.104927 0.459716i −0.894980 0.446106i \(-0.852811\pi\)
0.999907 0.0136100i \(-0.00433232\pi\)
\(48\) 0.832729 + 1.04421i 0.120194 + 0.150719i
\(49\) 0.281385 + 1.23283i 0.0401979 + 0.176119i
\(50\) −0.143577 0.629053i −0.0203049 0.0889615i
\(51\) −2.37950 + 2.98379i −0.333196 + 0.417815i
\(52\) 8.92974 4.30034i 1.23833 0.596350i
\(53\) −2.04315 0.983927i −0.280648 0.135153i 0.288265 0.957551i \(-0.406922\pi\)
−0.568913 + 0.822398i \(0.692636\pi\)
\(54\) −0.433287 0.543325i −0.0589629 0.0739371i
\(55\) 1.20510 1.51115i 0.162495 0.203763i
\(56\) 5.27376 + 2.53971i 0.704736 + 0.339383i
\(57\) −4.31846 −0.571994
\(58\) 3.58014 + 1.08988i 0.470096 + 0.143108i
\(59\) −9.30726 −1.21170 −0.605851 0.795578i \(-0.707167\pi\)
−0.605851 + 0.795578i \(0.707167\pi\)
\(60\) −2.75798 1.32817i −0.356054 0.171467i
\(61\) 1.95684 2.45380i 0.250547 0.314176i −0.640614 0.767863i \(-0.721320\pi\)
0.891161 + 0.453687i \(0.149891\pi\)
\(62\) −1.18488 1.48579i −0.150480 0.188696i
\(63\) 2.15772 + 1.03910i 0.271847 + 0.130914i
\(64\) −1.23512 + 0.594802i −0.154390 + 0.0743503i
\(65\) −8.21929 + 10.3067i −1.01948 + 1.27838i
\(66\) −0.148126 0.648983i −0.0182331 0.0798843i
\(67\) −2.69277 11.7978i −0.328975 1.44133i −0.821088 0.570801i \(-0.806633\pi\)
0.492113 0.870531i \(-0.336225\pi\)
\(68\) 3.60984 + 4.52660i 0.437757 + 0.548930i
\(69\) 1.19895 5.25295i 0.144337 0.632381i
\(70\) −3.35822 −0.401384
\(71\) 1.02436 4.48801i 0.121569 0.532629i −0.877065 0.480373i \(-0.840501\pi\)
0.998634 0.0522567i \(-0.0166414\pi\)
\(72\) −2.20209 + 1.06047i −0.259519 + 0.124978i
\(73\) −8.19102 + 3.94459i −0.958687 + 0.461679i −0.846723 0.532033i \(-0.821428\pi\)
−0.111963 + 0.993712i \(0.535714\pi\)
\(74\) −0.287733 + 1.26064i −0.0334483 + 0.146547i
\(75\) −0.928470 −0.107211
\(76\) −1.45781 + 6.38710i −0.167223 + 0.732651i
\(77\) 1.43030 + 1.79354i 0.162998 + 0.204393i
\(78\) 1.01028 + 4.42634i 0.114392 + 0.501185i
\(79\) −0.954127 4.18030i −0.107348 0.470321i −0.999815 0.0192099i \(-0.993885\pi\)
0.892468 0.451111i \(-0.148972\pi\)
\(80\) −1.68028 + 2.10701i −0.187861 + 0.235571i
\(81\) −0.900969 + 0.433884i −0.100108 + 0.0482093i
\(82\) 7.40582 + 3.56646i 0.817836 + 0.393849i
\(83\) 10.0888 + 12.6510i 1.10739 + 1.38863i 0.913124 + 0.407681i \(0.133662\pi\)
0.194270 + 0.980948i \(0.437766\pi\)
\(84\) 2.26525 2.84054i 0.247159 0.309928i
\(85\) −6.93816 3.34124i −0.752549 0.362408i
\(86\) 2.57431 0.277595
\(87\) 2.67536 4.67359i 0.286829 0.501062i
\(88\) −2.34121 −0.249574
\(89\) −13.9137 6.70047i −1.47485 0.710248i −0.488140 0.872765i \(-0.662325\pi\)
−0.986706 + 0.162517i \(0.948039\pi\)
\(90\) 0.874288 1.09632i 0.0921581 0.115563i
\(91\) −9.75529 12.2327i −1.02263 1.28234i
\(92\) −7.36451 3.54656i −0.767803 0.369754i
\(93\) −2.46382 + 1.18651i −0.255486 + 0.123036i
\(94\) 1.40069 1.75641i 0.144470 0.181160i
\(95\) −1.93900 8.49532i −0.198937 0.871602i
\(96\) 1.29428 + 5.67061i 0.132097 + 0.578754i
\(97\) 9.82817 + 12.3241i 0.997899 + 1.25133i 0.967785 + 0.251780i \(0.0810159\pi\)
0.0301150 + 0.999546i \(0.490413\pi\)
\(98\) −0.195546 + 0.856741i −0.0197531 + 0.0865439i
\(99\) −0.957887 −0.0962713
\(100\) −0.313431 + 1.37323i −0.0313431 + 0.137323i
\(101\) −8.33981 + 4.01624i −0.829842 + 0.399631i −0.800056 0.599925i \(-0.795197\pi\)
−0.0297862 + 0.999556i \(0.509483\pi\)
\(102\) −2.38953 + 1.15074i −0.236598 + 0.113940i
\(103\) −2.35751 + 10.3289i −0.232292 + 1.01774i 0.715440 + 0.698674i \(0.246226\pi\)
−0.947733 + 0.319065i \(0.896631\pi\)
\(104\) 15.9681 1.56580
\(105\) −1.07531 + 4.71124i −0.104940 + 0.459770i
\(106\) −0.982574 1.23211i −0.0954360 0.119673i
\(107\) 0.0279718 + 0.122553i 0.00270414 + 0.0118476i 0.976262 0.216593i \(-0.0694945\pi\)
−0.973558 + 0.228441i \(0.926637\pi\)
\(108\) 0.337578 + 1.47902i 0.0324834 + 0.142319i
\(109\) −6.01455 + 7.54201i −0.576089 + 0.722393i −0.981440 0.191768i \(-0.938578\pi\)
0.405351 + 0.914161i \(0.367149\pi\)
\(110\) 1.21018 0.582791i 0.115386 0.0555669i
\(111\) 1.67642 + 0.807320i 0.159119 + 0.0766274i
\(112\) −1.99429 2.50076i −0.188442 0.236299i
\(113\) 1.93810 2.43030i 0.182321 0.228623i −0.682269 0.731101i \(-0.739007\pi\)
0.864590 + 0.502478i \(0.167578\pi\)
\(114\) −2.70386 1.30211i −0.253240 0.121954i
\(115\) 10.8720 1.01382
\(116\) −6.00921 5.53462i −0.557941 0.513877i
\(117\) 6.53321 0.603995
\(118\) −5.82744 2.80635i −0.536460 0.258345i
\(119\) 5.69862 7.14584i 0.522391 0.655058i
\(120\) −3.07492 3.85583i −0.280701 0.351988i
\(121\) 9.08398 + 4.37461i 0.825816 + 0.397692i
\(122\) 1.96509 0.946336i 0.177911 0.0856772i
\(123\) 7.37474 9.24763i 0.664958 0.833830i
\(124\) 0.923152 + 4.04459i 0.0829015 + 0.363215i
\(125\) −2.66190 11.6626i −0.238088 1.04313i
\(126\) 1.03767 + 1.30120i 0.0924432 + 0.115920i
\(127\) 0.872287 3.82174i 0.0774029 0.339124i −0.921368 0.388692i \(-0.872927\pi\)
0.998771 + 0.0495674i \(0.0157843\pi\)
\(128\) 10.6802 0.944005
\(129\) 0.824300 3.61149i 0.0725755 0.317974i
\(130\) −8.25394 + 3.97489i −0.723918 + 0.348621i
\(131\) 14.8614 7.15689i 1.29845 0.625300i 0.348384 0.937352i \(-0.386730\pi\)
0.950065 + 0.312052i \(0.101016\pi\)
\(132\) −0.323361 + 1.41674i −0.0281450 + 0.123311i
\(133\) 10.3422 0.896782
\(134\) 1.87131 8.19876i 0.161657 0.708265i
\(135\) −1.25808 1.57758i −0.108278 0.135777i
\(136\) 2.07564 + 9.09399i 0.177985 + 0.779803i
\(137\) 0.677588 + 2.96871i 0.0578902 + 0.253634i 0.995590 0.0938135i \(-0.0299057\pi\)
−0.937700 + 0.347447i \(0.887049\pi\)
\(138\) 2.33457 2.92746i 0.198732 0.249202i
\(139\) −10.1634 + 4.89444i −0.862050 + 0.415141i −0.812036 0.583607i \(-0.801641\pi\)
−0.0500136 + 0.998749i \(0.515926\pi\)
\(140\) 6.60505 + 3.18082i 0.558228 + 0.268829i
\(141\) −2.01556 2.52743i −0.169741 0.212848i
\(142\) 1.99461 2.50116i 0.167384 0.209893i
\(143\) 5.63833 + 2.71528i 0.471501 + 0.227063i
\(144\) 1.33559 0.111299
\(145\) 10.3952 + 3.16454i 0.863274 + 0.262801i
\(146\) −6.31793 −0.522875
\(147\) 1.13931 + 0.548661i 0.0939684 + 0.0452528i
\(148\) 1.75997 2.20693i 0.144668 0.181408i
\(149\) 3.05371 + 3.82923i 0.250170 + 0.313703i 0.891021 0.453962i \(-0.149990\pi\)
−0.640851 + 0.767665i \(0.721418\pi\)
\(150\) −0.581332 0.279955i −0.0474656 0.0228582i
\(151\) −15.3405 + 7.38759i −1.24839 + 0.601194i −0.937080 0.349114i \(-0.886483\pi\)
−0.311312 + 0.950308i \(0.600768\pi\)
\(152\) −6.58088 + 8.25217i −0.533780 + 0.669339i
\(153\) 0.849232 + 3.72073i 0.0686564 + 0.300803i
\(154\) 0.354745 + 1.55424i 0.0285861 + 0.125244i
\(155\) −3.44039 4.31411i −0.276339 0.346518i
\(156\) 2.20546 9.66277i 0.176578 0.773641i
\(157\) 20.3897 1.62728 0.813639 0.581371i \(-0.197483\pi\)
0.813639 + 0.581371i \(0.197483\pi\)
\(158\) 0.663060 2.90505i 0.0527502 0.231114i
\(159\) −2.04315 + 0.983927i −0.162032 + 0.0780305i
\(160\) −10.5742 + 5.09224i −0.835960 + 0.402577i
\(161\) −2.87135 + 12.5802i −0.226294 + 0.991459i
\(162\) −0.694939 −0.0545995
\(163\) −1.69789 + 7.43895i −0.132989 + 0.582664i 0.863887 + 0.503685i \(0.168023\pi\)
−0.996876 + 0.0789783i \(0.974834\pi\)
\(164\) −11.1879 14.0292i −0.873630 1.09550i
\(165\) −0.430095 1.88437i −0.0334828 0.146698i
\(166\) 2.50224 + 10.9630i 0.194212 + 0.850897i
\(167\) −13.5489 + 16.9898i −1.04845 + 1.31471i −0.100972 + 0.994889i \(0.532195\pi\)
−0.947477 + 0.319824i \(0.896376\pi\)
\(168\) 5.27376 2.53971i 0.406879 0.195943i
\(169\) −26.7433 12.8789i −2.05717 0.990682i
\(170\) −3.33665 4.18402i −0.255909 0.320900i
\(171\) −2.69251 + 3.37631i −0.205902 + 0.258193i
\(172\) −5.06322 2.43832i −0.386067 0.185920i
\(173\) 4.01358 0.305147 0.152573 0.988292i \(-0.451244\pi\)
0.152573 + 0.988292i \(0.451244\pi\)
\(174\) 3.08428 2.11954i 0.233819 0.160682i
\(175\) 2.22358 0.168087
\(176\) 1.15265 + 0.555088i 0.0868844 + 0.0418413i
\(177\) −5.80298 + 7.27671i −0.436179 + 0.546951i
\(178\) −6.69126 8.39057i −0.501531 0.628900i
\(179\) 3.48470 + 1.67814i 0.260459 + 0.125430i 0.559557 0.828792i \(-0.310971\pi\)
−0.299098 + 0.954222i \(0.596686\pi\)
\(180\) −2.75798 + 1.32817i −0.205568 + 0.0989963i
\(181\) 10.3685 13.0017i 0.770686 0.966410i −0.229290 0.973358i \(-0.573640\pi\)
0.999976 + 0.00694853i \(0.00221180\pi\)
\(182\) −2.41951 10.6006i −0.179346 0.785767i
\(183\) −0.698387 3.05983i −0.0516263 0.226189i
\(184\) −8.21082 10.2960i −0.605310 0.759034i
\(185\) −0.835453 + 3.66036i −0.0614237 + 0.269115i
\(186\) −1.90040 −0.139344
\(187\) −0.813469 + 3.56404i −0.0594867 + 0.260628i
\(188\) −4.41854 + 2.12785i −0.322255 + 0.155190i
\(189\) 2.15772 1.03910i 0.156951 0.0755835i
\(190\) 1.34749 5.90373i 0.0977570 0.428301i
\(191\) −2.64112 −0.191105 −0.0955525 0.995424i \(-0.530462\pi\)
−0.0955525 + 0.995424i \(0.530462\pi\)
\(192\) −0.305049 + 1.33651i −0.0220150 + 0.0964542i
\(193\) 4.07831 + 5.11404i 0.293563 + 0.368117i 0.906639 0.421907i \(-0.138639\pi\)
−0.613075 + 0.790024i \(0.710068\pi\)
\(194\) 2.43759 + 10.6798i 0.175009 + 0.766763i
\(195\) 2.93343 + 12.8522i 0.210067 + 0.920365i
\(196\) 1.19609 1.49985i 0.0854348 0.107132i
\(197\) 8.85143 4.26262i 0.630638 0.303699i −0.0911250 0.995839i \(-0.529046\pi\)
0.721763 + 0.692140i \(0.243332\pi\)
\(198\) −0.599750 0.288825i −0.0426224 0.0205259i
\(199\) 0.327153 + 0.410236i 0.0231912 + 0.0290809i 0.793292 0.608842i \(-0.208365\pi\)
−0.770101 + 0.637922i \(0.779794\pi\)
\(200\) −1.41489 + 1.77422i −0.100048 + 0.125456i
\(201\) −10.9028 5.25052i −0.769026 0.370343i
\(202\) −6.43269 −0.452603
\(203\) −6.40717 + 11.1927i −0.449695 + 0.785574i
\(204\) 5.78973 0.405362
\(205\) 21.5033 + 10.3555i 1.50186 + 0.723257i
\(206\) −4.59048 + 5.75628i −0.319834 + 0.401059i
\(207\) −3.35939 4.21254i −0.233494 0.292792i
\(208\) −7.86159 3.78594i −0.545103 0.262508i
\(209\) −3.72694 + 1.79480i −0.257798 + 0.124149i
\(210\) −2.09382 + 2.62556i −0.144487 + 0.181181i
\(211\) −3.68219 16.1327i −0.253493 1.11062i −0.928066 0.372416i \(-0.878529\pi\)
0.674573 0.738208i \(-0.264328\pi\)
\(212\) 0.765532 + 3.35401i 0.0525770 + 0.230355i
\(213\) −2.87019 3.59911i −0.196662 0.246607i
\(214\) −0.0194387 + 0.0851665i −0.00132880 + 0.00582186i
\(215\) 7.47469 0.509769
\(216\) −0.543873 + 2.38286i −0.0370058 + 0.162133i
\(217\) 5.90056 2.84156i 0.400556 0.192898i
\(218\) −6.03990 + 2.90866i −0.409074 + 0.197000i
\(219\) −2.02302 + 8.86341i −0.136703 + 0.598934i
\(220\) −2.93222 −0.197690
\(221\) 5.54821 24.3083i 0.373213 1.63515i
\(222\) 0.806210 + 1.01096i 0.0541093 + 0.0678509i
\(223\) 2.61351 + 11.4505i 0.175014 + 0.766785i 0.983885 + 0.178800i \(0.0572215\pi\)
−0.808872 + 0.587985i \(0.799921\pi\)
\(224\) −3.09965 13.5804i −0.207104 0.907381i
\(225\) −0.578892 + 0.725907i −0.0385928 + 0.0483938i
\(226\) 1.94627 0.937273i 0.129464 0.0623465i
\(227\) 19.1970 + 9.24479i 1.27415 + 0.613598i 0.943880 0.330288i \(-0.107146\pi\)
0.330270 + 0.943887i \(0.392860\pi\)
\(228\) 4.08471 + 5.12206i 0.270516 + 0.339217i
\(229\) 0.114294 0.143320i 0.00755275 0.00947084i −0.778041 0.628214i \(-0.783786\pi\)
0.785594 + 0.618743i \(0.212358\pi\)
\(230\) 6.80716 + 3.27816i 0.448851 + 0.216155i
\(231\) 2.29403 0.150936
\(232\) −4.85382 12.2344i −0.318669 0.803230i
\(233\) −23.8810 −1.56449 −0.782247 0.622969i \(-0.785926\pi\)
−0.782247 + 0.622969i \(0.785926\pi\)
\(234\) 4.09056 + 1.96991i 0.267408 + 0.128777i
\(235\) 4.06700 5.09985i 0.265302 0.332678i
\(236\) 8.80347 + 11.0392i 0.573057 + 0.718591i
\(237\) −3.86318 1.86041i −0.250941 0.120847i
\(238\) 5.72264 2.75588i 0.370943 0.178637i
\(239\) −5.24316 + 6.57471i −0.339152 + 0.425283i −0.921935 0.387345i \(-0.873392\pi\)
0.582783 + 0.812628i \(0.301964\pi\)
\(240\) 0.599686 + 2.62740i 0.0387096 + 0.169598i
\(241\) 0.119797 + 0.524865i 0.00771681 + 0.0338095i 0.978640 0.205583i \(-0.0659090\pi\)
−0.970923 + 0.239392i \(0.923052\pi\)
\(242\) 4.36860 + 5.47805i 0.280824 + 0.352142i
\(243\) −0.222521 + 0.974928i −0.0142747 + 0.0625417i
\(244\) −4.76133 −0.304813
\(245\) −0.567780 + 2.48761i −0.0362742 + 0.158927i
\(246\) 7.40582 3.56646i 0.472178 0.227389i
\(247\) 25.4194 12.2413i 1.61740 0.778896i
\(248\) −1.48729 + 6.51625i −0.0944432 + 0.413783i
\(249\) 16.1813 1.02545
\(250\) 1.84986 8.10476i 0.116995 0.512590i
\(251\) −1.06622 1.33699i −0.0672989 0.0843902i 0.747043 0.664776i \(-0.231473\pi\)
−0.814341 + 0.580386i \(0.802902\pi\)
\(252\) −0.808459 3.54209i −0.0509281 0.223131i
\(253\) −1.14846 5.03173i −0.0722031 0.316342i
\(254\) 1.69849 2.12984i 0.106573 0.133638i
\(255\) −6.93816 + 3.34124i −0.434484 + 0.209237i
\(256\) 9.15730 + 4.40992i 0.572331 + 0.275620i
\(257\) −11.2754 14.1389i −0.703339 0.881959i 0.293929 0.955827i \(-0.405037\pi\)
−0.997268 + 0.0738684i \(0.976466\pi\)
\(258\) 1.60506 2.01268i 0.0999264 0.125304i
\(259\) −4.01482 1.93344i −0.249469 0.120138i
\(260\) 19.9990 1.24028
\(261\) −1.98590 5.00562i −0.122924 0.309840i
\(262\) 11.4630 0.708185
\(263\) −0.869873 0.418909i −0.0536387 0.0258310i 0.406872 0.913485i \(-0.366619\pi\)
−0.460511 + 0.887654i \(0.652334\pi\)
\(264\) −1.45972 + 1.83043i −0.0898396 + 0.112655i
\(265\) −2.85297 3.57752i −0.175257 0.219765i
\(266\) 6.47544 + 3.11841i 0.397035 + 0.191202i
\(267\) −13.9137 + 6.70047i −0.851503 + 0.410062i
\(268\) −11.4462 + 14.3531i −0.699188 + 0.876754i
\(269\) −2.16024 9.46463i −0.131712 0.577069i −0.997109 0.0759819i \(-0.975791\pi\)
0.865397 0.501087i \(-0.167066\pi\)
\(270\) −0.312030 1.36709i −0.0189895 0.0831986i
\(271\) 10.5687 + 13.2527i 0.642002 + 0.805045i 0.991252 0.131985i \(-0.0421350\pi\)
−0.349250 + 0.937030i \(0.613564\pi\)
\(272\) 1.13423 4.96938i 0.0687727 0.301313i
\(273\) −15.6463 −0.946955
\(274\) −0.470882 + 2.06307i −0.0284470 + 0.124635i
\(275\) −0.801294 + 0.385883i −0.0483199 + 0.0232696i
\(276\) −7.36451 + 3.54656i −0.443291 + 0.213478i
\(277\) 4.90011 21.4688i 0.294419 1.28994i −0.583886 0.811835i \(-0.698469\pi\)
0.878306 0.478100i \(-0.158674\pi\)
\(278\) −7.83928 −0.470169
\(279\) −0.608513 + 2.66607i −0.0364307 + 0.159614i
\(280\) 7.36408 + 9.23427i 0.440088 + 0.551853i
\(281\) −2.38729 10.4594i −0.142414 0.623957i −0.994870 0.101158i \(-0.967745\pi\)
0.852456 0.522798i \(-0.175112\pi\)
\(282\) −0.499900 2.19020i −0.0297686 0.130425i
\(283\) 9.48869 11.8984i 0.564044 0.707289i −0.415256 0.909705i \(-0.636308\pi\)
0.979300 + 0.202416i \(0.0648793\pi\)
\(284\) −6.29208 + 3.03011i −0.373366 + 0.179804i
\(285\) −7.85086 3.78077i −0.465045 0.223954i
\(286\) 2.71154 + 3.40017i 0.160337 + 0.201056i
\(287\) −17.6616 + 22.1470i −1.04253 + 1.30730i
\(288\) 5.24043 + 2.52366i 0.308795 + 0.148708i
\(289\) −2.43497 −0.143234
\(290\) 5.55444 + 5.11576i 0.326168 + 0.300408i
\(291\) 15.7632 0.924053
\(292\) 12.4263 + 5.98418i 0.727193 + 0.350198i
\(293\) 14.4563 18.1276i 0.844547 1.05903i −0.152944 0.988235i \(-0.548875\pi\)
0.997491 0.0707934i \(-0.0225531\pi\)
\(294\) 0.547907 + 0.687053i 0.0319546 + 0.0400697i
\(295\) −16.9204 8.14843i −0.985143 0.474420i
\(296\) 4.09740 1.97320i 0.238157 0.114690i
\(297\) −0.597233 + 0.748906i −0.0346550 + 0.0434559i
\(298\) 0.757384 + 3.31832i 0.0438741 + 0.192225i
\(299\) 7.83300 + 34.3186i 0.452994 + 1.98470i
\(300\) 0.878214 + 1.10125i 0.0507037 + 0.0635804i
\(301\) −1.97410 + 8.64910i −0.113785 + 0.498526i
\(302\) −11.8325 −0.680883
\(303\) −2.05976 + 9.02441i −0.118330 + 0.518439i
\(304\) 5.19652 2.50251i 0.298041 0.143529i
\(305\) 5.70577 2.74775i 0.326711 0.157336i
\(306\) −0.590164 + 2.58568i −0.0337374 + 0.147813i
\(307\) −18.8555 −1.07614 −0.538070 0.842900i \(-0.680846\pi\)
−0.538070 + 0.842900i \(0.680846\pi\)
\(308\) 0.774413 3.39292i 0.0441262 0.193330i
\(309\) 6.60560 + 8.28316i 0.375779 + 0.471212i
\(310\) −0.853287 3.73850i −0.0484635 0.212332i
\(311\) −6.04072 26.4661i −0.342538 1.50076i −0.793698 0.608312i \(-0.791847\pi\)
0.451160 0.892443i \(-0.351010\pi\)
\(312\) 9.95593 12.4843i 0.563644 0.706787i
\(313\) −6.67788 + 3.21590i −0.377456 + 0.181773i −0.612986 0.790094i \(-0.710032\pi\)
0.235530 + 0.971867i \(0.424317\pi\)
\(314\) 12.7664 + 6.14796i 0.720448 + 0.346950i
\(315\) 3.01295 + 3.77812i 0.169761 + 0.212873i
\(316\) −4.05572 + 5.08571i −0.228152 + 0.286093i
\(317\) −2.01091 0.968401i −0.112944 0.0543908i 0.376559 0.926393i \(-0.377107\pi\)
−0.489502 + 0.872002i \(0.662822\pi\)
\(318\) −1.57593 −0.0883736
\(319\) 0.366507 5.14534i 0.0205205 0.288084i
\(320\) −2.76617 −0.154633
\(321\) 0.113256 + 0.0545410i 0.00632131 + 0.00304418i
\(322\) −5.59102 + 7.01092i −0.311575 + 0.390703i
\(323\) 10.2758 + 12.8854i 0.571758 + 0.716962i
\(324\) 1.36682 + 0.658228i 0.0759347 + 0.0365682i
\(325\) 5.46518 2.63189i 0.303153 0.145991i
\(326\) −3.30609 + 4.14571i −0.183108 + 0.229610i
\(327\) 2.14657 + 9.40473i 0.118705 + 0.520083i
\(328\) −6.43301 28.1849i −0.355204 1.55625i
\(329\) 4.82702 + 6.05290i 0.266122 + 0.333707i
\(330\) 0.298889 1.30952i 0.0164533 0.0720867i
\(331\) −23.2235 −1.27648 −0.638241 0.769837i \(-0.720337\pi\)
−0.638241 + 0.769837i \(0.720337\pi\)
\(332\) 5.46243 23.9325i 0.299790 1.31346i
\(333\) 1.67642 0.807320i 0.0918671 0.0442409i
\(334\) −13.6061 + 6.55233i −0.744491 + 0.358528i
\(335\) 5.43349 23.8057i 0.296863 1.30064i
\(336\) −3.19859 −0.174497
\(337\) −6.02416 + 26.3936i −0.328157 + 1.43775i 0.494484 + 0.869187i \(0.335357\pi\)
−0.822641 + 0.568562i \(0.807500\pi\)
\(338\) −12.8612 16.1274i −0.699555 0.877214i
\(339\) −0.691699 3.03053i −0.0375679 0.164596i
\(340\) 2.59961 + 11.3896i 0.140984 + 0.617690i
\(341\) −1.63321 + 2.04798i −0.0884435 + 0.110905i
\(342\) −2.70386 + 1.30211i −0.146208 + 0.0704102i
\(343\) −17.8325 8.58769i −0.962865 0.463691i
\(344\) −5.64508 7.07870i −0.304362 0.381658i
\(345\) 6.77859 8.50008i 0.364947 0.457629i
\(346\) 2.51297 + 1.21018i 0.135098 + 0.0650599i
\(347\) −33.0378 −1.77356 −0.886780 0.462191i \(-0.847063\pi\)
−0.886780 + 0.462191i \(0.847063\pi\)
\(348\) −8.07383 + 1.24741i −0.432802 + 0.0668683i
\(349\) 6.36434 0.340675 0.170338 0.985386i \(-0.445514\pi\)
0.170338 + 0.985386i \(0.445514\pi\)
\(350\) 1.39222 + 0.670459i 0.0744174 + 0.0358375i
\(351\) 4.07339 5.10787i 0.217421 0.272638i
\(352\) 3.47377 + 4.35597i 0.185152 + 0.232174i
\(353\) −15.8323 7.62444i −0.842669 0.405808i −0.0378175 0.999285i \(-0.512041\pi\)
−0.804851 + 0.593477i \(0.797755\pi\)
\(354\) −5.82744 + 2.80635i −0.309725 + 0.149156i
\(355\) 5.79148 7.26229i 0.307380 0.385442i
\(356\) 5.21322 + 22.8406i 0.276300 + 1.21055i
\(357\) −2.03381 8.91071i −0.107641 0.471605i
\(358\) 1.67584 + 2.10143i 0.0885707 + 0.111064i
\(359\) −1.74009 + 7.62384i −0.0918385 + 0.402371i −0.999863 0.0165460i \(-0.994733\pi\)
0.908025 + 0.418917i \(0.137590\pi\)
\(360\) −4.93180 −0.259928
\(361\) 0.0780901 0.342135i 0.00411000 0.0180071i
\(362\) 10.4122 5.01426i 0.547254 0.263544i
\(363\) 9.08398 4.37461i 0.476785 0.229608i
\(364\) −5.28183 + 23.1412i −0.276843 + 1.21293i
\(365\) −18.3446 −0.960198
\(366\) 0.485336 2.12640i 0.0253689 0.111149i
\(367\) 18.1847 + 22.8028i 0.949231 + 1.19030i 0.981624 + 0.190823i \(0.0611157\pi\)
−0.0323932 + 0.999475i \(0.510313\pi\)
\(368\) 1.60131 + 7.01581i 0.0834742 + 0.365724i
\(369\) −2.63201 11.5316i −0.137017 0.600311i
\(370\) −1.62677 + 2.03991i −0.0845719 + 0.106050i
\(371\) 4.89310 2.35639i 0.254037 0.122338i
\(372\) 3.73776 + 1.80001i 0.193794 + 0.0933263i
\(373\) −3.65125 4.57852i −0.189054 0.237067i 0.678267 0.734816i \(-0.262731\pi\)
−0.867321 + 0.497749i \(0.834160\pi\)
\(374\) −1.58397 + 1.98623i −0.0819049 + 0.102705i
\(375\) −10.7778 5.19033i −0.556565 0.268027i
\(376\) −7.90118 −0.407472
\(377\) −2.49974 + 35.0935i −0.128743 + 1.80741i
\(378\) 1.66430 0.0856022
\(379\) 2.08807 + 1.00556i 0.107257 + 0.0516523i 0.486743 0.873545i \(-0.338185\pi\)
−0.379486 + 0.925198i \(0.623899\pi\)
\(380\) −8.24213 + 10.3353i −0.422812 + 0.530190i
\(381\) −2.44409 3.06480i −0.125215 0.157014i
\(382\) −1.65366 0.796358i −0.0846084 0.0407452i
\(383\) 16.4369 7.91562i 0.839889 0.404469i 0.0360743 0.999349i \(-0.488515\pi\)
0.803815 + 0.594880i \(0.202800\pi\)
\(384\) 6.65899 8.35011i 0.339815 0.426115i
\(385\) 1.03003 + 4.51284i 0.0524950 + 0.229996i
\(386\) 1.01151 + 4.43170i 0.0514843 + 0.225568i
\(387\) −2.30964 2.89619i −0.117405 0.147222i
\(388\) 5.32129 23.3141i 0.270148 1.18359i
\(389\) 29.6576 1.50370 0.751850 0.659335i \(-0.229162\pi\)
0.751850 + 0.659335i \(0.229162\pi\)
\(390\) −2.03855 + 8.93149i −0.103226 + 0.452264i
\(391\) −18.5266 + 8.92195i −0.936932 + 0.451203i
\(392\) 2.78463 1.34100i 0.140645 0.0677310i
\(393\) 3.67047 16.0814i 0.185151 0.811198i
\(394\) 6.82732 0.343955
\(395\) 1.92524 8.43503i 0.0968694 0.424413i
\(396\) 0.906038 + 1.13614i 0.0455301 + 0.0570930i
\(397\) −0.452224 1.98132i −0.0226965 0.0994398i 0.962311 0.271951i \(-0.0876690\pi\)
−0.985008 + 0.172511i \(0.944812\pi\)
\(398\) 0.0811406 + 0.355500i 0.00406721 + 0.0178196i
\(399\) 6.44826 8.08586i 0.322817 0.404799i
\(400\) 1.11725 0.538041i 0.0558627 0.0269021i
\(401\) 0.128477 + 0.0618714i 0.00641585 + 0.00308971i 0.437089 0.899418i \(-0.356010\pi\)
−0.430673 + 0.902508i \(0.641724\pi\)
\(402\) −5.24330 6.57489i −0.261512 0.327926i
\(403\) 11.1392 13.9681i 0.554884 0.695803i
\(404\) 12.6520 + 6.09288i 0.629460 + 0.303132i
\(405\) −2.01780 −0.100265
\(406\) −7.38650 + 5.07605i −0.366586 + 0.251920i
\(407\) 1.78232 0.0883465
\(408\) 8.40411 + 4.04721i 0.416065 + 0.200367i
\(409\) −12.9332 + 16.2178i −0.639507 + 0.801917i −0.990941 0.134296i \(-0.957123\pi\)
0.351434 + 0.936213i \(0.385694\pi\)
\(410\) 10.3412 + 12.9675i 0.510716 + 0.640418i
\(411\) 2.74350 + 1.32120i 0.135327 + 0.0651699i
\(412\) 14.4809 6.97363i 0.713422 0.343566i
\(413\) 13.8975 17.4269i 0.683849 0.857520i
\(414\) −0.833198 3.65048i −0.0409494 0.179411i
\(415\) 7.26544 + 31.8320i 0.356646 + 1.56257i
\(416\) −23.6926 29.7096i −1.16163 1.45663i
\(417\) −2.51016 + 10.9977i −0.122923 + 0.538560i
\(418\) −2.87468 −0.140605
\(419\) −1.45786 + 6.38728i −0.0712209 + 0.312039i −0.997973 0.0636334i \(-0.979731\pi\)
0.926752 + 0.375673i \(0.122588\pi\)
\(420\) 6.60505 3.18082i 0.322293 0.155208i
\(421\) −7.77401 + 3.74377i −0.378882 + 0.182460i −0.613625 0.789597i \(-0.710289\pi\)
0.234743 + 0.972057i \(0.424575\pi\)
\(422\) 2.55890 11.2113i 0.124565 0.545756i
\(423\) −3.23270 −0.157179
\(424\) −1.23335 + 5.40366i −0.0598968 + 0.262425i
\(425\) 2.20929 + 2.77036i 0.107166 + 0.134382i
\(426\) −0.711867 3.11889i −0.0344901 0.151111i
\(427\) 1.67256 + 7.32795i 0.0809406 + 0.354624i
\(428\) 0.118900 0.149096i 0.00574725 0.00720683i
\(429\) 5.63833 2.71528i 0.272221 0.131095i
\(430\) 4.68004 + 2.25379i 0.225691 + 0.108687i
\(431\) 19.6857 + 24.6850i 0.948225 + 1.18904i 0.981861 + 0.189602i \(0.0607198\pi\)
−0.0336362 + 0.999434i \(0.510709\pi\)
\(432\) 0.832729 1.04421i 0.0400647 0.0502395i
\(433\) 2.83832 + 1.36686i 0.136401 + 0.0656873i 0.500839 0.865540i \(-0.333025\pi\)
−0.364438 + 0.931228i \(0.618739\pi\)
\(434\) 4.55124 0.218467
\(435\) 8.95544 6.15423i 0.429380 0.295073i
\(436\) 14.6345 0.700863
\(437\) −20.9638 10.0956i −1.00283 0.482939i
\(438\) −3.93916 + 4.93956i −0.188221 + 0.236021i
\(439\) 14.2209 + 17.8324i 0.678727 + 0.851096i 0.995236 0.0974931i \(-0.0310824\pi\)
−0.316510 + 0.948589i \(0.602511\pi\)
\(440\) −4.25627 2.04971i −0.202910 0.0977161i
\(441\) 1.13931 0.548661i 0.0542527 0.0261267i
\(442\) 10.8033 13.5469i 0.513862 0.644363i
\(443\) −4.25594 18.6465i −0.202206 0.885922i −0.969590 0.244735i \(-0.921299\pi\)
0.767384 0.641188i \(-0.221558\pi\)
\(444\) −0.628125 2.75200i −0.0298095 0.130604i
\(445\) −19.4285 24.3626i −0.921001 1.15490i
\(446\) −1.81623 + 7.95742i −0.0860010 + 0.376795i
\(447\) 4.89777 0.231657
\(448\) 0.730558 3.20078i 0.0345156 0.151223i
\(449\) 35.8493 17.2641i 1.69184 0.814745i 0.696577 0.717482i \(-0.254706\pi\)
0.995259 0.0972626i \(-0.0310087\pi\)
\(450\) −0.581332 + 0.279955i −0.0274043 + 0.0131972i
\(451\) 2.52117 11.0460i 0.118717 0.520134i
\(452\) −4.71573 −0.221809
\(453\) −3.78879 + 16.5998i −0.178013 + 0.779925i
\(454\) 9.23208 + 11.5767i 0.433283 + 0.543320i
\(455\) −7.02523 30.7795i −0.329348 1.44297i
\(456\) 2.34869 + 10.2903i 0.109987 + 0.481887i
\(457\) 18.2165 22.8427i 0.852130 1.06854i −0.144739 0.989470i \(-0.546234\pi\)
0.996869 0.0790675i \(-0.0251943\pi\)
\(458\) 0.114776 0.0552730i 0.00536311 0.00258274i
\(459\) 3.43847 + 1.65588i 0.160494 + 0.0772899i
\(460\) −10.2835 12.8951i −0.479472 0.601239i
\(461\) 0.612669 0.768263i 0.0285348 0.0357816i −0.767359 0.641217i \(-0.778430\pi\)
0.795894 + 0.605436i \(0.207001\pi\)
\(462\) 1.43633 + 0.691701i 0.0668242 + 0.0321808i
\(463\) −10.1420 −0.471340 −0.235670 0.971833i \(-0.575728\pi\)
−0.235670 + 0.971833i \(0.575728\pi\)
\(464\) −0.511025 + 7.17421i −0.0237238 + 0.333054i
\(465\) −5.51795 −0.255889
\(466\) −14.9523 7.20065i −0.692652 0.333563i
\(467\) 11.2090 14.0557i 0.518692 0.650419i −0.451639 0.892201i \(-0.649160\pi\)
0.970331 + 0.241782i \(0.0777319\pi\)
\(468\) −6.17957 7.74894i −0.285651 0.358195i
\(469\) 26.1110 + 12.5744i 1.20569 + 0.580631i
\(470\) 4.08414 1.96682i 0.188387 0.0907226i
\(471\) 12.7128 15.9413i 0.585774 0.734538i
\(472\) 5.06196 + 22.1779i 0.232996 + 1.02082i
\(473\) −0.789586 3.45940i −0.0363052 0.159063i
\(474\) −1.85785 2.32967i −0.0853340 0.107005i
\(475\) −0.892211 + 3.90903i −0.0409374 + 0.179359i
\(476\) −13.8657 −0.635535
\(477\) −0.504615 + 2.21086i −0.0231048 + 0.101229i
\(478\) −5.26526 + 2.53562i −0.240827 + 0.115976i
\(479\) −18.5533 + 8.93481i −0.847723 + 0.408242i −0.806732 0.590918i \(-0.798766\pi\)
−0.0409911 + 0.999160i \(0.513052\pi\)
\(480\) −2.61160 + 11.4422i −0.119203 + 0.522261i
\(481\) −12.1562 −0.554276
\(482\) −0.0832516 + 0.364749i −0.00379201 + 0.0166139i
\(483\) 8.04534 + 10.0885i 0.366076 + 0.459045i
\(484\) −3.40361 14.9122i −0.154710 0.677827i
\(485\) 7.07771 + 31.0095i 0.321382 + 1.40807i
\(486\) −0.433287 + 0.543325i −0.0196543 + 0.0246457i
\(487\) −14.4078 + 6.93844i −0.652880 + 0.314411i −0.730843 0.682546i \(-0.760873\pi\)
0.0779626 + 0.996956i \(0.475159\pi\)
\(488\) −6.91133 3.32832i −0.312861 0.150666i
\(489\) 4.75739 + 5.96558i 0.215137 + 0.269773i
\(490\) −1.10557 + 1.38634i −0.0499444 + 0.0626284i
\(491\) 9.19032 + 4.42582i 0.414753 + 0.199735i 0.629611 0.776911i \(-0.283214\pi\)
−0.214858 + 0.976645i \(0.568929\pi\)
\(492\) −17.9440 −0.808979
\(493\) −20.3110 + 3.13807i −0.914763 + 0.141332i
\(494\) 19.6066 0.882141
\(495\) −1.74142 0.838622i −0.0782709 0.0376933i
\(496\) 2.27721 2.85553i 0.102250 0.128217i
\(497\) 6.87378 + 8.61944i 0.308331 + 0.386635i
\(498\) 10.1314 + 4.87901i 0.453998 + 0.218634i
\(499\) 5.54276 2.66925i 0.248128 0.119492i −0.305687 0.952132i \(-0.598886\pi\)
0.553815 + 0.832640i \(0.313172\pi\)
\(500\) −11.3150 + 14.1885i −0.506021 + 0.634530i
\(501\) 4.83556 + 21.1860i 0.216037 + 0.946520i
\(502\) −0.264443 1.15860i −0.0118027 0.0517110i
\(503\) −12.6166 15.8207i −0.562545 0.705410i 0.416481 0.909145i \(-0.363263\pi\)
−0.979026 + 0.203735i \(0.934692\pi\)
\(504\) 1.30251 5.70667i 0.0580185 0.254195i
\(505\) −18.6778 −0.831150
\(506\) 0.798110 3.49675i 0.0354803 0.155449i
\(507\) −26.7433 + 12.8789i −1.18771 + 0.571971i
\(508\) −5.35798 + 2.58027i −0.237722 + 0.114481i
\(509\) 0.903261 3.95744i 0.0400363 0.175411i −0.950957 0.309324i \(-0.899897\pi\)
0.990993 + 0.133913i \(0.0427544\pi\)
\(510\) −5.35157 −0.236971
\(511\) 4.84489 21.2268i 0.214325 0.939020i
\(512\) −8.91413 11.1780i −0.393952 0.494001i
\(513\) 0.960947 + 4.21018i 0.0424268 + 0.185884i
\(514\) −2.79653 12.2524i −0.123350 0.540429i
\(515\) −13.3288 + 16.7138i −0.587337 + 0.736497i
\(516\) −5.06322 + 2.43832i −0.222896 + 0.107341i
\(517\) −2.78991 1.34355i −0.122700 0.0590892i
\(518\) −1.93078 2.42112i −0.0848335 0.106378i
\(519\) 2.50243 3.13794i 0.109844 0.137740i
\(520\) 29.0296 + 13.9799i 1.27303 + 0.613060i
\(521\) 10.9066 0.477828 0.238914 0.971041i \(-0.423209\pi\)
0.238914 + 0.971041i \(0.423209\pi\)
\(522\) 0.265898 3.73290i 0.0116380 0.163385i
\(523\) 3.65147 0.159668 0.0798339 0.996808i \(-0.474561\pi\)
0.0798339 + 0.996808i \(0.474561\pi\)
\(524\) −22.5457 10.8574i −0.984913 0.474309i
\(525\) 1.38638 1.73846i 0.0605065 0.0758728i
\(526\) −0.418333 0.524573i −0.0182402 0.0228725i
\(527\) 9.40296 + 4.52823i 0.409600 + 0.197253i
\(528\) 1.15265 0.555088i 0.0501627 0.0241571i
\(529\) 3.76026 4.71522i 0.163490 0.205010i
\(530\) −0.707596 3.10018i −0.0307360 0.134663i
\(531\) 2.07106 + 9.07391i 0.0898764 + 0.393774i
\(532\) −9.78239 12.2667i −0.424121 0.531830i
\(533\) −17.1955 + 75.3383i −0.744819 + 3.26326i
\(534\) −10.7319 −0.464417
\(535\) −0.0564416 + 0.247287i −0.00244018 + 0.0106911i
\(536\) −26.6480 + 12.8330i −1.15102 + 0.554302i
\(537\) 3.48470 1.67814i 0.150376 0.0724173i
\(538\) 1.50123 6.57734i 0.0647228 0.283569i
\(539\) 1.21128 0.0521736
\(540\) −0.681165 + 2.98438i −0.0293127 + 0.128427i
\(541\) −21.1554 26.5281i −0.909543 1.14053i −0.989615 0.143741i \(-0.954087\pi\)
0.0800725 0.996789i \(-0.474485\pi\)
\(542\) 2.62125 + 11.4845i 0.112592 + 0.493300i
\(543\) −3.70048 16.2129i −0.158803 0.695761i
\(544\) 13.8402 17.3550i 0.593393 0.744092i
\(545\) −17.5373 + 8.44551i −0.751215 + 0.361766i
\(546\) −9.79641 4.71770i −0.419248 0.201899i
\(547\) 12.2604 + 15.3741i 0.524217 + 0.657347i 0.971498 0.237046i \(-0.0761792\pi\)
−0.447281 + 0.894393i \(0.647608\pi\)
\(548\) 2.88023 3.61169i 0.123037 0.154284i
\(549\) −2.82771 1.36175i −0.120684 0.0581183i
\(550\) −0.618057 −0.0263541
\(551\) −17.1058 15.7548i −0.728731 0.671178i
\(552\) −13.1691 −0.560516
\(553\) 9.25187 + 4.45547i 0.393430 + 0.189466i
\(554\) 9.54138 11.9645i 0.405374 0.508323i
\(555\) 2.34089 + 2.93538i 0.0993651 + 0.124600i
\(556\) 15.4185 + 7.42517i 0.653891 + 0.314897i
\(557\) 34.4588 16.5945i 1.46006 0.703130i 0.475755 0.879578i \(-0.342175\pi\)
0.984310 + 0.176448i \(0.0564606\pi\)
\(558\) −1.18488 + 1.48579i −0.0501600 + 0.0628987i
\(559\) 5.38532 + 23.5946i 0.227775 + 0.997946i
\(560\) −1.43618 6.29231i −0.0606896 0.265898i
\(561\) 2.27929 + 2.85814i 0.0962316 + 0.120671i
\(562\) 1.65902 7.26865i 0.0699817 0.306610i
\(563\) −23.4745 −0.989330 −0.494665 0.869084i \(-0.664709\pi\)
−0.494665 + 0.869084i \(0.664709\pi\)
\(564\) −1.09129 + 4.78125i −0.0459515 + 0.201327i
\(565\) 5.65113 2.72144i 0.237745 0.114492i
\(566\) 9.52868 4.58877i 0.400520 0.192880i
\(567\) 0.532912 2.33484i 0.0223802 0.0980540i
\(568\) −11.2514 −0.472100
\(569\) 0.758682 3.32400i 0.0318056 0.139349i −0.956532 0.291627i \(-0.905804\pi\)
0.988338 + 0.152277i \(0.0486607\pi\)
\(570\) −3.77558 4.73442i −0.158141 0.198303i
\(571\) −5.16346 22.6226i −0.216084 0.946726i −0.960340 0.278832i \(-0.910053\pi\)
0.744256 0.667894i \(-0.232804\pi\)
\(572\) −2.11259 9.25584i −0.0883316 0.387006i
\(573\) −1.64671 + 2.06491i −0.0687925 + 0.0862630i
\(574\) −17.7361 + 8.54125i −0.740290 + 0.356505i
\(575\) −4.50722 2.17056i −0.187964 0.0905187i
\(576\) 0.854730 + 1.07180i 0.0356137 + 0.0446582i
\(577\) −0.183171 + 0.229689i −0.00762551 + 0.00956209i −0.785630 0.618697i \(-0.787661\pi\)
0.778004 + 0.628259i \(0.216232\pi\)
\(578\) −1.52458 0.734199i −0.0634142 0.0305387i
\(579\) 6.54111 0.271839
\(580\) −6.07910 15.3228i −0.252421 0.636246i
\(581\) −38.7522 −1.60771
\(582\) 9.86960 + 4.75295i 0.409108 + 0.197016i
\(583\) −1.35436 + 1.69831i −0.0560917 + 0.0703368i
\(584\) 13.8543 + 17.3727i 0.573294 + 0.718888i
\(585\) 11.8772 + 5.71977i 0.491063 + 0.236483i
\(586\) 14.5173 6.99114i 0.599702 0.288801i
\(587\) −1.71744 + 2.15360i −0.0708864 + 0.0888888i −0.816010 0.578037i \(-0.803819\pi\)
0.745124 + 0.666926i \(0.232390\pi\)
\(588\) −0.426879 1.87028i −0.0176042 0.0771290i
\(589\) 2.62784 + 11.5133i 0.108278 + 0.474398i
\(590\) −8.13723 10.2038i −0.335004 0.420082i
\(591\) 2.18612 9.57803i 0.0899251 0.393987i
\(592\) −2.48512 −0.102138
\(593\) 4.62823 20.2776i 0.190059 0.832701i −0.786524 0.617559i \(-0.788121\pi\)
0.976583 0.215142i \(-0.0690214\pi\)
\(594\) −0.599750 + 0.288825i −0.0246081 + 0.0118506i
\(595\) 16.6161 8.00188i 0.681193 0.328045i
\(596\) 1.65338 7.24393i 0.0677251 0.296723i
\(597\) 0.524712 0.0214750
\(598\) −5.44345 + 23.8493i −0.222599 + 0.975272i
\(599\) 21.7810 + 27.3125i 0.889946 + 1.11596i 0.992623 + 0.121242i \(0.0386877\pi\)
−0.102677 + 0.994715i \(0.532741\pi\)
\(600\) 0.504969 + 2.21242i 0.0206153 + 0.0903215i
\(601\) −0.641141 2.80902i −0.0261527 0.114582i 0.960167 0.279428i \(-0.0901447\pi\)
−0.986319 + 0.164845i \(0.947288\pi\)
\(602\) −3.84392 + 4.82012i −0.156666 + 0.196454i
\(603\) −10.9028 + 5.25052i −0.443997 + 0.213818i
\(604\) 23.2725 + 11.2074i 0.946943 + 0.456024i
\(605\) 12.6845 + 15.9059i 0.515699 + 0.646667i
\(606\) −4.01072 + 5.02928i −0.162924 + 0.204301i
\(607\) −20.0682 9.66435i −0.814544 0.392264i −0.0202484 0.999795i \(-0.506446\pi\)
−0.794296 + 0.607531i \(0.792160\pi\)
\(608\) 25.1180 1.01867
\(609\) 4.75600 + 11.9879i 0.192723 + 0.485773i
\(610\) 4.40099 0.178191
\(611\) 19.0284 + 9.16359i 0.769806 + 0.370719i
\(612\) 3.60984 4.52660i 0.145919 0.182977i
\(613\) 1.04225 + 1.30693i 0.0420959 + 0.0527866i 0.802434 0.596741i \(-0.203538\pi\)
−0.760338 + 0.649528i \(0.774967\pi\)
\(614\) −11.8058 5.68536i −0.476442 0.229442i
\(615\) 21.5033 10.3555i 0.867098 0.417572i
\(616\) 3.49586 4.38367i 0.140852 0.176623i
\(617\) −3.20447 14.0397i −0.129007 0.565216i −0.997572 0.0696414i \(-0.977814\pi\)
0.868565 0.495575i \(-0.165043\pi\)
\(618\) 1.63832 + 7.17797i 0.0659031 + 0.288740i
\(619\) −1.71356 2.14873i −0.0688737 0.0863649i 0.746201 0.665720i \(-0.231876\pi\)
−0.815075 + 0.579356i \(0.803304\pi\)
\(620\) −1.86274 + 8.16119i −0.0748094 + 0.327761i
\(621\) −5.38804 −0.216215
\(622\) 4.19793 18.3923i 0.168322 0.737465i
\(623\) 33.3216 16.0468i 1.33500 0.642903i
\(624\) −7.86159 + 3.78594i −0.314715 + 0.151559i
\(625\) 4.33818 19.0068i 0.173527 0.760272i
\(626\) −5.15081 −0.205868
\(627\) −0.920479 + 4.03288i −0.0367604 + 0.161058i
\(628\) −19.2861 24.1840i −0.769598 0.965045i
\(629\) −1.58015 6.92310i −0.0630048 0.276042i
\(630\) 0.747275 + 3.27403i 0.0297721 + 0.130440i
\(631\) −5.65612 + 7.09255i −0.225167 + 0.282350i −0.881563 0.472066i \(-0.843508\pi\)
0.656397 + 0.754416i \(0.272080\pi\)
\(632\) −9.44216 + 4.54711i −0.375589 + 0.180874i
\(633\) −14.9089 7.17975i −0.592576 0.285369i
\(634\) −0.967070 1.21267i −0.0384072 0.0481612i
\(635\) 4.93170 6.18415i 0.195708 0.245411i
\(636\) 3.09958 + 1.49268i 0.122906 + 0.0591885i
\(637\) −8.26146 −0.327331
\(638\) 1.78091 3.11108i 0.0705070 0.123169i
\(639\) −4.60343 −0.182109
\(640\) 19.4164 + 9.35043i 0.767499 + 0.369608i
\(641\) −7.09852 + 8.90126i −0.280375 + 0.351579i −0.902000 0.431736i \(-0.857901\pi\)
0.621625 + 0.783315i \(0.286473\pi\)
\(642\) 0.0544660 + 0.0682982i 0.00214960 + 0.00269552i
\(643\) 9.74947 + 4.69510i 0.384482 + 0.185157i 0.616133 0.787642i \(-0.288699\pi\)
−0.231651 + 0.972799i \(0.574413\pi\)
\(644\) 17.6371 8.49360i 0.695000 0.334695i
\(645\) 4.66039 5.84395i 0.183503 0.230105i
\(646\) 2.54860 + 11.1661i 0.100273 + 0.439326i
\(647\) 4.91549 + 21.5362i 0.193248 + 0.846674i 0.974844 + 0.222889i \(0.0715488\pi\)
−0.781596 + 0.623785i \(0.785594\pi\)
\(648\) 1.52390 + 1.91091i 0.0598643 + 0.0750675i
\(649\) −1.98384 + 8.69178i −0.0778726 + 0.341182i
\(650\) 4.21542 0.165342
\(651\) 1.45732 6.38493i 0.0571168 0.250245i
\(652\) 10.4292 5.02245i 0.408440 0.196694i
\(653\) −17.4603 + 8.40844i −0.683274 + 0.329048i −0.743118 0.669160i \(-0.766654\pi\)
0.0598439 + 0.998208i \(0.480940\pi\)
\(654\) −1.49173 + 6.53571i −0.0583314 + 0.255566i
\(655\) 33.2836 1.30050
\(656\) −3.51530 + 15.4015i −0.137249 + 0.601329i
\(657\) 5.66836 + 7.10790i 0.221144 + 0.277306i
\(658\) 1.19720 + 5.24528i 0.0466718 + 0.204482i
\(659\) −1.48867 6.52230i −0.0579904 0.254073i 0.937621 0.347660i \(-0.113024\pi\)
−0.995611 + 0.0935875i \(0.970167\pi\)
\(660\) −1.82821 + 2.29250i −0.0711629 + 0.0892354i
\(661\) 40.0727 19.2980i 1.55865 0.750606i 0.561602 0.827407i \(-0.310185\pi\)
0.997046 + 0.0768020i \(0.0244709\pi\)
\(662\) −14.5407 7.00242i −0.565139 0.272157i
\(663\) −15.5457 19.4937i −0.603746 0.757074i
\(664\) 24.6586 30.9209i 0.956938 1.19996i
\(665\) 18.8019 + 9.05451i 0.729106 + 0.351119i
\(666\) 1.29306 0.0501051
\(667\) 23.9133 16.4333i 0.925925 0.636301i
\(668\) 32.9670 1.27553
\(669\) 10.5819 + 5.09597i 0.409120 + 0.197022i
\(670\) 10.5800 13.2668i 0.408739 0.512543i
\(671\) −1.87443 2.35046i −0.0723615 0.0907385i
\(672\) −12.5502 6.04386i −0.484135 0.233147i
\(673\) −18.9884 + 9.14433i −0.731949 + 0.352488i −0.762450 0.647047i \(-0.776004\pi\)
0.0305016 + 0.999535i \(0.490290\pi\)
\(674\) −11.7301 + 14.7091i −0.451826 + 0.566572i
\(675\) 0.206604 + 0.905192i 0.00795220 + 0.0348408i
\(676\) 10.0202 + 43.9015i 0.385394 + 1.68852i
\(677\) 2.23420 + 2.80160i 0.0858673 + 0.107674i 0.822909 0.568173i \(-0.192349\pi\)
−0.737042 + 0.675847i \(0.763778\pi\)
\(678\) 0.480688 2.10603i 0.0184607 0.0808817i
\(679\) −37.7509 −1.44875
\(680\) −4.18824 + 18.3499i −0.160612 + 0.703686i
\(681\) 19.1970 9.24479i 0.735631 0.354261i
\(682\) −1.64010 + 0.789829i −0.0628026 + 0.0302441i
\(683\) 2.99758 13.1333i 0.114699 0.502530i −0.884643 0.466269i \(-0.845598\pi\)
0.999342 0.0362615i \(-0.0115449\pi\)
\(684\) 6.55136 0.250497
\(685\) −1.36724 + 5.99027i −0.0522395 + 0.228876i
\(686\) −8.57588 10.7538i −0.327428 0.410582i
\(687\) −0.0407910 0.178717i −0.00155627 0.00681848i
\(688\) 1.10093 + 4.82348i 0.0419725 + 0.183894i
\(689\) 9.23730 11.5832i 0.351913 0.441285i
\(690\) 6.80716 3.27816i 0.259144 0.124797i
\(691\) −15.7501 7.58486i −0.599163 0.288542i 0.109614 0.993974i \(-0.465039\pi\)
−0.708777 + 0.705432i \(0.750753\pi\)
\(692\) −3.79633 4.76045i −0.144315 0.180965i
\(693\) 1.43030 1.79354i 0.0543327 0.0681311i
\(694\) −20.6855 9.96163i −0.785213 0.378138i
\(695\) −22.7619 −0.863408
\(696\) −12.5916 3.83317i −0.477282 0.145296i
\(697\) −45.1412 −1.70984
\(698\) 3.98483 + 1.91899i 0.150828 + 0.0726349i
\(699\) −14.8895 + 18.6709i −0.563174 + 0.706198i
\(700\) −2.10322 2.63735i −0.0794942 0.0996826i
\(701\) 26.5799 + 12.8002i 1.00391 + 0.483458i 0.862264 0.506460i \(-0.169046\pi\)
0.141646 + 0.989917i \(0.454760\pi\)
\(702\) 4.09056 1.96991i 0.154388 0.0743494i
\(703\) 5.00991 6.28223i 0.188953 0.236939i
\(704\) 0.292203 + 1.28022i 0.0110128 + 0.0482503i
\(705\) −1.45149 6.35941i −0.0546664 0.239509i
\(706\) −7.61395 9.54759i −0.286555 0.359328i
\(707\) 4.93289 21.6124i 0.185521 0.812818i
\(708\) 14.1197 0.530650
\(709\) −5.48443 + 24.0289i −0.205972 + 0.902423i 0.761244 + 0.648466i \(0.224589\pi\)
−0.967216 + 0.253957i \(0.918268\pi\)
\(710\) 5.81590 2.80079i 0.218267 0.105112i
\(711\) −3.86318 + 1.86041i −0.144881 + 0.0697708i
\(712\) −8.39903 + 36.7985i −0.314767 + 1.37908i
\(713\) −14.7343 −0.551805
\(714\) 1.41337 6.19240i 0.0528942 0.231745i
\(715\) 7.87315 + 9.87262i 0.294439 + 0.369215i
\(716\) −1.30566 5.72046i −0.0487948 0.213784i
\(717\) 1.87126 + 8.19853i 0.0698835 + 0.306180i
\(718\) −3.38826 + 4.24875i −0.126449 + 0.158562i
\(719\) 1.24578 0.599937i 0.0464598 0.0223739i −0.410510 0.911856i \(-0.634649\pi\)
0.456969 + 0.889482i \(0.348935\pi\)
\(720\) 2.42808 + 1.16930i 0.0904892 + 0.0435773i
\(721\) −15.8196 19.8372i −0.589154 0.738776i
\(722\) 0.152055 0.190671i 0.00565890 0.00709604i
\(723\) 0.485048 + 0.233587i 0.0180391 + 0.00868719i
\(724\) −25.2284 −0.937607
\(725\) −3.67776 3.38730i −0.136588 0.125801i
\(726\) 7.00668 0.260042
\(727\) −34.0179 16.3821i −1.26165 0.607580i −0.321041 0.947065i \(-0.604033\pi\)
−0.940611 + 0.339485i \(0.889747\pi\)
\(728\) −23.8433 + 29.8985i −0.883691 + 1.10811i
\(729\) 0.623490 + 0.781831i 0.0230922 + 0.0289567i
\(730\) −11.4859 5.53130i −0.425111 0.204722i
\(731\) −12.7374 + 6.13399i −0.471108 + 0.226874i
\(732\) −2.96864 + 3.72256i −0.109724 + 0.137590i
\(733\) 7.24828 + 31.7568i 0.267721 + 1.17296i 0.912657 + 0.408727i \(0.134027\pi\)
−0.644936 + 0.764237i \(0.723116\pi\)
\(734\) 4.51017 + 19.7603i 0.166473 + 0.729368i
\(735\) 1.59089 + 1.99491i 0.0586807 + 0.0735833i
\(736\) −6.97363 + 30.5535i −0.257051 + 1.12622i
\(737\) −11.5916 −0.426982
\(738\) 1.82909 8.01375i 0.0673296 0.294990i
\(739\) 34.2033 16.4714i 1.25819 0.605911i 0.318493 0.947925i \(-0.396823\pi\)
0.939695 + 0.342014i \(0.111109\pi\)
\(740\) 5.13173 2.47131i 0.188646 0.0908472i
\(741\) 6.27806 27.5060i 0.230630 1.01046i
\(742\) 3.77416 0.138554
\(743\) 2.91935 12.7905i 0.107101 0.469238i −0.892726 0.450601i \(-0.851210\pi\)
0.999826 0.0186379i \(-0.00593297\pi\)
\(744\) 4.16730 + 5.22563i 0.152781 + 0.191581i
\(745\) 2.19912 + 9.63496i 0.0805694 + 0.352998i
\(746\) −0.905585 3.96763i −0.0331558 0.145265i
\(747\) 10.0888 12.6510i 0.369132 0.462876i
\(748\) 4.99669 2.40628i 0.182697 0.0879823i
\(749\) −0.271234 0.130619i −0.00991067 0.00477273i
\(750\) −5.18319 6.49952i −0.189263 0.237329i
\(751\) −17.5307 + 21.9828i −0.639704 + 0.802163i −0.990966 0.134114i \(-0.957181\pi\)
0.351262 + 0.936277i \(0.385753\pi\)
\(752\) 3.89000 + 1.87333i 0.141854 + 0.0683132i
\(753\) −1.71008 −0.0623186
\(754\) −12.1466 + 21.2189i −0.442353 + 0.772748i
\(755\) −34.3565 −1.25036
\(756\) −3.27338 1.57638i −0.119052 0.0573323i
\(757\) −11.8885 + 14.9078i −0.432096 + 0.541831i −0.949441 0.313946i \(-0.898349\pi\)
0.517345 + 0.855777i \(0.326920\pi\)
\(758\) 1.00418 + 1.25920i 0.0364735 + 0.0457363i
\(759\) −4.65002 2.23933i −0.168785 0.0812826i
\(760\) −19.1886 + 9.24074i −0.696044 + 0.335197i
\(761\) 5.51450 6.91496i 0.199900 0.250667i −0.671770 0.740760i \(-0.734466\pi\)
0.871670 + 0.490093i \(0.163037\pi\)
\(762\) −0.606186 2.65587i −0.0219598 0.0962121i
\(763\) −5.14078 22.5232i −0.186109 0.815395i
\(764\) 2.49816 + 3.13260i 0.0903804 + 0.113333i
\(765\) −1.71358 +