Defining parameters
Level: | \( N \) | \(=\) | \( 87 = 3 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 87.g (of order \(7\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q(\zeta_{7})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(20\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(87, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 36 | 36 |
Cusp forms | 48 | 36 | 12 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(87, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
87.2.g.a | $18$ | $0.695$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-4\) | \(-3\) | \(-1\) | \(-4\) | \(q+(-\beta _{3}+\beta _{9})q^{2}-\beta _{10}q^{3}+(2\beta _{1}+\beta _{5}+\cdots)q^{4}+\cdots\) |
87.2.g.b | $18$ | $0.695$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-2\) | \(3\) | \(-7\) | \(-4\) | \(q-\beta _{3}q^{2}+\beta _{14}q^{3}+(-\beta _{10}-\beta _{16}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(87, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(87, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 2}\)