Properties

Label 87.2.g
Level $87$
Weight $2$
Character orbit 87.g
Rep. character $\chi_{87}(7,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $36$
Newform subspaces $2$
Sturm bound $20$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.g (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q(\zeta_{7})\)
Newform subspaces: \( 2 \)
Sturm bound: \(20\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(87, [\chi])\).

Total New Old
Modular forms 72 36 36
Cusp forms 48 36 12
Eisenstein series 24 0 24

Trace form

\( 36 q - 6 q^{2} - 12 q^{4} - 8 q^{5} - 2 q^{6} - 8 q^{7} - 18 q^{8} - 6 q^{9} - 8 q^{10} + 20 q^{11} - 2 q^{13} - 12 q^{14} + 6 q^{15} + 4 q^{16} - 28 q^{17} - 6 q^{18} - 8 q^{19} + 50 q^{20} + 12 q^{22}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(87, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
87.2.g.a 87.g 29.d $18$ $0.695$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 87.2.g.a \(-4\) \(-3\) \(-1\) \(-4\) $\mathrm{SU}(2)[C_{7}]$ \(q+(-\beta _{3}+\beta _{9})q^{2}-\beta _{10}q^{3}+(2\beta _{1}+\beta _{5}+\cdots)q^{4}+\cdots\)
87.2.g.b 87.g 29.d $18$ $0.695$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 87.2.g.b \(-2\) \(3\) \(-7\) \(-4\) $\mathrm{SU}(2)[C_{7}]$ \(q-\beta _{3}q^{2}+\beta _{14}q^{3}+(-\beta _{10}-\beta _{16}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(87, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(87, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 2}\)