Properties

Label 87.2.a.b
Level $87$
Weight $2$
Character orbit 87.a
Self dual yes
Analytic conductor $0.695$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,2,Mod(1,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 87.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.694698497585\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{2} - q^{3} + (\beta_1 + 2) q^{4} - 2 \beta_1 q^{5} + ( - \beta_{2} - 1) q^{6} + ( - \beta_{2} + \beta_1 + 1) q^{7} + (2 \beta_1 + 1) q^{8} + q^{9} + ( - 4 \beta_1 - 2) q^{10} + ( - \beta_{2} + \beta_1 - 3) q^{11}+ \cdots + ( - \beta_{2} + \beta_1 - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} - 3 q^{3} + 6 q^{4} - 2 q^{6} + 4 q^{7} + 3 q^{8} + 3 q^{9} - 6 q^{10} - 8 q^{11} - 6 q^{12} + 4 q^{13} - 5 q^{14} - 4 q^{16} + 4 q^{17} + 2 q^{18} - 2 q^{19} - 16 q^{20} - 4 q^{21} - 13 q^{22}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 4x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.254102
−1.86081
2.11491
−1.93543 −1.00000 1.74590 0.508203 1.93543 3.68133 0.491797 1.00000 −0.983593
1.2 1.46260 −1.00000 0.139194 3.72161 −1.46260 −1.32340 −2.72161 1.00000 5.44322
1.3 2.47283 −1.00000 4.11491 −4.22982 −2.47283 1.64207 5.22982 1.00000 −10.4596
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 87.2.a.b 3
3.b odd 2 1 261.2.a.e 3
4.b odd 2 1 1392.2.a.u 3
5.b even 2 1 2175.2.a.t 3
5.c odd 4 2 2175.2.c.l 6
7.b odd 2 1 4263.2.a.m 3
8.b even 2 1 5568.2.a.cb 3
8.d odd 2 1 5568.2.a.bx 3
12.b even 2 1 4176.2.a.bx 3
15.d odd 2 1 6525.2.a.bg 3
29.b even 2 1 2523.2.a.h 3
87.d odd 2 1 7569.2.a.t 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
87.2.a.b 3 1.a even 1 1 trivial
261.2.a.e 3 3.b odd 2 1
1392.2.a.u 3 4.b odd 2 1
2175.2.a.t 3 5.b even 2 1
2175.2.c.l 6 5.c odd 4 2
2523.2.a.h 3 29.b even 2 1
4176.2.a.bx 3 12.b even 2 1
4263.2.a.m 3 7.b odd 2 1
5568.2.a.bx 3 8.d odd 2 1
5568.2.a.cb 3 8.b even 2 1
6525.2.a.bg 3 15.d odd 2 1
7569.2.a.t 3 87.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 2T_{2}^{2} - 4T_{2} + 7 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(87))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} + \cdots + 7 \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 16T + 8 \) Copy content Toggle raw display
$7$ \( T^{3} - 4T^{2} - T + 8 \) Copy content Toggle raw display
$11$ \( T^{3} + 8 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$13$ \( T^{3} - 4 T^{2} + \cdots + 26 \) Copy content Toggle raw display
$17$ \( T^{3} - 4 T^{2} + \cdots + 94 \) Copy content Toggle raw display
$19$ \( T^{3} + 2 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{3} - 6 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$29$ \( (T - 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 6 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$37$ \( T^{3} - 8T^{2} + 8 \) Copy content Toggle raw display
$41$ \( T^{3} + 2 T^{2} + \cdots + 56 \) Copy content Toggle raw display
$43$ \( T^{3} + 4 T^{2} + \cdots - 256 \) Copy content Toggle raw display
$47$ \( T^{3} + 12 T^{2} + \cdots - 216 \) Copy content Toggle raw display
$53$ \( T^{3} - 8 T^{2} + \cdots + 248 \) Copy content Toggle raw display
$59$ \( T^{3} + 20 T^{2} + \cdots + 112 \) Copy content Toggle raw display
$61$ \( T^{3} - 4 T^{2} + \cdots + 56 \) Copy content Toggle raw display
$67$ \( T^{3} - 57T + 52 \) Copy content Toggle raw display
$71$ \( T^{3} + 14 T^{2} + \cdots - 416 \) Copy content Toggle raw display
$73$ \( T^{3} + 8T^{2} - 8 \) Copy content Toggle raw display
$79$ \( T^{3} + 2 T^{2} + \cdots - 224 \) Copy content Toggle raw display
$83$ \( T^{3} + 8 T^{2} + \cdots - 208 \) Copy content Toggle raw display
$89$ \( T^{3} + 8 T^{2} + \cdots - 74 \) Copy content Toggle raw display
$97$ \( T^{3} - 4 T^{2} + \cdots - 104 \) Copy content Toggle raw display
show more
show less