Properties

Label 87.1.d.a.86.1
Level 87
Weight 1
Character 87.86
Self dual Yes
Analytic conductor 0.043
Analytic rank 0
Dimension 1
Projective image \(D_{3}\)
CM disc. -87
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 87 = 3 \cdot 29 \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 87.d (of order \(2\) and degree \(1\))

Newform invariants

Self dual: Yes
Analytic conductor: \(0.0434186560991\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Projective image \(D_{3}\)
Projective field Galois closure of 3.1.87.1
Artin image size \(6\)
Artin image $S_3$
Artin field Galois closure of 3.1.87.1

Embedding invariants

Embedding label 86.1
Root \(0\)
Character \(\chi\) = 87.86

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} -1.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} -1.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{11} -1.00000 q^{13} +1.00000 q^{14} -1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{18} -1.00000 q^{21} +1.00000 q^{22} +1.00000 q^{24} +1.00000 q^{25} +1.00000 q^{26} +1.00000 q^{27} +1.00000 q^{29} -1.00000 q^{33} +1.00000 q^{34} -1.00000 q^{39} +2.00000 q^{41} +1.00000 q^{42} -1.00000 q^{47} -1.00000 q^{48} -1.00000 q^{50} -1.00000 q^{51} -1.00000 q^{54} -1.00000 q^{56} -1.00000 q^{58} -1.00000 q^{63} +1.00000 q^{64} +1.00000 q^{66} -1.00000 q^{67} +1.00000 q^{72} +1.00000 q^{75} +1.00000 q^{77} +1.00000 q^{78} +1.00000 q^{81} -2.00000 q^{82} +1.00000 q^{87} -1.00000 q^{88} -1.00000 q^{89} +1.00000 q^{91} +1.00000 q^{94} -1.00000 q^{99} +O(q^{100})\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(3\) 1.00000 1.00000
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) −1.00000 −1.00000
\(7\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) 1.00000 1.00000
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 1.00000 1.00000
\(15\) 0 0
\(16\) −1.00000 −1.00000
\(17\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) −1.00000 −1.00000
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) −1.00000 −1.00000
\(22\) 1.00000 1.00000
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 1.00000 1.00000
\(25\) 1.00000 1.00000
\(26\) 1.00000 1.00000
\(27\) 1.00000 1.00000
\(28\) 0 0
\(29\) 1.00000 1.00000
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) −1.00000 −1.00000
\(34\) 1.00000 1.00000
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) −1.00000 −1.00000
\(40\) 0 0
\(41\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(42\) 1.00000 1.00000
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) −1.00000 −1.00000
\(49\) 0 0
\(50\) −1.00000 −1.00000
\(51\) −1.00000 −1.00000
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −1.00000 −1.00000
\(55\) 0 0
\(56\) −1.00000 −1.00000
\(57\) 0 0
\(58\) −1.00000 −1.00000
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −1.00000 −1.00000
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 1.00000 1.00000
\(67\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 1.00000 1.00000
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 1.00000 1.00000
\(76\) 0 0
\(77\) 1.00000 1.00000
\(78\) 1.00000 1.00000
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) −2.00000 −2.00000
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.00000 1.00000
\(88\) −1.00000 −1.00000
\(89\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) 1.00000 1.00000
\(92\) 0 0
\(93\) 0 0
\(94\) 1.00000 1.00000
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) −1.00000 −1.00000
\(100\) 0 0
\(101\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 1.00000 1.00000
\(103\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(104\) −1.00000 −1.00000
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000 1.00000
\(113\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.00000 −1.00000
\(118\) 0 0
\(119\) 1.00000 1.00000
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 2.00000 2.00000
\(124\) 0 0
\(125\) 0 0
\(126\) 1.00000 1.00000
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −1.00000 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.00000 1.00000
\(135\) 0 0
\(136\) −1.00000 −1.00000
\(137\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(138\) 0 0
\(139\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 0 0
\(141\) −1.00000 −1.00000
\(142\) 0 0
\(143\) 1.00000 1.00000
\(144\) −1.00000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −1.00000 −1.00000
\(151\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(152\) 0 0
\(153\) −1.00000 −1.00000
\(154\) −1.00000 −1.00000
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −1.00000 −1.00000
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) −1.00000 −1.00000
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) −1.00000 −1.00000
\(175\) −1.00000 −1.00000
\(176\) 1.00000 1.00000
\(177\) 0 0
\(178\) 1.00000 1.00000
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) −1.00000 −1.00000
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.00000 1.00000
\(188\) 0 0
\(189\) −1.00000 −1.00000
\(190\) 0 0
\(191\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(192\) 1.00000 1.00000
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 1.00000 1.00000
\(199\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 1.00000 1.00000
\(201\) −1.00000 −1.00000
\(202\) 1.00000 1.00000
\(203\) −1.00000 −1.00000
\(204\) 0 0
\(205\) 0 0
\(206\) −2.00000 −2.00000
\(207\) 0 0
\(208\) 1.00000 1.00000
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 1.00000 1.00000
\(217\) 0 0
\(218\) 1.00000 1.00000
\(219\) 0 0
\(220\) 0 0
\(221\) 1.00000 1.00000
\(222\) 0 0
\(223\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) 1.00000 1.00000
\(226\) 1.00000 1.00000
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 1.00000 1.00000
\(232\) 1.00000 1.00000
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 1.00000 1.00000
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) −1.00000 −1.00000
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 0 0
\(243\) 1.00000 1.00000
\(244\) 0 0
\(245\) 0 0
\(246\) −2.00000 −2.00000
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.00000 1.00000
\(262\) 1.00000 1.00000
\(263\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(264\) −1.00000 −1.00000
\(265\) 0 0
\(266\) 0 0
\(267\) −1.00000 −1.00000
\(268\) 0 0
\(269\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 1.00000 1.00000
\(273\) 1.00000 1.00000
\(274\) −2.00000 −2.00000
\(275\) −1.00000 −1.00000
\(276\) 0 0
\(277\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 1.00000 1.00000
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 1.00000 1.00000
\(283\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(284\) 0 0
\(285\) 0 0
\(286\) −1.00000 −1.00000
\(287\) −2.00000 −2.00000
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.00000 −1.00000
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −2.00000 −2.00000
\(303\) −1.00000 −1.00000
\(304\) 0 0
\(305\) 0 0
\(306\) 1.00000 1.00000
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 2.00000 2.00000
\(310\) 0 0
\(311\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) −1.00000 −1.00000
\(313\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) −1.00000 −1.00000
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.00000 −1.00000
\(326\) 0 0
\(327\) −1.00000 −1.00000
\(328\) 2.00000 2.00000
\(329\) 1.00000 1.00000
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 1.00000 1.00000
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) −1.00000 −1.00000
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(350\) 1.00000 1.00000
\(351\) −1.00000 −1.00000
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.00000 1.00000
\(358\) 0 0
\(359\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 1.00000 1.00000
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 2.00000 2.00000
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(374\) −1.00000 −1.00000
\(375\) 0 0
\(376\) −1.00000 −1.00000
\(377\) −1.00000 −1.00000
\(378\) 1.00000 1.00000
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −2.00000 −2.00000
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −1.00000 −1.00000
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −1.00000 −1.00000
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(398\) 1.00000 1.00000
\(399\) 0 0
\(400\) −1.00000 −1.00000
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 1.00000 1.00000
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 1.00000 1.00000
\(407\) 0 0
\(408\) −1.00000 −1.00000
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 2.00000 2.00000
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.00000 −1.00000
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −1.00000 −1.00000
\(424\) 0 0
\(425\) −1.00000 −1.00000
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.00000 1.00000
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −1.00000 −1.00000
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1.00000 −1.00000
\(443\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.00000 1.00000
\(447\) 0 0
\(448\) −1.00000 −1.00000
\(449\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) −1.00000 −1.00000
\(451\) −2.00000 −2.00000
\(452\) 0 0
\(453\) 2.00000 2.00000
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) −1.00000 −1.00000
\(460\) 0 0
\(461\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(462\) −1.00000 −1.00000
\(463\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) −1.00000 −1.00000
\(465\) 0 0
\(466\) 0 0
\(467\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(468\) 0 0
\(469\) 1.00000 1.00000
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.00000 1.00000
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) −1.00000 −1.00000
\(487\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(492\) 0 0
\(493\) −1.00000 −1.00000
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.00000 1.00000
\(503\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) −1.00000 −1.00000
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.00000 1.00000
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −1.00000 −1.00000
\(523\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) −1.00000 −1.00000
\(526\) −2.00000 −2.00000
\(527\) 0 0
\(528\) 1.00000 1.00000
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.00000 −2.00000
\(534\) 1.00000 1.00000
\(535\) 0 0
\(536\) −1.00000 −1.00000
\(537\) 0 0
\(538\) 1.00000 1.00000
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −1.00000 −1.00000
\(544\) 0 0
\(545\) 0 0
\(546\) −1.00000 −1.00000
\(547\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.00000 1.00000
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 1.00000 1.00000
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 1.00000 1.00000
\(562\) 0 0
\(563\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −2.00000 −2.00000
\(567\) −1.00000 −1.00000
\(568\) 0 0
\(569\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(572\) 0 0
\(573\) 2.00000 2.00000
\(574\) 2.00000 2.00000
\(575\) 0 0
\(576\) 1.00000 1.00000
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 1.00000 1.00000
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 1.00000 1.00000
\(595\) 0 0
\(596\) 0 0
\(597\) −1.00000 −1.00000
\(598\) 0 0
\(599\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 1.00000 1.00000
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −1.00000 −1.00000
\(604\) 0 0
\(605\) 0 0
\(606\) 1.00000 1.00000
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) −1.00000 −1.00000
\(610\) 0 0
\(611\) 1.00000 1.00000
\(612\) 0 0
\(613\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 1.00000 1.00000
\(617\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(618\) −2.00000 −2.00000
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1.00000 1.00000
\(623\) 1.00000 1.00000
\(624\) 1.00000 1.00000
\(625\) 1.00000 1.00000
\(626\) 1.00000 1.00000
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.00000 1.00000
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.00000 1.00000
\(639\) 0 0
\(640\) 0 0
\(641\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 1.00000 1.00000
\(649\) 0 0
\(650\) 1.00000 1.00000
\(651\) 0 0
\(652\) 0 0
\(653\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 1.00000 1.00000
\(655\) 0 0
\(656\) −2.00000 −2.00000
\(657\) 0 0
\(658\) −1.00000 −1.00000
\(659\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) 0 0
\(663\) 1.00000 1.00000
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −1.00000 −1.00000
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 0 0
\(675\) 1.00000 1.00000
\(676\) 0 0
\(677\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 1.00000 1.00000
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.00000 −1.00000
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 1.00000 1.00000
\(694\) 0 0
\(695\) 0 0
\(696\) 1.00000 1.00000
\(697\) −2.00000 −2.00000
\(698\) −2.00000 −2.00000
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 1.00000 1.00000
\(703\) 0 0
\(704\) −1.00000 −1.00000
\(705\) 0 0
\(706\) 0 0
\(707\) 1.00000 1.00000
\(708\) 0 0
\(709\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.00000 −1.00000
\(713\) 0 0
\(714\) −1.00000 −1.00000
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −2.00000 −2.00000
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) −2.00000 −2.00000
\(722\) −1.00000 −1.00000
\(723\) −1.00000 −1.00000
\(724\) 0 0
\(725\) 1.00000 1.00000
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 1.00000 1.00000
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.00000 1.00000
\(738\) −2.00000 −2.00000
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2.00000 −2.00000
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 1.00000 1.00000
\(753\) −1.00000 −1.00000
\(754\) 1.00000 1.00000
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 1.00000 1.00000
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 1.00000 1.00000
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.00000 1.00000
\(784\) 0 0
\(785\) 0 0
\(786\) 1.00000 1.00000
\(787\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(788\) 0 0
\(789\) 2.00000 2.00000
\(790\) 0 0
\(791\) 1.00000 1.00000
\(792\) −1.00000 −1.00000
\(793\) 0 0
\(794\) −2.00000 −2.00000
\(795\) 0 0
\(796\) 0 0
\(797\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(798\) 0 0
\(799\) 1.00000 1.00000
\(800\) 0 0
\(801\) −1.00000 −1.00000
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.00000 −1.00000
\(808\) −1.00000 −1.00000
\(809\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 1.00000 1.00000
\(817\) 0 0
\(818\) 0 0
\(819\) 1.00000 1.00000
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) −2.00000 −2.00000
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 2.00000 2.00000
\(825\) −1.00000 −1.00000
\(826\) 0 0
\(827\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) −1.00000 −1.00000
\(832\) −1.00000 −1.00000
\(833\) 0 0
\(834\) 1.00000 1.00000
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 1.00000 1.00000
\(847\) 0 0
\(848\) 0 0
\(849\) 2.00000 2.00000
\(850\) 1.00000 1.00000
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) −1.00000 −1.00000
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) −2.00000 −2.00000
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 1.00000 1.00000
\(872\) −1.00000 −1.00000
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(878\) 1.00000 1.00000
\(879\) −1.00000 −1.00000
\(880\) 0 0
\(881\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.00000 1.00000
\(887\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.00000 −1.00000
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 1.00000
\(897\) 0 0
\(898\) 1.00000 1.00000
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 2.00000 2.00000
\(903\) 0 0
\(904\) −1.00000 −1.00000
\(905\) 0 0
\(906\) −2.00000 −2.00000
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) −1.00000 −1.00000
\(910\) 0 0
\(911\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.00000 1.00000
\(915\) 0 0
\(916\) 0 0
\(917\) 1.00000 1.00000
\(918\) 1.00000 1.00000
\(919\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2.00000 −2.00000
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 1.00000 1.00000
\(927\) 2.00000 2.00000
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −1.00000 −1.00000
\(934\) −2.00000 −2.00000
\(935\) 0 0
\(936\) −1.00000 −1.00000
\(937\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) −1.00000 −1.00000
\(939\) −1.00000 −1.00000
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.00000 −1.00000
\(952\) 1.00000 1.00000
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.00000 −1.00000
\(958\) −2.00000 −2.00000
\(959\) −2.00000 −2.00000
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(972\) 0 0
\(973\) 1.00000 1.00000
\(974\) −2.00000 −2.00000
\(975\) −1.00000 −1.00000
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 1.00000 1.00000
\(980\) 0 0
\(981\) −1.00000 −1.00000
\(982\) −2.00000 −2.00000
\(983\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(984\) 2.00000 2.00000
\(985\) 0 0
\(986\) 1.00000 1.00000
\(987\) 1.00000 1.00000
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 1.00000 1.00000
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))