Properties

Label 8670.2.a.c.1.1
Level $8670$
Weight $2$
Character 8670.1
Self dual yes
Analytic conductor $69.230$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8670,2,Mod(1,8670)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8670, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8670.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8670 = 2 \cdot 3 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8670.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.2302985525\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8670.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} +2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{6} +2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} -4.00000 q^{11} -1.00000 q^{12} -2.00000 q^{14} +1.00000 q^{15} +1.00000 q^{16} -1.00000 q^{18} +4.00000 q^{19} -1.00000 q^{20} -2.00000 q^{21} +4.00000 q^{22} -4.00000 q^{23} +1.00000 q^{24} +1.00000 q^{25} -1.00000 q^{27} +2.00000 q^{28} -6.00000 q^{29} -1.00000 q^{30} +8.00000 q^{31} -1.00000 q^{32} +4.00000 q^{33} -2.00000 q^{35} +1.00000 q^{36} +6.00000 q^{37} -4.00000 q^{38} +1.00000 q^{40} -8.00000 q^{41} +2.00000 q^{42} +2.00000 q^{43} -4.00000 q^{44} -1.00000 q^{45} +4.00000 q^{46} -8.00000 q^{47} -1.00000 q^{48} -3.00000 q^{49} -1.00000 q^{50} +14.0000 q^{53} +1.00000 q^{54} +4.00000 q^{55} -2.00000 q^{56} -4.00000 q^{57} +6.00000 q^{58} +6.00000 q^{59} +1.00000 q^{60} -2.00000 q^{61} -8.00000 q^{62} +2.00000 q^{63} +1.00000 q^{64} -4.00000 q^{66} +2.00000 q^{67} +4.00000 q^{69} +2.00000 q^{70} +10.0000 q^{71} -1.00000 q^{72} -4.00000 q^{73} -6.00000 q^{74} -1.00000 q^{75} +4.00000 q^{76} -8.00000 q^{77} -4.00000 q^{79} -1.00000 q^{80} +1.00000 q^{81} +8.00000 q^{82} -16.0000 q^{83} -2.00000 q^{84} -2.00000 q^{86} +6.00000 q^{87} +4.00000 q^{88} +6.00000 q^{89} +1.00000 q^{90} -4.00000 q^{92} -8.00000 q^{93} +8.00000 q^{94} -4.00000 q^{95} +1.00000 q^{96} +8.00000 q^{97} +3.00000 q^{98} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.00000 0.408248
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −2.00000 −0.534522
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) −1.00000 −0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) −1.00000 −0.223607
\(21\) −2.00000 −0.436436
\(22\) 4.00000 0.852803
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 2.00000 0.377964
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) −1.00000 −0.182574
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 1.00000 0.166667
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 2.00000 0.308607
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) −4.00000 −0.603023
\(45\) −1.00000 −0.149071
\(46\) 4.00000 0.589768
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) −1.00000 −0.144338
\(49\) −3.00000 −0.428571
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 0 0
\(53\) 14.0000 1.92305 0.961524 0.274721i \(-0.0885855\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 1.00000 0.136083
\(55\) 4.00000 0.539360
\(56\) −2.00000 −0.267261
\(57\) −4.00000 −0.529813
\(58\) 6.00000 0.787839
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 1.00000 0.129099
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) −8.00000 −1.01600
\(63\) 2.00000 0.251976
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.00000 −0.492366
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 2.00000 0.239046
\(71\) 10.0000 1.18678 0.593391 0.804914i \(-0.297789\pi\)
0.593391 + 0.804914i \(0.297789\pi\)
\(72\) −1.00000 −0.117851
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) −6.00000 −0.697486
\(75\) −1.00000 −0.115470
\(76\) 4.00000 0.458831
\(77\) −8.00000 −0.911685
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) 8.00000 0.883452
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0 0
\(86\) −2.00000 −0.215666
\(87\) 6.00000 0.643268
\(88\) 4.00000 0.426401
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) −8.00000 −0.829561
\(94\) 8.00000 0.825137
\(95\) −4.00000 −0.410391
\(96\) 1.00000 0.102062
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 3.00000 0.303046
\(99\) −4.00000 −0.402015
\(100\) 1.00000 0.100000
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) −20.0000 −1.97066 −0.985329 0.170664i \(-0.945409\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) −14.0000 −1.35980
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) −4.00000 −0.381385
\(111\) −6.00000 −0.569495
\(112\) 2.00000 0.188982
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 4.00000 0.374634
\(115\) 4.00000 0.373002
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) 0 0
\(120\) −1.00000 −0.0912871
\(121\) 5.00000 0.454545
\(122\) 2.00000 0.181071
\(123\) 8.00000 0.721336
\(124\) 8.00000 0.718421
\(125\) −1.00000 −0.0894427
\(126\) −2.00000 −0.178174
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −2.00000 −0.176090
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 4.00000 0.348155
\(133\) 8.00000 0.693688
\(134\) −2.00000 −0.172774
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) −4.00000 −0.340503
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) −2.00000 −0.169031
\(141\) 8.00000 0.673722
\(142\) −10.0000 −0.839181
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 6.00000 0.498273
\(146\) 4.00000 0.331042
\(147\) 3.00000 0.247436
\(148\) 6.00000 0.493197
\(149\) 20.0000 1.63846 0.819232 0.573462i \(-0.194400\pi\)
0.819232 + 0.573462i \(0.194400\pi\)
\(150\) 1.00000 0.0816497
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 8.00000 0.644658
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 4.00000 0.318223
\(159\) −14.0000 −1.11027
\(160\) 1.00000 0.0790569
\(161\) −8.00000 −0.630488
\(162\) −1.00000 −0.0785674
\(163\) −8.00000 −0.626608 −0.313304 0.949653i \(-0.601436\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) −8.00000 −0.624695
\(165\) −4.00000 −0.311400
\(166\) 16.0000 1.24184
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 2.00000 0.154303
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 2.00000 0.152499
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) −6.00000 −0.454859
\(175\) 2.00000 0.151186
\(176\) −4.00000 −0.301511
\(177\) −6.00000 −0.450988
\(178\) −6.00000 −0.449719
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) −1.00000 −0.0745356
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 4.00000 0.294884
\(185\) −6.00000 −0.441129
\(186\) 8.00000 0.586588
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) −2.00000 −0.145479
\(190\) 4.00000 0.290191
\(191\) −20.0000 −1.44715 −0.723575 0.690246i \(-0.757502\pi\)
−0.723575 + 0.690246i \(0.757502\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) −8.00000 −0.574367
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 4.00000 0.284268
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −2.00000 −0.141069
\(202\) 12.0000 0.844317
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) 8.00000 0.558744
\(206\) 20.0000 1.39347
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) −16.0000 −1.10674
\(210\) −2.00000 −0.138013
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 14.0000 0.961524
\(213\) −10.0000 −0.685189
\(214\) −4.00000 −0.273434
\(215\) −2.00000 −0.136399
\(216\) 1.00000 0.0680414
\(217\) 16.0000 1.08615
\(218\) −2.00000 −0.135457
\(219\) 4.00000 0.270295
\(220\) 4.00000 0.269680
\(221\) 0 0
\(222\) 6.00000 0.402694
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) −2.00000 −0.133631
\(225\) 1.00000 0.0666667
\(226\) −18.0000 −1.19734
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) −4.00000 −0.264906
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) −4.00000 −0.263752
\(231\) 8.00000 0.526361
\(232\) 6.00000 0.393919
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 6.00000 0.390567
\(237\) 4.00000 0.259828
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 1.00000 0.0645497
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −5.00000 −0.321412
\(243\) −1.00000 −0.0641500
\(244\) −2.00000 −0.128037
\(245\) 3.00000 0.191663
\(246\) −8.00000 −0.510061
\(247\) 0 0
\(248\) −8.00000 −0.508001
\(249\) 16.0000 1.01396
\(250\) 1.00000 0.0632456
\(251\) −2.00000 −0.126239 −0.0631194 0.998006i \(-0.520105\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(252\) 2.00000 0.125988
\(253\) 16.0000 1.00591
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 30.0000 1.87135 0.935674 0.352865i \(-0.114792\pi\)
0.935674 + 0.352865i \(0.114792\pi\)
\(258\) 2.00000 0.124515
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) −4.00000 −0.246183
\(265\) −14.0000 −0.860013
\(266\) −8.00000 −0.490511
\(267\) −6.00000 −0.367194
\(268\) 2.00000 0.122169
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) −1.00000 −0.0608581
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) −4.00000 −0.241209
\(276\) 4.00000 0.240772
\(277\) −6.00000 −0.360505 −0.180253 0.983620i \(-0.557691\pi\)
−0.180253 + 0.983620i \(0.557691\pi\)
\(278\) −4.00000 −0.239904
\(279\) 8.00000 0.478947
\(280\) 2.00000 0.119523
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) −8.00000 −0.476393
\(283\) 12.0000 0.713326 0.356663 0.934233i \(-0.383914\pi\)
0.356663 + 0.934233i \(0.383914\pi\)
\(284\) 10.0000 0.593391
\(285\) 4.00000 0.236940
\(286\) 0 0
\(287\) −16.0000 −0.944450
\(288\) −1.00000 −0.0589256
\(289\) 0 0
\(290\) −6.00000 −0.352332
\(291\) −8.00000 −0.468968
\(292\) −4.00000 −0.234082
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) −3.00000 −0.174964
\(295\) −6.00000 −0.349334
\(296\) −6.00000 −0.348743
\(297\) 4.00000 0.232104
\(298\) −20.0000 −1.15857
\(299\) 0 0
\(300\) −1.00000 −0.0577350
\(301\) 4.00000 0.230556
\(302\) 16.0000 0.920697
\(303\) 12.0000 0.689382
\(304\) 4.00000 0.229416
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) −8.00000 −0.455842
\(309\) 20.0000 1.13776
\(310\) 8.00000 0.454369
\(311\) −10.0000 −0.567048 −0.283524 0.958965i \(-0.591504\pi\)
−0.283524 + 0.958965i \(0.591504\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) −2.00000 −0.112687
\(316\) −4.00000 −0.225018
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 14.0000 0.785081
\(319\) 24.0000 1.34374
\(320\) −1.00000 −0.0559017
\(321\) −4.00000 −0.223258
\(322\) 8.00000 0.445823
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 8.00000 0.443079
\(327\) −2.00000 −0.110600
\(328\) 8.00000 0.441726
\(329\) −16.0000 −0.882109
\(330\) 4.00000 0.220193
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) −16.0000 −0.878114
\(333\) 6.00000 0.328798
\(334\) −16.0000 −0.875481
\(335\) −2.00000 −0.109272
\(336\) −2.00000 −0.109109
\(337\) −20.0000 −1.08947 −0.544735 0.838608i \(-0.683370\pi\)
−0.544735 + 0.838608i \(0.683370\pi\)
\(338\) 13.0000 0.707107
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) −32.0000 −1.73290
\(342\) −4.00000 −0.216295
\(343\) −20.0000 −1.07990
\(344\) −2.00000 −0.107833
\(345\) −4.00000 −0.215353
\(346\) 2.00000 0.107521
\(347\) 20.0000 1.07366 0.536828 0.843692i \(-0.319622\pi\)
0.536828 + 0.843692i \(0.319622\pi\)
\(348\) 6.00000 0.321634
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) −2.00000 −0.106904
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 6.00000 0.318896
\(355\) −10.0000 −0.530745
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) −2.00000 −0.105703
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 1.00000 0.0527046
\(361\) −3.00000 −0.157895
\(362\) 14.0000 0.735824
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) −2.00000 −0.104542
\(367\) 38.0000 1.98358 0.991792 0.127862i \(-0.0408116\pi\)
0.991792 + 0.127862i \(0.0408116\pi\)
\(368\) −4.00000 −0.208514
\(369\) −8.00000 −0.416463
\(370\) 6.00000 0.311925
\(371\) 28.0000 1.45369
\(372\) −8.00000 −0.414781
\(373\) 36.0000 1.86401 0.932005 0.362446i \(-0.118058\pi\)
0.932005 + 0.362446i \(0.118058\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 8.00000 0.412568
\(377\) 0 0
\(378\) 2.00000 0.102869
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) −4.00000 −0.205196
\(381\) −4.00000 −0.204926
\(382\) 20.0000 1.02329
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 1.00000 0.0510310
\(385\) 8.00000 0.407718
\(386\) 16.0000 0.814379
\(387\) 2.00000 0.101666
\(388\) 8.00000 0.406138
\(389\) −36.0000 −1.82527 −0.912636 0.408773i \(-0.865957\pi\)
−0.912636 + 0.408773i \(0.865957\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.00000 0.151523
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 4.00000 0.201262
\(396\) −4.00000 −0.201008
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) −8.00000 −0.401004
\(399\) −8.00000 −0.400501
\(400\) 1.00000 0.0500000
\(401\) −20.0000 −0.998752 −0.499376 0.866385i \(-0.666437\pi\)
−0.499376 + 0.866385i \(0.666437\pi\)
\(402\) 2.00000 0.0997509
\(403\) 0 0
\(404\) −12.0000 −0.597022
\(405\) −1.00000 −0.0496904
\(406\) 12.0000 0.595550
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) −8.00000 −0.395092
\(411\) 6.00000 0.295958
\(412\) −20.0000 −0.985329
\(413\) 12.0000 0.590481
\(414\) 4.00000 0.196589
\(415\) 16.0000 0.785409
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 16.0000 0.782586
\(419\) −32.0000 −1.56330 −0.781651 0.623716i \(-0.785622\pi\)
−0.781651 + 0.623716i \(0.785622\pi\)
\(420\) 2.00000 0.0975900
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 4.00000 0.194717
\(423\) −8.00000 −0.388973
\(424\) −14.0000 −0.679900
\(425\) 0 0
\(426\) 10.0000 0.484502
\(427\) −4.00000 −0.193574
\(428\) 4.00000 0.193347
\(429\) 0 0
\(430\) 2.00000 0.0964486
\(431\) −10.0000 −0.481683 −0.240842 0.970564i \(-0.577423\pi\)
−0.240842 + 0.970564i \(0.577423\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) −16.0000 −0.768025
\(435\) −6.00000 −0.287678
\(436\) 2.00000 0.0957826
\(437\) −16.0000 −0.765384
\(438\) −4.00000 −0.191127
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) −4.00000 −0.190693
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) −6.00000 −0.284747
\(445\) −6.00000 −0.284427
\(446\) −4.00000 −0.189405
\(447\) −20.0000 −0.945968
\(448\) 2.00000 0.0944911
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 32.0000 1.50682
\(452\) 18.0000 0.846649
\(453\) 16.0000 0.751746
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 4.00000 0.187317
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) 26.0000 1.21490
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) 24.0000 1.11779 0.558896 0.829238i \(-0.311225\pi\)
0.558896 + 0.829238i \(0.311225\pi\)
\(462\) −8.00000 −0.372194
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) −6.00000 −0.278543
\(465\) 8.00000 0.370991
\(466\) 10.0000 0.463241
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) −8.00000 −0.369012
\(471\) 0 0
\(472\) −6.00000 −0.276172
\(473\) −8.00000 −0.367840
\(474\) −4.00000 −0.183726
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 14.0000 0.641016
\(478\) 0 0
\(479\) −30.0000 −1.37073 −0.685367 0.728197i \(-0.740358\pi\)
−0.685367 + 0.728197i \(0.740358\pi\)
\(480\) −1.00000 −0.0456435
\(481\) 0 0
\(482\) 10.0000 0.455488
\(483\) 8.00000 0.364013
\(484\) 5.00000 0.227273
\(485\) −8.00000 −0.363261
\(486\) 1.00000 0.0453609
\(487\) −30.0000 −1.35943 −0.679715 0.733476i \(-0.737896\pi\)
−0.679715 + 0.733476i \(0.737896\pi\)
\(488\) 2.00000 0.0905357
\(489\) 8.00000 0.361773
\(490\) −3.00000 −0.135526
\(491\) −6.00000 −0.270776 −0.135388 0.990793i \(-0.543228\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(492\) 8.00000 0.360668
\(493\) 0 0
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 8.00000 0.359211
\(497\) 20.0000 0.897123
\(498\) −16.0000 −0.716977
\(499\) −36.0000 −1.61158 −0.805791 0.592200i \(-0.798259\pi\)
−0.805791 + 0.592200i \(0.798259\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −16.0000 −0.714827
\(502\) 2.00000 0.0892644
\(503\) −44.0000 −1.96186 −0.980932 0.194354i \(-0.937739\pi\)
−0.980932 + 0.194354i \(0.937739\pi\)
\(504\) −2.00000 −0.0890871
\(505\) 12.0000 0.533993
\(506\) −16.0000 −0.711287
\(507\) 13.0000 0.577350
\(508\) 4.00000 0.177471
\(509\) −36.0000 −1.59567 −0.797836 0.602875i \(-0.794022\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) −1.00000 −0.0441942
\(513\) −4.00000 −0.176604
\(514\) −30.0000 −1.32324
\(515\) 20.0000 0.881305
\(516\) −2.00000 −0.0880451
\(517\) 32.0000 1.40736
\(518\) −12.0000 −0.527250
\(519\) 2.00000 0.0877903
\(520\) 0 0
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) 6.00000 0.262613
\(523\) 30.0000 1.31181 0.655904 0.754844i \(-0.272288\pi\)
0.655904 + 0.754844i \(0.272288\pi\)
\(524\) 0 0
\(525\) −2.00000 −0.0872872
\(526\) −16.0000 −0.697633
\(527\) 0 0
\(528\) 4.00000 0.174078
\(529\) −7.00000 −0.304348
\(530\) 14.0000 0.608121
\(531\) 6.00000 0.260378
\(532\) 8.00000 0.346844
\(533\) 0 0
\(534\) 6.00000 0.259645
\(535\) −4.00000 −0.172935
\(536\) −2.00000 −0.0863868
\(537\) −2.00000 −0.0863064
\(538\) −2.00000 −0.0862261
\(539\) 12.0000 0.516877
\(540\) 1.00000 0.0430331
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) −16.0000 −0.687259
\(543\) 14.0000 0.600798
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) −6.00000 −0.256307
\(549\) −2.00000 −0.0853579
\(550\) 4.00000 0.170561
\(551\) −24.0000 −1.02243
\(552\) −4.00000 −0.170251
\(553\) −8.00000 −0.340195
\(554\) 6.00000 0.254916
\(555\) 6.00000 0.254686
\(556\) 4.00000 0.169638
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) −8.00000 −0.338667
\(559\) 0 0
\(560\) −2.00000 −0.0845154
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) 40.0000 1.68580 0.842900 0.538071i \(-0.180847\pi\)
0.842900 + 0.538071i \(0.180847\pi\)
\(564\) 8.00000 0.336861
\(565\) −18.0000 −0.757266
\(566\) −12.0000 −0.504398
\(567\) 2.00000 0.0839921
\(568\) −10.0000 −0.419591
\(569\) 34.0000 1.42535 0.712677 0.701492i \(-0.247483\pi\)
0.712677 + 0.701492i \(0.247483\pi\)
\(570\) −4.00000 −0.167542
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 0 0
\(573\) 20.0000 0.835512
\(574\) 16.0000 0.667827
\(575\) −4.00000 −0.166812
\(576\) 1.00000 0.0416667
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) 0 0
\(579\) 16.0000 0.664937
\(580\) 6.00000 0.249136
\(581\) −32.0000 −1.32758
\(582\) 8.00000 0.331611
\(583\) −56.0000 −2.31928
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) −32.0000 −1.32078 −0.660391 0.750922i \(-0.729609\pi\)
−0.660391 + 0.750922i \(0.729609\pi\)
\(588\) 3.00000 0.123718
\(589\) 32.0000 1.31854
\(590\) 6.00000 0.247016
\(591\) −6.00000 −0.246807
\(592\) 6.00000 0.246598
\(593\) 46.0000 1.88899 0.944497 0.328521i \(-0.106550\pi\)
0.944497 + 0.328521i \(0.106550\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) 20.0000 0.819232
\(597\) −8.00000 −0.327418
\(598\) 0 0
\(599\) 36.0000 1.47092 0.735460 0.677568i \(-0.236966\pi\)
0.735460 + 0.677568i \(0.236966\pi\)
\(600\) 1.00000 0.0408248
\(601\) −14.0000 −0.571072 −0.285536 0.958368i \(-0.592172\pi\)
−0.285536 + 0.958368i \(0.592172\pi\)
\(602\) −4.00000 −0.163028
\(603\) 2.00000 0.0814463
\(604\) −16.0000 −0.651031
\(605\) −5.00000 −0.203279
\(606\) −12.0000 −0.487467
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) −4.00000 −0.162221
\(609\) 12.0000 0.486265
\(610\) −2.00000 −0.0809776
\(611\) 0 0
\(612\) 0 0
\(613\) −36.0000 −1.45403 −0.727013 0.686624i \(-0.759092\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) −2.00000 −0.0807134
\(615\) −8.00000 −0.322591
\(616\) 8.00000 0.322329
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) −20.0000 −0.804518
\(619\) 12.0000 0.482321 0.241160 0.970485i \(-0.422472\pi\)
0.241160 + 0.970485i \(0.422472\pi\)
\(620\) −8.00000 −0.321288
\(621\) 4.00000 0.160514
\(622\) 10.0000 0.400963
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −8.00000 −0.319744
\(627\) 16.0000 0.638978
\(628\) 0 0
\(629\) 0 0
\(630\) 2.00000 0.0796819
\(631\) −24.0000 −0.955425 −0.477712 0.878516i \(-0.658534\pi\)
−0.477712 + 0.878516i \(0.658534\pi\)
\(632\) 4.00000 0.159111
\(633\) 4.00000 0.158986
\(634\) 18.0000 0.714871
\(635\) −4.00000 −0.158735
\(636\) −14.0000 −0.555136
\(637\) 0 0
\(638\) −24.0000 −0.950169
\(639\) 10.0000 0.395594
\(640\) 1.00000 0.0395285
\(641\) −28.0000 −1.10593 −0.552967 0.833203i \(-0.686504\pi\)
−0.552967 + 0.833203i \(0.686504\pi\)
\(642\) 4.00000 0.157867
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) −8.00000 −0.315244
\(645\) 2.00000 0.0787499
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −24.0000 −0.942082
\(650\) 0 0
\(651\) −16.0000 −0.627089
\(652\) −8.00000 −0.313304
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 2.00000 0.0782062
\(655\) 0 0
\(656\) −8.00000 −0.312348
\(657\) −4.00000 −0.156055
\(658\) 16.0000 0.623745
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) −4.00000 −0.155700
\(661\) −30.0000 −1.16686 −0.583432 0.812162i \(-0.698291\pi\)
−0.583432 + 0.812162i \(0.698291\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 16.0000 0.620920
\(665\) −8.00000 −0.310227
\(666\) −6.00000 −0.232495
\(667\) 24.0000 0.929284
\(668\) 16.0000 0.619059
\(669\) −4.00000 −0.154649
\(670\) 2.00000 0.0772667
\(671\) 8.00000 0.308837
\(672\) 2.00000 0.0771517
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 20.0000 0.770371
\(675\) −1.00000 −0.0384900
\(676\) −13.0000 −0.500000
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 18.0000 0.691286
\(679\) 16.0000 0.614024
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 32.0000 1.22534
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 4.00000 0.152944
\(685\) 6.00000 0.229248
\(686\) 20.0000 0.763604
\(687\) 26.0000 0.991962
\(688\) 2.00000 0.0762493
\(689\) 0 0
\(690\) 4.00000 0.152277
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) −2.00000 −0.0760286
\(693\) −8.00000 −0.303895
\(694\) −20.0000 −0.759190
\(695\) −4.00000 −0.151729
\(696\) −6.00000 −0.227429
\(697\) 0 0
\(698\) 14.0000 0.529908
\(699\) 10.0000 0.378235
\(700\) 2.00000 0.0755929
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) −4.00000 −0.150756
\(705\) −8.00000 −0.301297
\(706\) −6.00000 −0.225813
\(707\) −24.0000 −0.902613
\(708\) −6.00000 −0.225494
\(709\) −2.00000 −0.0751116 −0.0375558 0.999295i \(-0.511957\pi\)
−0.0375558 + 0.999295i \(0.511957\pi\)
\(710\) 10.0000 0.375293
\(711\) −4.00000 −0.150012
\(712\) −6.00000 −0.224860
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) 2.00000 0.0747435
\(717\) 0 0
\(718\) 4.00000 0.149279
\(719\) −14.0000 −0.522112 −0.261056 0.965324i \(-0.584071\pi\)
−0.261056 + 0.965324i \(0.584071\pi\)
\(720\) −1.00000 −0.0372678
\(721\) −40.0000 −1.48968
\(722\) 3.00000 0.111648
\(723\) 10.0000 0.371904
\(724\) −14.0000 −0.520306
\(725\) −6.00000 −0.222834
\(726\) 5.00000 0.185567
\(727\) −44.0000 −1.63187 −0.815935 0.578144i \(-0.803777\pi\)
−0.815935 + 0.578144i \(0.803777\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −4.00000 −0.148047
\(731\) 0 0
\(732\) 2.00000 0.0739221
\(733\) −44.0000 −1.62518 −0.812589 0.582838i \(-0.801942\pi\)
−0.812589 + 0.582838i \(0.801942\pi\)
\(734\) −38.0000 −1.40261
\(735\) −3.00000 −0.110657
\(736\) 4.00000 0.147442
\(737\) −8.00000 −0.294684
\(738\) 8.00000 0.294484
\(739\) −32.0000 −1.17714 −0.588570 0.808447i \(-0.700309\pi\)
−0.588570 + 0.808447i \(0.700309\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) −28.0000 −1.02791
\(743\) 40.0000 1.46746 0.733729 0.679442i \(-0.237778\pi\)
0.733729 + 0.679442i \(0.237778\pi\)
\(744\) 8.00000 0.293294
\(745\) −20.0000 −0.732743
\(746\) −36.0000 −1.31805
\(747\) −16.0000 −0.585409
\(748\) 0 0
\(749\) 8.00000 0.292314
\(750\) −1.00000 −0.0365148
\(751\) −36.0000 −1.31366 −0.656829 0.754039i \(-0.728103\pi\)
−0.656829 + 0.754039i \(0.728103\pi\)
\(752\) −8.00000 −0.291730
\(753\) 2.00000 0.0728841
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) −2.00000 −0.0727393
\(757\) 8.00000 0.290765 0.145382 0.989376i \(-0.453559\pi\)
0.145382 + 0.989376i \(0.453559\pi\)
\(758\) −28.0000 −1.01701
\(759\) −16.0000 −0.580763
\(760\) 4.00000 0.145095
\(761\) −46.0000 −1.66750 −0.833749 0.552143i \(-0.813810\pi\)
−0.833749 + 0.552143i \(0.813810\pi\)
\(762\) 4.00000 0.144905
\(763\) 4.00000 0.144810
\(764\) −20.0000 −0.723575
\(765\) 0 0
\(766\) 16.0000 0.578103
\(767\) 0 0
\(768\) −1.00000 −0.0360844
\(769\) −50.0000 −1.80305 −0.901523 0.432731i \(-0.857550\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) −8.00000 −0.288300
\(771\) −30.0000 −1.08042
\(772\) −16.0000 −0.575853
\(773\) 14.0000 0.503545 0.251773 0.967786i \(-0.418987\pi\)
0.251773 + 0.967786i \(0.418987\pi\)
\(774\) −2.00000 −0.0718885
\(775\) 8.00000 0.287368
\(776\) −8.00000 −0.287183
\(777\) −12.0000 −0.430498
\(778\) 36.0000 1.29066
\(779\) −32.0000 −1.14652
\(780\) 0 0
\(781\) −40.0000 −1.43131
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) −8.00000 −0.285169 −0.142585 0.989783i \(-0.545541\pi\)
−0.142585 + 0.989783i \(0.545541\pi\)
\(788\) 6.00000 0.213741
\(789\) −16.0000 −0.569615
\(790\) −4.00000 −0.142314
\(791\) 36.0000 1.28001
\(792\) 4.00000 0.142134
\(793\) 0 0
\(794\) 34.0000 1.20661
\(795\) 14.0000 0.496529
\(796\) 8.00000 0.283552
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 8.00000 0.283197
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) 6.00000 0.212000
\(802\) 20.0000 0.706225
\(803\) 16.0000 0.564628
\(804\) −2.00000 −0.0705346
\(805\) 8.00000 0.281963
\(806\) 0 0
\(807\) −2.00000 −0.0704033
\(808\) 12.0000 0.422159
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 1.00000 0.0351364
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) −12.0000 −0.421117
\(813\) −16.0000 −0.561144
\(814\) 24.0000 0.841200
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) 8.00000 0.279885
\(818\) 26.0000 0.909069
\(819\) 0 0
\(820\) 8.00000 0.279372
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) −6.00000 −0.209274
\(823\) 14.0000 0.488009 0.244005 0.969774i \(-0.421539\pi\)
0.244005 + 0.969774i \(0.421539\pi\)
\(824\) 20.0000 0.696733
\(825\) 4.00000 0.139262
\(826\) −12.0000 −0.417533
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) −4.00000 −0.139010
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) −16.0000 −0.555368
\(831\) 6.00000 0.208138
\(832\) 0 0
\(833\) 0 0
\(834\) 4.00000 0.138509
\(835\) −16.0000 −0.553703
\(836\) −16.0000 −0.553372
\(837\) −8.00000 −0.276520
\(838\) 32.0000 1.10542
\(839\) 6.00000 0.207143 0.103572 0.994622i \(-0.466973\pi\)
0.103572 + 0.994622i \(0.466973\pi\)
\(840\) −2.00000 −0.0690066
\(841\) 7.00000 0.241379
\(842\) 10.0000 0.344623
\(843\) 10.0000 0.344418
\(844\) −4.00000 −0.137686
\(845\) 13.0000 0.447214
\(846\) 8.00000 0.275046
\(847\) 10.0000 0.343604
\(848\) 14.0000 0.480762
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) −10.0000 −0.342594
\(853\) −6.00000 −0.205436 −0.102718 0.994711i \(-0.532754\pi\)
−0.102718 + 0.994711i \(0.532754\pi\)
\(854\) 4.00000 0.136877
\(855\) −4.00000 −0.136797
\(856\) −4.00000 −0.136717
\(857\) −26.0000 −0.888143 −0.444072 0.895991i \(-0.646466\pi\)
−0.444072 + 0.895991i \(0.646466\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) −2.00000 −0.0681994
\(861\) 16.0000 0.545279
\(862\) 10.0000 0.340601
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 1.00000 0.0340207
\(865\) 2.00000 0.0680020
\(866\) −6.00000 −0.203888
\(867\) 0 0
\(868\) 16.0000 0.543075
\(869\) 16.0000 0.542763
\(870\) 6.00000 0.203419
\(871\) 0 0
\(872\) −2.00000 −0.0677285
\(873\) 8.00000 0.270759
\(874\) 16.0000 0.541208
\(875\) −2.00000 −0.0676123
\(876\) 4.00000 0.135147
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) −28.0000 −0.944954
\(879\) −18.0000 −0.607125
\(880\) 4.00000 0.134840
\(881\) −44.0000 −1.48240 −0.741199 0.671286i \(-0.765742\pi\)
−0.741199 + 0.671286i \(0.765742\pi\)
\(882\) 3.00000 0.101015
\(883\) −2.00000 −0.0673054 −0.0336527 0.999434i \(-0.510714\pi\)
−0.0336527 + 0.999434i \(0.510714\pi\)
\(884\) 0 0
\(885\) 6.00000 0.201688
\(886\) 0 0
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 6.00000 0.201347
\(889\) 8.00000 0.268311
\(890\) 6.00000 0.201120
\(891\) −4.00000 −0.134005
\(892\) 4.00000 0.133930
\(893\) −32.0000 −1.07084
\(894\) 20.0000 0.668900
\(895\) −2.00000 −0.0668526
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) −12.0000 −0.400445
\(899\) −48.0000 −1.60089
\(900\) 1.00000 0.0333333
\(901\) 0 0
\(902\) −32.0000 −1.06548
\(903\) −4.00000 −0.133112
\(904\) −18.0000 −0.598671
\(905\) 14.0000 0.465376
\(906\) −16.0000 −0.531564
\(907\) 16.0000 0.531271 0.265636 0.964073i \(-0.414418\pi\)
0.265636 + 0.964073i \(0.414418\pi\)
\(908\) 12.0000 0.398234
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) −38.0000 −1.25900 −0.629498 0.777002i \(-0.716739\pi\)
−0.629498 + 0.777002i \(0.716739\pi\)
\(912\) −4.00000 −0.132453
\(913\) 64.0000 2.11809
\(914\) 18.0000 0.595387
\(915\) −2.00000 −0.0661180
\(916\) −26.0000 −0.859064
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) −4.00000 −0.131876
\(921\) −2.00000 −0.0659022
\(922\) −24.0000 −0.790398
\(923\) 0 0
\(924\) 8.00000 0.263181
\(925\) 6.00000 0.197279
\(926\) 4.00000 0.131448
\(927\) −20.0000 −0.656886
\(928\) 6.00000 0.196960
\(929\) 32.0000 1.04989 0.524943 0.851137i \(-0.324087\pi\)
0.524943 + 0.851137i \(0.324087\pi\)
\(930\) −8.00000 −0.262330
\(931\) −12.0000 −0.393284
\(932\) −10.0000 −0.327561
\(933\) 10.0000 0.327385
\(934\) 28.0000 0.916188
\(935\) 0 0
\(936\) 0 0
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) −4.00000 −0.130605
\(939\) −8.00000 −0.261070
\(940\) 8.00000 0.260931
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) 32.0000 1.04206
\(944\) 6.00000 0.195283
\(945\) 2.00000 0.0650600
\(946\) 8.00000 0.260102
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 4.00000 0.129914
\(949\) 0 0
\(950\) −4.00000 −0.129777
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) −54.0000 −1.74923 −0.874616 0.484817i \(-0.838886\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) −14.0000 −0.453267
\(955\) 20.0000 0.647185
\(956\) 0 0
\(957\) −24.0000 −0.775810
\(958\) 30.0000 0.969256
\(959\) −12.0000 −0.387500
\(960\) 1.00000 0.0322749
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 4.00000 0.128898
\(964\) −10.0000 −0.322078
\(965\) 16.0000 0.515058
\(966\) −8.00000 −0.257396
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) −5.00000 −0.160706
\(969\) 0 0
\(970\) 8.00000 0.256865
\(971\) 50.0000 1.60458 0.802288 0.596937i \(-0.203616\pi\)
0.802288 + 0.596937i \(0.203616\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 8.00000 0.256468
\(974\) 30.0000 0.961262
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) −8.00000 −0.255812
\(979\) −24.0000 −0.767043
\(980\) 3.00000 0.0958315
\(981\) 2.00000 0.0638551
\(982\) 6.00000 0.191468
\(983\) 48.0000 1.53096 0.765481 0.643458i \(-0.222501\pi\)
0.765481 + 0.643458i \(0.222501\pi\)
\(984\) −8.00000 −0.255031
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) 16.0000 0.509286
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) −4.00000 −0.127128
\(991\) −48.0000 −1.52477 −0.762385 0.647124i \(-0.775972\pi\)
−0.762385 + 0.647124i \(0.775972\pi\)
\(992\) −8.00000 −0.254000
\(993\) 0 0
\(994\) −20.0000 −0.634361
\(995\) −8.00000 −0.253617
\(996\) 16.0000 0.506979
\(997\) 62.0000 1.96356 0.981780 0.190022i \(-0.0608559\pi\)
0.981780 + 0.190022i \(0.0608559\pi\)
\(998\) 36.0000 1.13956
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8670.2.a.c.1.1 1
17.16 even 2 510.2.a.b.1.1 1
51.50 odd 2 1530.2.a.i.1.1 1
68.67 odd 2 4080.2.a.n.1.1 1
85.33 odd 4 2550.2.d.j.2449.2 2
85.67 odd 4 2550.2.d.j.2449.1 2
85.84 even 2 2550.2.a.y.1.1 1
255.254 odd 2 7650.2.a.y.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.a.b.1.1 1 17.16 even 2
1530.2.a.i.1.1 1 51.50 odd 2
2550.2.a.y.1.1 1 85.84 even 2
2550.2.d.j.2449.1 2 85.67 odd 4
2550.2.d.j.2449.2 2 85.33 odd 4
4080.2.a.n.1.1 1 68.67 odd 2
7650.2.a.y.1.1 1 255.254 odd 2
8670.2.a.c.1.1 1 1.1 even 1 trivial