Properties

Label 867.4.a.k.1.3
Level $867$
Weight $4$
Character 867.1
Self dual yes
Analytic conductor $51.155$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,4,Mod(1,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 867.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.1546559750\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.5912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 14x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.75985\) of defining polynomial
Character \(\chi\) \(=\) 867.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.75985 q^{2} -3.00000 q^{3} +14.6562 q^{4} +7.65616 q^{5} -14.2795 q^{6} +31.5852 q^{7} +31.6823 q^{8} +9.00000 q^{9} +36.4422 q^{10} +7.18910 q^{11} -43.9685 q^{12} +84.3331 q^{13} +150.341 q^{14} -22.9685 q^{15} +33.5537 q^{16} +42.8386 q^{18} -37.0838 q^{19} +112.210 q^{20} -94.7557 q^{21} +34.2190 q^{22} -150.218 q^{23} -95.0469 q^{24} -66.3832 q^{25} +401.413 q^{26} -27.0000 q^{27} +462.918 q^{28} +11.5846 q^{29} -109.326 q^{30} +53.2865 q^{31} -93.7478 q^{32} -21.5673 q^{33} +241.822 q^{35} +131.905 q^{36} +99.2134 q^{37} -176.513 q^{38} -252.999 q^{39} +242.565 q^{40} -118.249 q^{41} -451.023 q^{42} -456.016 q^{43} +105.365 q^{44} +68.9054 q^{45} -715.014 q^{46} +571.014 q^{47} -100.661 q^{48} +654.627 q^{49} -315.974 q^{50} +1236.00 q^{52} +462.867 q^{53} -128.516 q^{54} +55.0409 q^{55} +1000.69 q^{56} +111.251 q^{57} +55.1407 q^{58} +48.0674 q^{59} -336.630 q^{60} -59.5236 q^{61} +253.636 q^{62} +284.267 q^{63} -714.655 q^{64} +645.668 q^{65} -102.657 q^{66} -740.787 q^{67} +450.653 q^{69} +1151.03 q^{70} +930.437 q^{71} +285.141 q^{72} +697.419 q^{73} +472.241 q^{74} +199.150 q^{75} -543.506 q^{76} +227.070 q^{77} -1204.24 q^{78} -1036.04 q^{79} +256.893 q^{80} +81.0000 q^{81} -562.849 q^{82} -22.2043 q^{83} -1388.75 q^{84} -2170.57 q^{86} -34.7537 q^{87} +227.767 q^{88} -369.726 q^{89} +327.979 q^{90} +2663.68 q^{91} -2201.62 q^{92} -159.860 q^{93} +2717.94 q^{94} -283.920 q^{95} +281.244 q^{96} -1139.56 q^{97} +3115.93 q^{98} +64.7019 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 5 q^{2} - 9 q^{3} + 13 q^{4} - 8 q^{5} - 15 q^{6} + 8 q^{7} + 33 q^{8} + 27 q^{9} + 38 q^{10} - 34 q^{11} - 39 q^{12} + 36 q^{13} + 104 q^{14} + 24 q^{15} - 79 q^{16} + 45 q^{18} - 142 q^{19} + 126 q^{20}+ \cdots - 306 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.75985 1.68286 0.841430 0.540366i \(-0.181714\pi\)
0.841430 + 0.540366i \(0.181714\pi\)
\(3\) −3.00000 −0.577350
\(4\) 14.6562 1.83202
\(5\) 7.65616 0.684788 0.342394 0.939557i \(-0.388762\pi\)
0.342394 + 0.939557i \(0.388762\pi\)
\(6\) −14.2795 −0.971600
\(7\) 31.5852 1.70544 0.852721 0.522366i \(-0.174951\pi\)
0.852721 + 0.522366i \(0.174951\pi\)
\(8\) 31.6823 1.40017
\(9\) 9.00000 0.333333
\(10\) 36.4422 1.15240
\(11\) 7.18910 0.197054 0.0985271 0.995134i \(-0.468587\pi\)
0.0985271 + 0.995134i \(0.468587\pi\)
\(12\) −43.9685 −1.05772
\(13\) 84.3331 1.79921 0.899607 0.436700i \(-0.143853\pi\)
0.899607 + 0.436700i \(0.143853\pi\)
\(14\) 150.341 2.87002
\(15\) −22.9685 −0.395362
\(16\) 33.5537 0.524277
\(17\) 0 0
\(18\) 42.8386 0.560954
\(19\) −37.0838 −0.447769 −0.223885 0.974616i \(-0.571874\pi\)
−0.223885 + 0.974616i \(0.571874\pi\)
\(20\) 112.210 1.25454
\(21\) −94.7557 −0.984638
\(22\) 34.2190 0.331615
\(23\) −150.218 −1.36185 −0.680925 0.732353i \(-0.738422\pi\)
−0.680925 + 0.732353i \(0.738422\pi\)
\(24\) −95.0469 −0.808390
\(25\) −66.3832 −0.531066
\(26\) 401.413 3.02783
\(27\) −27.0000 −0.192450
\(28\) 462.918 3.12440
\(29\) 11.5846 0.0741792 0.0370896 0.999312i \(-0.488191\pi\)
0.0370896 + 0.999312i \(0.488191\pi\)
\(30\) −109.326 −0.665340
\(31\) 53.2865 0.308727 0.154364 0.988014i \(-0.450667\pi\)
0.154364 + 0.988014i \(0.450667\pi\)
\(32\) −93.7478 −0.517889
\(33\) −21.5673 −0.113769
\(34\) 0 0
\(35\) 241.822 1.16787
\(36\) 131.905 0.610673
\(37\) 99.2134 0.440827 0.220413 0.975407i \(-0.429259\pi\)
0.220413 + 0.975407i \(0.429259\pi\)
\(38\) −176.513 −0.753533
\(39\) −252.999 −1.03878
\(40\) 242.565 0.958821
\(41\) −118.249 −0.450425 −0.225213 0.974310i \(-0.572308\pi\)
−0.225213 + 0.974310i \(0.572308\pi\)
\(42\) −451.023 −1.65701
\(43\) −456.016 −1.61725 −0.808626 0.588323i \(-0.799789\pi\)
−0.808626 + 0.588323i \(0.799789\pi\)
\(44\) 105.365 0.361007
\(45\) 68.9054 0.228263
\(46\) −715.014 −2.29180
\(47\) 571.014 1.77215 0.886073 0.463545i \(-0.153423\pi\)
0.886073 + 0.463545i \(0.153423\pi\)
\(48\) −100.661 −0.302691
\(49\) 654.627 1.90853
\(50\) −315.974 −0.893710
\(51\) 0 0
\(52\) 1236.00 3.29620
\(53\) 462.867 1.19962 0.599809 0.800143i \(-0.295243\pi\)
0.599809 + 0.800143i \(0.295243\pi\)
\(54\) −128.516 −0.323867
\(55\) 55.0409 0.134940
\(56\) 1000.69 2.38792
\(57\) 111.251 0.258520
\(58\) 55.1407 0.124833
\(59\) 48.0674 0.106065 0.0530325 0.998593i \(-0.483111\pi\)
0.0530325 + 0.998593i \(0.483111\pi\)
\(60\) −336.630 −0.724312
\(61\) −59.5236 −0.124938 −0.0624689 0.998047i \(-0.519897\pi\)
−0.0624689 + 0.998047i \(0.519897\pi\)
\(62\) 253.636 0.519545
\(63\) 284.267 0.568481
\(64\) −714.655 −1.39581
\(65\) 645.668 1.23208
\(66\) −102.657 −0.191458
\(67\) −740.787 −1.35077 −0.675384 0.737466i \(-0.736022\pi\)
−0.675384 + 0.737466i \(0.736022\pi\)
\(68\) 0 0
\(69\) 450.653 0.786265
\(70\) 1151.03 1.96536
\(71\) 930.437 1.55525 0.777623 0.628730i \(-0.216425\pi\)
0.777623 + 0.628730i \(0.216425\pi\)
\(72\) 285.141 0.466724
\(73\) 697.419 1.11817 0.559087 0.829109i \(-0.311152\pi\)
0.559087 + 0.829109i \(0.311152\pi\)
\(74\) 472.241 0.741850
\(75\) 199.150 0.306611
\(76\) −543.506 −0.820322
\(77\) 227.070 0.336065
\(78\) −1204.24 −1.74812
\(79\) −1036.04 −1.47549 −0.737747 0.675077i \(-0.764110\pi\)
−0.737747 + 0.675077i \(0.764110\pi\)
\(80\) 256.893 0.359018
\(81\) 81.0000 0.111111
\(82\) −562.849 −0.758003
\(83\) −22.2043 −0.0293643 −0.0146822 0.999892i \(-0.504674\pi\)
−0.0146822 + 0.999892i \(0.504674\pi\)
\(84\) −1388.75 −1.80388
\(85\) 0 0
\(86\) −2170.57 −2.72161
\(87\) −34.7537 −0.0428274
\(88\) 227.767 0.275910
\(89\) −369.726 −0.440346 −0.220173 0.975461i \(-0.570662\pi\)
−0.220173 + 0.975461i \(0.570662\pi\)
\(90\) 327.979 0.384134
\(91\) 2663.68 3.06846
\(92\) −2201.62 −2.49494
\(93\) −159.860 −0.178244
\(94\) 2717.94 2.98228
\(95\) −283.920 −0.306627
\(96\) 281.244 0.299003
\(97\) −1139.56 −1.19283 −0.596415 0.802676i \(-0.703409\pi\)
−0.596415 + 0.802676i \(0.703409\pi\)
\(98\) 3115.93 3.21180
\(99\) 64.7019 0.0656847
\(100\) −972.923 −0.972923
\(101\) 703.083 0.692667 0.346334 0.938111i \(-0.387427\pi\)
0.346334 + 0.938111i \(0.387427\pi\)
\(102\) 0 0
\(103\) −897.160 −0.858250 −0.429125 0.903245i \(-0.641178\pi\)
−0.429125 + 0.903245i \(0.641178\pi\)
\(104\) 2671.87 2.51921
\(105\) −725.465 −0.674268
\(106\) 2203.18 2.01879
\(107\) 1901.21 1.71773 0.858864 0.512203i \(-0.171171\pi\)
0.858864 + 0.512203i \(0.171171\pi\)
\(108\) −395.716 −0.352572
\(109\) −584.555 −0.513671 −0.256836 0.966455i \(-0.582680\pi\)
−0.256836 + 0.966455i \(0.582680\pi\)
\(110\) 261.986 0.227086
\(111\) −297.640 −0.254511
\(112\) 1059.80 0.894124
\(113\) 63.4225 0.0527990 0.0263995 0.999651i \(-0.491596\pi\)
0.0263995 + 0.999651i \(0.491596\pi\)
\(114\) 529.540 0.435052
\(115\) −1150.09 −0.932578
\(116\) 169.785 0.135898
\(117\) 758.998 0.599738
\(118\) 228.793 0.178493
\(119\) 0 0
\(120\) −727.694 −0.553576
\(121\) −1279.32 −0.961170
\(122\) −283.323 −0.210253
\(123\) 354.748 0.260053
\(124\) 780.976 0.565594
\(125\) −1465.26 −1.04845
\(126\) 1353.07 0.956674
\(127\) 175.543 0.122653 0.0613266 0.998118i \(-0.480467\pi\)
0.0613266 + 0.998118i \(0.480467\pi\)
\(128\) −2651.67 −1.83107
\(129\) 1368.05 0.933721
\(130\) 3073.28 2.07342
\(131\) −1865.42 −1.24414 −0.622070 0.782961i \(-0.713708\pi\)
−0.622070 + 0.782961i \(0.713708\pi\)
\(132\) −316.094 −0.208428
\(133\) −1171.30 −0.763644
\(134\) −3526.03 −2.27315
\(135\) −206.716 −0.131787
\(136\) 0 0
\(137\) 1057.57 0.659519 0.329760 0.944065i \(-0.393032\pi\)
0.329760 + 0.944065i \(0.393032\pi\)
\(138\) 2145.04 1.32317
\(139\) −904.833 −0.552136 −0.276068 0.961138i \(-0.589032\pi\)
−0.276068 + 0.961138i \(0.589032\pi\)
\(140\) 3544.18 2.13955
\(141\) −1713.04 −1.02315
\(142\) 4428.74 2.61726
\(143\) 606.279 0.354543
\(144\) 301.983 0.174759
\(145\) 88.6932 0.0507970
\(146\) 3319.61 1.88173
\(147\) −1963.88 −1.10189
\(148\) 1454.09 0.807603
\(149\) 809.001 0.444805 0.222402 0.974955i \(-0.428610\pi\)
0.222402 + 0.974955i \(0.428610\pi\)
\(150\) 947.922 0.515984
\(151\) −352.121 −0.189769 −0.0948847 0.995488i \(-0.530248\pi\)
−0.0948847 + 0.995488i \(0.530248\pi\)
\(152\) −1174.90 −0.626954
\(153\) 0 0
\(154\) 1080.82 0.565550
\(155\) 407.970 0.211413
\(156\) −3708.00 −1.90306
\(157\) 537.882 0.273424 0.136712 0.990611i \(-0.456346\pi\)
0.136712 + 0.990611i \(0.456346\pi\)
\(158\) −4931.41 −2.48305
\(159\) −1388.60 −0.692599
\(160\) −717.748 −0.354644
\(161\) −4744.66 −2.32256
\(162\) 385.548 0.186985
\(163\) −1922.74 −0.923933 −0.461966 0.886897i \(-0.652856\pi\)
−0.461966 + 0.886897i \(0.652856\pi\)
\(164\) −1733.08 −0.825188
\(165\) −165.123 −0.0779078
\(166\) −105.689 −0.0494160
\(167\) 2971.76 1.37702 0.688509 0.725228i \(-0.258266\pi\)
0.688509 + 0.725228i \(0.258266\pi\)
\(168\) −3002.08 −1.37866
\(169\) 4915.07 2.23717
\(170\) 0 0
\(171\) −333.754 −0.149256
\(172\) −6683.45 −2.96284
\(173\) −988.564 −0.434446 −0.217223 0.976122i \(-0.569700\pi\)
−0.217223 + 0.976122i \(0.569700\pi\)
\(174\) −165.422 −0.0720725
\(175\) −2096.73 −0.905702
\(176\) 241.221 0.103311
\(177\) −144.202 −0.0612367
\(178\) −1759.84 −0.741042
\(179\) −1937.65 −0.809089 −0.404545 0.914518i \(-0.632570\pi\)
−0.404545 + 0.914518i \(0.632570\pi\)
\(180\) 1009.89 0.418182
\(181\) 2180.07 0.895267 0.447634 0.894217i \(-0.352267\pi\)
0.447634 + 0.894217i \(0.352267\pi\)
\(182\) 12678.7 5.16379
\(183\) 178.571 0.0721329
\(184\) −4759.24 −1.90683
\(185\) 759.594 0.301873
\(186\) −760.907 −0.299959
\(187\) 0 0
\(188\) 8368.86 3.24661
\(189\) −852.801 −0.328213
\(190\) −1351.41 −0.516010
\(191\) 1675.78 0.634845 0.317423 0.948284i \(-0.397183\pi\)
0.317423 + 0.948284i \(0.397183\pi\)
\(192\) 2143.97 0.805872
\(193\) 257.961 0.0962094 0.0481047 0.998842i \(-0.484682\pi\)
0.0481047 + 0.998842i \(0.484682\pi\)
\(194\) −5424.12 −2.00737
\(195\) −1937.00 −0.711342
\(196\) 9594.32 3.49647
\(197\) 693.466 0.250799 0.125399 0.992106i \(-0.459979\pi\)
0.125399 + 0.992106i \(0.459979\pi\)
\(198\) 307.971 0.110538
\(199\) 240.295 0.0855984 0.0427992 0.999084i \(-0.486372\pi\)
0.0427992 + 0.999084i \(0.486372\pi\)
\(200\) −2103.17 −0.743584
\(201\) 2222.36 0.779866
\(202\) 3346.57 1.16566
\(203\) 365.901 0.126508
\(204\) 0 0
\(205\) −905.335 −0.308446
\(206\) −4270.34 −1.44432
\(207\) −1351.96 −0.453950
\(208\) 2829.69 0.943287
\(209\) −266.599 −0.0882348
\(210\) −3453.10 −1.13470
\(211\) −268.114 −0.0874774 −0.0437387 0.999043i \(-0.513927\pi\)
−0.0437387 + 0.999043i \(0.513927\pi\)
\(212\) 6783.86 2.19772
\(213\) −2791.31 −0.897922
\(214\) 9049.47 2.89070
\(215\) −3491.33 −1.10747
\(216\) −855.422 −0.269463
\(217\) 1683.07 0.526516
\(218\) −2782.39 −0.864437
\(219\) −2092.26 −0.645578
\(220\) 806.688 0.247213
\(221\) 0 0
\(222\) −1416.72 −0.428307
\(223\) −5524.43 −1.65894 −0.829468 0.558554i \(-0.811357\pi\)
−0.829468 + 0.558554i \(0.811357\pi\)
\(224\) −2961.05 −0.883229
\(225\) −597.449 −0.177022
\(226\) 301.882 0.0888534
\(227\) 384.400 0.112394 0.0561972 0.998420i \(-0.482102\pi\)
0.0561972 + 0.998420i \(0.482102\pi\)
\(228\) 1630.52 0.473613
\(229\) 1395.48 0.402690 0.201345 0.979520i \(-0.435469\pi\)
0.201345 + 0.979520i \(0.435469\pi\)
\(230\) −5474.26 −1.56940
\(231\) −681.209 −0.194027
\(232\) 367.025 0.103864
\(233\) −3409.39 −0.958613 −0.479307 0.877648i \(-0.659112\pi\)
−0.479307 + 0.877648i \(0.659112\pi\)
\(234\) 3612.71 1.00928
\(235\) 4371.77 1.21354
\(236\) 704.483 0.194313
\(237\) 3108.13 0.851877
\(238\) 0 0
\(239\) −1509.18 −0.408456 −0.204228 0.978923i \(-0.565468\pi\)
−0.204228 + 0.978923i \(0.565468\pi\)
\(240\) −770.678 −0.207279
\(241\) −3406.91 −0.910615 −0.455307 0.890334i \(-0.650471\pi\)
−0.455307 + 0.890334i \(0.650471\pi\)
\(242\) −6089.35 −1.61751
\(243\) −243.000 −0.0641500
\(244\) −872.387 −0.228889
\(245\) 5011.93 1.30694
\(246\) 1688.55 0.437633
\(247\) −3127.39 −0.805633
\(248\) 1688.24 0.432271
\(249\) 66.6129 0.0169535
\(250\) −6974.42 −1.76440
\(251\) 3394.43 0.853605 0.426802 0.904345i \(-0.359640\pi\)
0.426802 + 0.904345i \(0.359640\pi\)
\(252\) 4166.26 1.04147
\(253\) −1079.93 −0.268358
\(254\) 835.560 0.206408
\(255\) 0 0
\(256\) −6904.30 −1.68562
\(257\) 1778.91 0.431772 0.215886 0.976419i \(-0.430736\pi\)
0.215886 + 0.976419i \(0.430736\pi\)
\(258\) 6511.71 1.57132
\(259\) 3133.68 0.751804
\(260\) 9463.01 2.25719
\(261\) 104.261 0.0247264
\(262\) −8879.11 −2.09372
\(263\) −4316.88 −1.01213 −0.506065 0.862495i \(-0.668900\pi\)
−0.506065 + 0.862495i \(0.668900\pi\)
\(264\) −683.302 −0.159297
\(265\) 3543.79 0.821483
\(266\) −5575.22 −1.28511
\(267\) 1109.18 0.254234
\(268\) −10857.1 −2.47463
\(269\) −6546.31 −1.48378 −0.741888 0.670524i \(-0.766069\pi\)
−0.741888 + 0.670524i \(0.766069\pi\)
\(270\) −983.938 −0.221780
\(271\) 3785.20 0.848466 0.424233 0.905553i \(-0.360544\pi\)
0.424233 + 0.905553i \(0.360544\pi\)
\(272\) 0 0
\(273\) −7991.04 −1.77157
\(274\) 5033.86 1.10988
\(275\) −477.236 −0.104649
\(276\) 6604.85 1.44045
\(277\) 3521.06 0.763755 0.381878 0.924213i \(-0.375278\pi\)
0.381878 + 0.924213i \(0.375278\pi\)
\(278\) −4306.87 −0.929168
\(279\) 479.579 0.102909
\(280\) 7661.47 1.63521
\(281\) −2922.30 −0.620391 −0.310195 0.950673i \(-0.600394\pi\)
−0.310195 + 0.950673i \(0.600394\pi\)
\(282\) −8153.81 −1.72182
\(283\) −735.075 −0.154402 −0.0772008 0.997016i \(-0.524598\pi\)
−0.0772008 + 0.997016i \(0.524598\pi\)
\(284\) 13636.6 2.84924
\(285\) 851.759 0.177031
\(286\) 2885.80 0.596646
\(287\) −3734.93 −0.768175
\(288\) −843.731 −0.172630
\(289\) 0 0
\(290\) 422.166 0.0854843
\(291\) 3418.67 0.688681
\(292\) 10221.5 2.04852
\(293\) −8702.92 −1.73526 −0.867628 0.497213i \(-0.834357\pi\)
−0.867628 + 0.497213i \(0.834357\pi\)
\(294\) −9347.78 −1.85433
\(295\) 368.011 0.0726320
\(296\) 3143.31 0.617234
\(297\) −194.106 −0.0379231
\(298\) 3850.72 0.748545
\(299\) −12668.3 −2.45026
\(300\) 2918.77 0.561717
\(301\) −14403.4 −2.75813
\(302\) −1676.04 −0.319355
\(303\) −2109.25 −0.399912
\(304\) −1244.30 −0.234755
\(305\) −455.722 −0.0855559
\(306\) 0 0
\(307\) 2516.95 0.467916 0.233958 0.972247i \(-0.424832\pi\)
0.233958 + 0.972247i \(0.424832\pi\)
\(308\) 3327.97 0.615677
\(309\) 2691.48 0.495511
\(310\) 1941.88 0.355778
\(311\) −6593.31 −1.20216 −0.601081 0.799188i \(-0.705263\pi\)
−0.601081 + 0.799188i \(0.705263\pi\)
\(312\) −8015.60 −1.45447
\(313\) −4392.99 −0.793312 −0.396656 0.917967i \(-0.629829\pi\)
−0.396656 + 0.917967i \(0.629829\pi\)
\(314\) 2560.24 0.460135
\(315\) 2176.39 0.389289
\(316\) −15184.4 −2.70314
\(317\) −2601.23 −0.460882 −0.230441 0.973086i \(-0.574017\pi\)
−0.230441 + 0.973086i \(0.574017\pi\)
\(318\) −6609.54 −1.16555
\(319\) 83.2825 0.0146173
\(320\) −5471.51 −0.955834
\(321\) −5703.63 −0.991731
\(322\) −22583.9 −3.90854
\(323\) 0 0
\(324\) 1187.15 0.203558
\(325\) −5598.30 −0.955502
\(326\) −9151.97 −1.55485
\(327\) 1753.66 0.296568
\(328\) −3746.41 −0.630674
\(329\) 18035.6 3.02229
\(330\) −785.959 −0.131108
\(331\) −4670.49 −0.775568 −0.387784 0.921750i \(-0.626759\pi\)
−0.387784 + 0.921750i \(0.626759\pi\)
\(332\) −325.430 −0.0537960
\(333\) 892.921 0.146942
\(334\) 14145.1 2.31733
\(335\) −5671.58 −0.924989
\(336\) −3179.41 −0.516223
\(337\) −1801.67 −0.291226 −0.145613 0.989342i \(-0.546515\pi\)
−0.145613 + 0.989342i \(0.546515\pi\)
\(338\) 23395.0 3.76485
\(339\) −190.268 −0.0304835
\(340\) 0 0
\(341\) 383.082 0.0608360
\(342\) −1588.62 −0.251178
\(343\) 9842.83 1.54945
\(344\) −14447.7 −2.26443
\(345\) 3450.27 0.538424
\(346\) −4705.41 −0.731112
\(347\) −168.340 −0.0260431 −0.0130216 0.999915i \(-0.504145\pi\)
−0.0130216 + 0.999915i \(0.504145\pi\)
\(348\) −509.355 −0.0784606
\(349\) −4447.85 −0.682200 −0.341100 0.940027i \(-0.610799\pi\)
−0.341100 + 0.940027i \(0.610799\pi\)
\(350\) −9980.12 −1.52417
\(351\) −2276.99 −0.346259
\(352\) −673.963 −0.102052
\(353\) −10509.5 −1.58460 −0.792298 0.610135i \(-0.791115\pi\)
−0.792298 + 0.610135i \(0.791115\pi\)
\(354\) −686.380 −0.103053
\(355\) 7123.57 1.06501
\(356\) −5418.76 −0.806723
\(357\) 0 0
\(358\) −9222.93 −1.36158
\(359\) 8342.99 1.22654 0.613268 0.789875i \(-0.289855\pi\)
0.613268 + 0.789875i \(0.289855\pi\)
\(360\) 2183.08 0.319607
\(361\) −5483.79 −0.799503
\(362\) 10376.8 1.50661
\(363\) 3837.95 0.554932
\(364\) 39039.3 5.62147
\(365\) 5339.55 0.765712
\(366\) 849.969 0.121390
\(367\) −352.402 −0.0501232 −0.0250616 0.999686i \(-0.507978\pi\)
−0.0250616 + 0.999686i \(0.507978\pi\)
\(368\) −5040.36 −0.713987
\(369\) −1064.24 −0.150142
\(370\) 3615.55 0.508009
\(371\) 14619.8 2.04588
\(372\) −2342.93 −0.326546
\(373\) 12563.2 1.74397 0.871983 0.489537i \(-0.162834\pi\)
0.871983 + 0.489537i \(0.162834\pi\)
\(374\) 0 0
\(375\) 4395.78 0.605326
\(376\) 18091.0 2.48131
\(377\) 976.961 0.133464
\(378\) −4059.21 −0.552336
\(379\) 1770.57 0.239969 0.119984 0.992776i \(-0.461716\pi\)
0.119984 + 0.992776i \(0.461716\pi\)
\(380\) −4161.17 −0.561746
\(381\) −526.630 −0.0708139
\(382\) 7976.47 1.06836
\(383\) 4330.57 0.577759 0.288880 0.957365i \(-0.406717\pi\)
0.288880 + 0.957365i \(0.406717\pi\)
\(384\) 7955.00 1.05717
\(385\) 1738.48 0.230133
\(386\) 1227.85 0.161907
\(387\) −4104.15 −0.539084
\(388\) −16701.5 −2.18529
\(389\) 10295.5 1.34191 0.670957 0.741496i \(-0.265883\pi\)
0.670957 + 0.741496i \(0.265883\pi\)
\(390\) −9219.84 −1.19709
\(391\) 0 0
\(392\) 20740.1 2.67228
\(393\) 5596.26 0.718305
\(394\) 3300.79 0.422060
\(395\) −7932.12 −1.01040
\(396\) 948.282 0.120336
\(397\) −93.1792 −0.0117797 −0.00588983 0.999983i \(-0.501875\pi\)
−0.00588983 + 0.999983i \(0.501875\pi\)
\(398\) 1143.77 0.144050
\(399\) 3513.90 0.440890
\(400\) −2227.40 −0.278426
\(401\) 13320.9 1.65889 0.829443 0.558591i \(-0.188658\pi\)
0.829443 + 0.558591i \(0.188658\pi\)
\(402\) 10578.1 1.31241
\(403\) 4493.82 0.555466
\(404\) 10304.5 1.26898
\(405\) 620.149 0.0760875
\(406\) 1741.63 0.212896
\(407\) 713.255 0.0868667
\(408\) 0 0
\(409\) 9272.21 1.12098 0.560491 0.828161i \(-0.310613\pi\)
0.560491 + 0.828161i \(0.310613\pi\)
\(410\) −4309.26 −0.519071
\(411\) −3172.70 −0.380774
\(412\) −13148.9 −1.57233
\(413\) 1518.22 0.180888
\(414\) −6435.12 −0.763935
\(415\) −170.000 −0.0201083
\(416\) −7906.05 −0.931793
\(417\) 2714.50 0.318776
\(418\) −1268.97 −0.148487
\(419\) −11325.4 −1.32049 −0.660244 0.751051i \(-0.729547\pi\)
−0.660244 + 0.751051i \(0.729547\pi\)
\(420\) −10632.5 −1.23527
\(421\) 6934.54 0.802776 0.401388 0.915908i \(-0.368528\pi\)
0.401388 + 0.915908i \(0.368528\pi\)
\(422\) −1276.18 −0.147212
\(423\) 5139.12 0.590715
\(424\) 14664.7 1.67967
\(425\) 0 0
\(426\) −13286.2 −1.51108
\(427\) −1880.07 −0.213074
\(428\) 27864.4 3.14691
\(429\) −1818.84 −0.204695
\(430\) −16618.2 −1.86373
\(431\) 2776.55 0.310306 0.155153 0.987890i \(-0.450413\pi\)
0.155153 + 0.987890i \(0.450413\pi\)
\(432\) −905.950 −0.100897
\(433\) −3252.22 −0.360951 −0.180476 0.983579i \(-0.557764\pi\)
−0.180476 + 0.983579i \(0.557764\pi\)
\(434\) 8011.15 0.886054
\(435\) −266.080 −0.0293277
\(436\) −8567.32 −0.941056
\(437\) 5570.65 0.609795
\(438\) −9958.82 −1.08642
\(439\) 13345.7 1.45093 0.725464 0.688260i \(-0.241625\pi\)
0.725464 + 0.688260i \(0.241625\pi\)
\(440\) 1743.82 0.188940
\(441\) 5891.65 0.636178
\(442\) 0 0
\(443\) 11639.6 1.24834 0.624169 0.781290i \(-0.285438\pi\)
0.624169 + 0.781290i \(0.285438\pi\)
\(444\) −4362.26 −0.466270
\(445\) −2830.68 −0.301544
\(446\) −26295.4 −2.79176
\(447\) −2427.00 −0.256808
\(448\) −22572.6 −2.38048
\(449\) 6937.72 0.729201 0.364601 0.931164i \(-0.381206\pi\)
0.364601 + 0.931164i \(0.381206\pi\)
\(450\) −2843.77 −0.297903
\(451\) −850.106 −0.0887582
\(452\) 929.531 0.0967289
\(453\) 1056.36 0.109563
\(454\) 1829.69 0.189144
\(455\) 20393.6 2.10124
\(456\) 3524.70 0.361972
\(457\) −10285.8 −1.05284 −0.526422 0.850224i \(-0.676467\pi\)
−0.526422 + 0.850224i \(0.676467\pi\)
\(458\) 6642.28 0.677671
\(459\) 0 0
\(460\) −16855.9 −1.70850
\(461\) −625.833 −0.0632277 −0.0316138 0.999500i \(-0.510065\pi\)
−0.0316138 + 0.999500i \(0.510065\pi\)
\(462\) −3242.45 −0.326520
\(463\) −6055.97 −0.607872 −0.303936 0.952692i \(-0.598301\pi\)
−0.303936 + 0.952692i \(0.598301\pi\)
\(464\) 388.705 0.0388904
\(465\) −1223.91 −0.122059
\(466\) −16228.2 −1.61321
\(467\) −815.966 −0.0808531 −0.0404265 0.999183i \(-0.512872\pi\)
−0.0404265 + 0.999183i \(0.512872\pi\)
\(468\) 11124.0 1.09873
\(469\) −23397.9 −2.30366
\(470\) 20809.0 2.04223
\(471\) −1613.65 −0.157862
\(472\) 1522.88 0.148509
\(473\) −3278.35 −0.318686
\(474\) 14794.2 1.43359
\(475\) 2461.74 0.237795
\(476\) 0 0
\(477\) 4165.81 0.399872
\(478\) −7183.49 −0.687375
\(479\) 16219.1 1.54712 0.773559 0.633724i \(-0.218475\pi\)
0.773559 + 0.633724i \(0.218475\pi\)
\(480\) 2153.25 0.204754
\(481\) 8366.97 0.793142
\(482\) −16216.4 −1.53244
\(483\) 14234.0 1.34093
\(484\) −18749.9 −1.76088
\(485\) −8724.63 −0.816835
\(486\) −1156.64 −0.107956
\(487\) −2725.13 −0.253568 −0.126784 0.991930i \(-0.540465\pi\)
−0.126784 + 0.991930i \(0.540465\pi\)
\(488\) −1885.84 −0.174935
\(489\) 5768.23 0.533433
\(490\) 23856.0 2.19940
\(491\) −8344.13 −0.766935 −0.383468 0.923554i \(-0.625270\pi\)
−0.383468 + 0.923554i \(0.625270\pi\)
\(492\) 5199.24 0.476423
\(493\) 0 0
\(494\) −14885.9 −1.35577
\(495\) 495.368 0.0449801
\(496\) 1787.96 0.161858
\(497\) 29388.1 2.65238
\(498\) 317.067 0.0285304
\(499\) −13762.0 −1.23461 −0.617306 0.786723i \(-0.711776\pi\)
−0.617306 + 0.786723i \(0.711776\pi\)
\(500\) −21475.1 −1.92079
\(501\) −8915.29 −0.795022
\(502\) 16157.0 1.43650
\(503\) 11909.5 1.05570 0.527852 0.849336i \(-0.322997\pi\)
0.527852 + 0.849336i \(0.322997\pi\)
\(504\) 9006.24 0.795972
\(505\) 5382.92 0.474330
\(506\) −5140.31 −0.451610
\(507\) −14745.2 −1.29163
\(508\) 2572.79 0.224703
\(509\) 742.666 0.0646721 0.0323360 0.999477i \(-0.489705\pi\)
0.0323360 + 0.999477i \(0.489705\pi\)
\(510\) 0 0
\(511\) 22028.1 1.90698
\(512\) −11650.1 −1.00560
\(513\) 1001.26 0.0861732
\(514\) 8467.35 0.726612
\(515\) −6868.80 −0.587719
\(516\) 20050.3 1.71060
\(517\) 4105.07 0.349209
\(518\) 14915.8 1.26518
\(519\) 2965.69 0.250827
\(520\) 20456.2 1.72513
\(521\) 4815.73 0.404953 0.202477 0.979287i \(-0.435101\pi\)
0.202477 + 0.979287i \(0.435101\pi\)
\(522\) 496.266 0.0416111
\(523\) −16249.5 −1.35858 −0.679291 0.733869i \(-0.737713\pi\)
−0.679291 + 0.733869i \(0.737713\pi\)
\(524\) −27339.9 −2.27929
\(525\) 6290.19 0.522908
\(526\) −20547.7 −1.70327
\(527\) 0 0
\(528\) −723.663 −0.0596466
\(529\) 10398.4 0.854637
\(530\) 16867.9 1.38244
\(531\) 432.606 0.0353550
\(532\) −17166.8 −1.39901
\(533\) −9972.33 −0.810412
\(534\) 5279.51 0.427841
\(535\) 14556.0 1.17628
\(536\) −23469.8 −1.89131
\(537\) 5812.96 0.467128
\(538\) −31159.4 −2.49699
\(539\) 4706.18 0.376085
\(540\) −3029.67 −0.241437
\(541\) 5458.04 0.433751 0.216876 0.976199i \(-0.430413\pi\)
0.216876 + 0.976199i \(0.430413\pi\)
\(542\) 18017.0 1.42785
\(543\) −6540.21 −0.516883
\(544\) 0 0
\(545\) −4475.44 −0.351756
\(546\) −38036.2 −2.98131
\(547\) −17237.0 −1.34735 −0.673677 0.739026i \(-0.735286\pi\)
−0.673677 + 0.739026i \(0.735286\pi\)
\(548\) 15499.9 1.20825
\(549\) −535.712 −0.0416460
\(550\) −2271.57 −0.176109
\(551\) −429.600 −0.0332152
\(552\) 14277.7 1.10091
\(553\) −32723.7 −2.51637
\(554\) 16759.7 1.28529
\(555\) −2278.78 −0.174286
\(556\) −13261.4 −1.01152
\(557\) −8452.71 −0.643003 −0.321502 0.946909i \(-0.604188\pi\)
−0.321502 + 0.946909i \(0.604188\pi\)
\(558\) 2282.72 0.173182
\(559\) −38457.3 −2.90978
\(560\) 8114.01 0.612285
\(561\) 0 0
\(562\) −13909.7 −1.04403
\(563\) −8547.32 −0.639834 −0.319917 0.947446i \(-0.603655\pi\)
−0.319917 + 0.947446i \(0.603655\pi\)
\(564\) −25106.6 −1.87443
\(565\) 485.573 0.0361561
\(566\) −3498.85 −0.259836
\(567\) 2558.40 0.189494
\(568\) 29478.4 2.17762
\(569\) 19464.8 1.43411 0.717055 0.697017i \(-0.245490\pi\)
0.717055 + 0.697017i \(0.245490\pi\)
\(570\) 4054.24 0.297919
\(571\) 3839.06 0.281366 0.140683 0.990055i \(-0.455070\pi\)
0.140683 + 0.990055i \(0.455070\pi\)
\(572\) 8885.72 0.649529
\(573\) −5027.35 −0.366528
\(574\) −17777.7 −1.29273
\(575\) 9971.94 0.723232
\(576\) −6431.90 −0.465270
\(577\) −18797.7 −1.35625 −0.678127 0.734945i \(-0.737208\pi\)
−0.678127 + 0.734945i \(0.737208\pi\)
\(578\) 0 0
\(579\) −773.882 −0.0555465
\(580\) 1299.90 0.0930611
\(581\) −701.328 −0.0500791
\(582\) 16272.4 1.15895
\(583\) 3327.60 0.236390
\(584\) 22095.8 1.56564
\(585\) 5811.01 0.410693
\(586\) −41424.6 −2.92020
\(587\) 4217.92 0.296580 0.148290 0.988944i \(-0.452623\pi\)
0.148290 + 0.988944i \(0.452623\pi\)
\(588\) −28783.0 −2.01869
\(589\) −1976.07 −0.138238
\(590\) 1751.68 0.122230
\(591\) −2080.40 −0.144799
\(592\) 3328.98 0.231115
\(593\) −3011.92 −0.208575 −0.104287 0.994547i \(-0.533256\pi\)
−0.104287 + 0.994547i \(0.533256\pi\)
\(594\) −923.914 −0.0638193
\(595\) 0 0
\(596\) 11856.8 0.814891
\(597\) −720.886 −0.0494203
\(598\) −60299.3 −4.12345
\(599\) 15137.1 1.03253 0.516266 0.856428i \(-0.327322\pi\)
0.516266 + 0.856428i \(0.327322\pi\)
\(600\) 6309.52 0.429309
\(601\) 18980.1 1.28821 0.644104 0.764938i \(-0.277230\pi\)
0.644104 + 0.764938i \(0.277230\pi\)
\(602\) −68558.0 −4.64155
\(603\) −6667.08 −0.450256
\(604\) −5160.74 −0.347661
\(605\) −9794.65 −0.658197
\(606\) −10039.7 −0.672996
\(607\) 4593.63 0.307166 0.153583 0.988136i \(-0.450919\pi\)
0.153583 + 0.988136i \(0.450919\pi\)
\(608\) 3476.53 0.231894
\(609\) −1097.70 −0.0730397
\(610\) −2169.17 −0.143979
\(611\) 48155.3 3.18847
\(612\) 0 0
\(613\) −25654.3 −1.69032 −0.845160 0.534513i \(-0.820495\pi\)
−0.845160 + 0.534513i \(0.820495\pi\)
\(614\) 11980.3 0.787437
\(615\) 2716.01 0.178081
\(616\) 7194.09 0.470549
\(617\) 7170.97 0.467897 0.233948 0.972249i \(-0.424835\pi\)
0.233948 + 0.972249i \(0.424835\pi\)
\(618\) 12811.0 0.833876
\(619\) 13560.6 0.880525 0.440263 0.897869i \(-0.354885\pi\)
0.440263 + 0.897869i \(0.354885\pi\)
\(620\) 5979.27 0.387312
\(621\) 4055.88 0.262088
\(622\) −31383.2 −2.02307
\(623\) −11677.9 −0.750985
\(624\) −8489.07 −0.544607
\(625\) −2920.36 −0.186903
\(626\) −20910.0 −1.33503
\(627\) 799.798 0.0509424
\(628\) 7883.28 0.500919
\(629\) 0 0
\(630\) 10359.3 0.655119
\(631\) −1414.98 −0.0892700 −0.0446350 0.999003i \(-0.514212\pi\)
−0.0446350 + 0.999003i \(0.514212\pi\)
\(632\) −32824.3 −2.06595
\(633\) 804.342 0.0505051
\(634\) −12381.4 −0.775600
\(635\) 1343.99 0.0839914
\(636\) −20351.6 −1.26886
\(637\) 55206.7 3.43386
\(638\) 396.412 0.0245989
\(639\) 8373.93 0.518416
\(640\) −20301.6 −1.25389
\(641\) 21708.4 1.33764 0.668822 0.743422i \(-0.266799\pi\)
0.668822 + 0.743422i \(0.266799\pi\)
\(642\) −27148.4 −1.66895
\(643\) −7537.23 −0.462270 −0.231135 0.972922i \(-0.574244\pi\)
−0.231135 + 0.972922i \(0.574244\pi\)
\(644\) −69538.5 −4.25497
\(645\) 10474.0 0.639401
\(646\) 0 0
\(647\) −32667.3 −1.98498 −0.992491 0.122316i \(-0.960968\pi\)
−0.992491 + 0.122316i \(0.960968\pi\)
\(648\) 2566.27 0.155575
\(649\) 345.561 0.0209006
\(650\) −26647.1 −1.60798
\(651\) −5049.20 −0.303984
\(652\) −28180.1 −1.69266
\(653\) 25845.8 1.54889 0.774443 0.632644i \(-0.218030\pi\)
0.774443 + 0.632644i \(0.218030\pi\)
\(654\) 8347.17 0.499083
\(655\) −14281.9 −0.851972
\(656\) −3967.70 −0.236148
\(657\) 6276.77 0.372725
\(658\) 85846.7 5.08610
\(659\) −15741.2 −0.930485 −0.465243 0.885183i \(-0.654033\pi\)
−0.465243 + 0.885183i \(0.654033\pi\)
\(660\) −2420.06 −0.142729
\(661\) 23495.2 1.38254 0.691269 0.722598i \(-0.257052\pi\)
0.691269 + 0.722598i \(0.257052\pi\)
\(662\) −22230.8 −1.30517
\(663\) 0 0
\(664\) −703.483 −0.0411151
\(665\) −8967.67 −0.522934
\(666\) 4250.17 0.247283
\(667\) −1740.21 −0.101021
\(668\) 43554.7 2.52272
\(669\) 16573.3 0.957788
\(670\) −26995.9 −1.55663
\(671\) −427.921 −0.0246195
\(672\) 8883.15 0.509933
\(673\) 7057.34 0.404221 0.202110 0.979363i \(-0.435220\pi\)
0.202110 + 0.979363i \(0.435220\pi\)
\(674\) −8575.67 −0.490092
\(675\) 1792.35 0.102204
\(676\) 72036.0 4.09855
\(677\) −20756.4 −1.17833 −0.589167 0.808011i \(-0.700544\pi\)
−0.589167 + 0.808011i \(0.700544\pi\)
\(678\) −905.645 −0.0512995
\(679\) −35993.2 −2.03430
\(680\) 0 0
\(681\) −1153.20 −0.0648909
\(682\) 1823.41 0.102378
\(683\) 7013.65 0.392928 0.196464 0.980511i \(-0.437054\pi\)
0.196464 + 0.980511i \(0.437054\pi\)
\(684\) −4891.56 −0.273441
\(685\) 8096.91 0.451631
\(686\) 46850.4 2.60751
\(687\) −4186.44 −0.232493
\(688\) −15301.0 −0.847888
\(689\) 39035.0 2.15837
\(690\) 16422.8 0.906093
\(691\) 4897.47 0.269622 0.134811 0.990871i \(-0.456957\pi\)
0.134811 + 0.990871i \(0.456957\pi\)
\(692\) −14488.5 −0.795913
\(693\) 2043.63 0.112022
\(694\) −801.273 −0.0438269
\(695\) −6927.54 −0.378096
\(696\) −1101.08 −0.0599658
\(697\) 0 0
\(698\) −21171.1 −1.14805
\(699\) 10228.2 0.553456
\(700\) −30730.0 −1.65926
\(701\) 17525.5 0.944264 0.472132 0.881528i \(-0.343485\pi\)
0.472132 + 0.881528i \(0.343485\pi\)
\(702\) −10838.1 −0.582706
\(703\) −3679.21 −0.197388
\(704\) −5137.73 −0.275050
\(705\) −13115.3 −0.700640
\(706\) −50023.4 −2.66665
\(707\) 22207.1 1.18130
\(708\) −2113.45 −0.112187
\(709\) −32564.3 −1.72493 −0.862466 0.506115i \(-0.831081\pi\)
−0.862466 + 0.506115i \(0.831081\pi\)
\(710\) 33907.1 1.79227
\(711\) −9324.40 −0.491832
\(712\) −11713.8 −0.616561
\(713\) −8004.58 −0.420440
\(714\) 0 0
\(715\) 4641.77 0.242786
\(716\) −28398.5 −1.48227
\(717\) 4527.55 0.235822
\(718\) 39711.4 2.06409
\(719\) −14498.2 −0.752007 −0.376004 0.926618i \(-0.622702\pi\)
−0.376004 + 0.926618i \(0.622702\pi\)
\(720\) 2312.03 0.119673
\(721\) −28337.0 −1.46370
\(722\) −26102.0 −1.34545
\(723\) 10220.7 0.525744
\(724\) 31951.5 1.64015
\(725\) −769.020 −0.0393941
\(726\) 18268.1 0.933872
\(727\) −25787.6 −1.31556 −0.657778 0.753212i \(-0.728503\pi\)
−0.657778 + 0.753212i \(0.728503\pi\)
\(728\) 84391.6 4.29637
\(729\) 729.000 0.0370370
\(730\) 25415.4 1.28859
\(731\) 0 0
\(732\) 2617.16 0.132149
\(733\) −4177.45 −0.210502 −0.105251 0.994446i \(-0.533565\pi\)
−0.105251 + 0.994446i \(0.533565\pi\)
\(734\) −1677.38 −0.0843504
\(735\) −15035.8 −0.754563
\(736\) 14082.6 0.705287
\(737\) −5325.59 −0.266175
\(738\) −5065.64 −0.252668
\(739\) 14115.5 0.702636 0.351318 0.936256i \(-0.385734\pi\)
0.351318 + 0.936256i \(0.385734\pi\)
\(740\) 11132.7 0.553037
\(741\) 9382.18 0.465132
\(742\) 69587.9 3.44293
\(743\) −17992.0 −0.888376 −0.444188 0.895934i \(-0.646508\pi\)
−0.444188 + 0.895934i \(0.646508\pi\)
\(744\) −5064.72 −0.249572
\(745\) 6193.84 0.304597
\(746\) 59799.0 2.93485
\(747\) −199.839 −0.00978810
\(748\) 0 0
\(749\) 60050.2 2.92949
\(750\) 20923.3 1.01868
\(751\) −2055.99 −0.0998989 −0.0499495 0.998752i \(-0.515906\pi\)
−0.0499495 + 0.998752i \(0.515906\pi\)
\(752\) 19159.6 0.929095
\(753\) −10183.3 −0.492829
\(754\) 4650.19 0.224602
\(755\) −2695.89 −0.129952
\(756\) −12498.8 −0.601292
\(757\) 12132.4 0.582508 0.291254 0.956646i \(-0.405927\pi\)
0.291254 + 0.956646i \(0.405927\pi\)
\(758\) 8427.65 0.403834
\(759\) 3239.79 0.154937
\(760\) −8995.23 −0.429331
\(761\) 9319.01 0.443908 0.221954 0.975057i \(-0.428757\pi\)
0.221954 + 0.975057i \(0.428757\pi\)
\(762\) −2506.68 −0.119170
\(763\) −18463.3 −0.876037
\(764\) 24560.5 1.16305
\(765\) 0 0
\(766\) 20612.9 0.972288
\(767\) 4053.67 0.190834
\(768\) 20712.9 0.973193
\(769\) 38790.8 1.81903 0.909514 0.415672i \(-0.136454\pi\)
0.909514 + 0.415672i \(0.136454\pi\)
\(770\) 8274.90 0.387282
\(771\) −5336.73 −0.249284
\(772\) 3780.71 0.176257
\(773\) 12857.4 0.598252 0.299126 0.954214i \(-0.403305\pi\)
0.299126 + 0.954214i \(0.403305\pi\)
\(774\) −19535.1 −0.907204
\(775\) −3537.33 −0.163954
\(776\) −36103.8 −1.67017
\(777\) −9401.04 −0.434054
\(778\) 49005.2 2.25825
\(779\) 4385.14 0.201687
\(780\) −28389.0 −1.30319
\(781\) 6689.00 0.306468
\(782\) 0 0
\(783\) −312.783 −0.0142758
\(784\) 21965.2 1.00060
\(785\) 4118.11 0.187238
\(786\) 26637.3 1.20881
\(787\) 26862.0 1.21668 0.608339 0.793677i \(-0.291836\pi\)
0.608339 + 0.793677i \(0.291836\pi\)
\(788\) 10163.5 0.459468
\(789\) 12950.6 0.584353
\(790\) −37755.7 −1.70036
\(791\) 2003.22 0.0900457
\(792\) 2049.91 0.0919700
\(793\) −5019.81 −0.224790
\(794\) −443.519 −0.0198235
\(795\) −10631.4 −0.474284
\(796\) 3521.81 0.156818
\(797\) −12471.5 −0.554285 −0.277142 0.960829i \(-0.589387\pi\)
−0.277142 + 0.960829i \(0.589387\pi\)
\(798\) 16725.7 0.741957
\(799\) 0 0
\(800\) 6223.29 0.275033
\(801\) −3327.53 −0.146782
\(802\) 63405.4 2.79168
\(803\) 5013.82 0.220341
\(804\) 32571.3 1.42873
\(805\) −36325.9 −1.59046
\(806\) 21389.9 0.934772
\(807\) 19638.9 0.856658
\(808\) 22275.3 0.969854
\(809\) 24760.8 1.07607 0.538037 0.842921i \(-0.319166\pi\)
0.538037 + 0.842921i \(0.319166\pi\)
\(810\) 2951.81 0.128045
\(811\) −11237.3 −0.486556 −0.243278 0.969957i \(-0.578223\pi\)
−0.243278 + 0.969957i \(0.578223\pi\)
\(812\) 5362.70 0.231766
\(813\) −11355.6 −0.489862
\(814\) 3394.99 0.146185
\(815\) −14720.8 −0.632698
\(816\) 0 0
\(817\) 16910.8 0.724156
\(818\) 44134.3 1.88645
\(819\) 23973.1 1.02282
\(820\) −13268.7 −0.565079
\(821\) −39976.4 −1.69937 −0.849687 0.527287i \(-0.823209\pi\)
−0.849687 + 0.527287i \(0.823209\pi\)
\(822\) −15101.6 −0.640789
\(823\) −36877.0 −1.56191 −0.780955 0.624588i \(-0.785267\pi\)
−0.780955 + 0.624588i \(0.785267\pi\)
\(824\) −28424.1 −1.20170
\(825\) 1431.71 0.0604190
\(826\) 7226.49 0.304409
\(827\) 14311.9 0.601781 0.300890 0.953659i \(-0.402716\pi\)
0.300890 + 0.953659i \(0.402716\pi\)
\(828\) −19814.5 −0.831646
\(829\) −12629.7 −0.529130 −0.264565 0.964368i \(-0.585228\pi\)
−0.264565 + 0.964368i \(0.585228\pi\)
\(830\) −809.172 −0.0338395
\(831\) −10563.2 −0.440954
\(832\) −60269.1 −2.51136
\(833\) 0 0
\(834\) 12920.6 0.536455
\(835\) 22752.3 0.942965
\(836\) −3907.32 −0.161648
\(837\) −1438.74 −0.0594146
\(838\) −53907.4 −2.22220
\(839\) 18683.1 0.768786 0.384393 0.923170i \(-0.374411\pi\)
0.384393 + 0.923170i \(0.374411\pi\)
\(840\) −22984.4 −0.944092
\(841\) −24254.8 −0.994497
\(842\) 33007.3 1.35096
\(843\) 8766.90 0.358183
\(844\) −3929.52 −0.160260
\(845\) 37630.6 1.53199
\(846\) 24461.4 0.994092
\(847\) −40407.5 −1.63922
\(848\) 15530.9 0.628932
\(849\) 2205.22 0.0891438
\(850\) 0 0
\(851\) −14903.6 −0.600340
\(852\) −40909.9 −1.64501
\(853\) 35648.7 1.43094 0.715468 0.698646i \(-0.246214\pi\)
0.715468 + 0.698646i \(0.246214\pi\)
\(854\) −8948.83 −0.358575
\(855\) −2555.28 −0.102209
\(856\) 60234.7 2.40512
\(857\) 49860.8 1.98741 0.993707 0.112010i \(-0.0357290\pi\)
0.993707 + 0.112010i \(0.0357290\pi\)
\(858\) −8657.39 −0.344474
\(859\) 21487.0 0.853466 0.426733 0.904378i \(-0.359664\pi\)
0.426733 + 0.904378i \(0.359664\pi\)
\(860\) −51169.6 −2.02892
\(861\) 11204.8 0.443506
\(862\) 13216.0 0.522201
\(863\) −15067.6 −0.594330 −0.297165 0.954826i \(-0.596041\pi\)
−0.297165 + 0.954826i \(0.596041\pi\)
\(864\) 2531.19 0.0996677
\(865\) −7568.60 −0.297503
\(866\) −15480.1 −0.607431
\(867\) 0 0
\(868\) 24667.3 0.964588
\(869\) −7448.23 −0.290752
\(870\) −1266.50 −0.0493544
\(871\) −62472.8 −2.43032
\(872\) −18520.0 −0.719229
\(873\) −10256.0 −0.397610
\(874\) 26515.4 1.02620
\(875\) −46280.6 −1.78808
\(876\) −30664.4 −1.18271
\(877\) 24852.6 0.956912 0.478456 0.878111i \(-0.341197\pi\)
0.478456 + 0.878111i \(0.341197\pi\)
\(878\) 63523.7 2.44171
\(879\) 26108.8 1.00185
\(880\) 1846.83 0.0707460
\(881\) −1840.51 −0.0703842 −0.0351921 0.999381i \(-0.511204\pi\)
−0.0351921 + 0.999381i \(0.511204\pi\)
\(882\) 28043.3 1.07060
\(883\) 49803.7 1.89811 0.949054 0.315115i \(-0.102043\pi\)
0.949054 + 0.315115i \(0.102043\pi\)
\(884\) 0 0
\(885\) −1104.03 −0.0419341
\(886\) 55402.7 2.10078
\(887\) −36314.7 −1.37467 −0.687333 0.726342i \(-0.741219\pi\)
−0.687333 + 0.726342i \(0.741219\pi\)
\(888\) −9429.93 −0.356360
\(889\) 5544.58 0.209178
\(890\) −13473.6 −0.507456
\(891\) 582.317 0.0218949
\(892\) −80966.9 −3.03921
\(893\) −21175.4 −0.793512
\(894\) −11552.2 −0.432172
\(895\) −14835.0 −0.554054
\(896\) −83753.6 −3.12278
\(897\) 38005.0 1.41466
\(898\) 33022.5 1.22714
\(899\) 617.300 0.0229011
\(900\) −8756.31 −0.324308
\(901\) 0 0
\(902\) −4046.38 −0.149368
\(903\) 43210.2 1.59241
\(904\) 2009.37 0.0739278
\(905\) 16691.0 0.613068
\(906\) 5028.12 0.184380
\(907\) −33679.5 −1.23297 −0.616487 0.787365i \(-0.711445\pi\)
−0.616487 + 0.787365i \(0.711445\pi\)
\(908\) 5633.83 0.205909
\(909\) 6327.75 0.230889
\(910\) 97070.3 3.53610
\(911\) −32437.2 −1.17968 −0.589841 0.807519i \(-0.700810\pi\)
−0.589841 + 0.807519i \(0.700810\pi\)
\(912\) 3732.90 0.135536
\(913\) −159.629 −0.00578636
\(914\) −48958.8 −1.77179
\(915\) 1367.17 0.0493957
\(916\) 20452.4 0.737736
\(917\) −58919.7 −2.12181
\(918\) 0 0
\(919\) −3511.45 −0.126042 −0.0630208 0.998012i \(-0.520073\pi\)
−0.0630208 + 0.998012i \(0.520073\pi\)
\(920\) −36437.5 −1.30577
\(921\) −7550.86 −0.270151
\(922\) −2978.87 −0.106403
\(923\) 78466.6 2.79822
\(924\) −9983.90 −0.355461
\(925\) −6586.11 −0.234108
\(926\) −28825.5 −1.02296
\(927\) −8074.44 −0.286083
\(928\) −1086.03 −0.0384166
\(929\) −13527.2 −0.477733 −0.238866 0.971052i \(-0.576776\pi\)
−0.238866 + 0.971052i \(0.576776\pi\)
\(930\) −5825.63 −0.205408
\(931\) −24276.1 −0.854583
\(932\) −49968.6 −1.75620
\(933\) 19779.9 0.694069
\(934\) −3883.87 −0.136064
\(935\) 0 0
\(936\) 24046.8 0.839737
\(937\) −8862.80 −0.309002 −0.154501 0.987993i \(-0.549377\pi\)
−0.154501 + 0.987993i \(0.549377\pi\)
\(938\) −111371. −3.87674
\(939\) 13179.0 0.458019
\(940\) 64073.4 2.22324
\(941\) −22824.0 −0.790693 −0.395346 0.918532i \(-0.629375\pi\)
−0.395346 + 0.918532i \(0.629375\pi\)
\(942\) −7680.71 −0.265659
\(943\) 17763.1 0.613412
\(944\) 1612.84 0.0556074
\(945\) −6529.18 −0.224756
\(946\) −15604.4 −0.536305
\(947\) 26308.4 0.902754 0.451377 0.892333i \(-0.350933\pi\)
0.451377 + 0.892333i \(0.350933\pi\)
\(948\) 45553.3 1.56066
\(949\) 58815.5 2.01184
\(950\) 11717.5 0.400176
\(951\) 7803.68 0.266090
\(952\) 0 0
\(953\) 11947.5 0.406106 0.203053 0.979168i \(-0.434914\pi\)
0.203053 + 0.979168i \(0.434914\pi\)
\(954\) 19828.6 0.672930
\(955\) 12830.1 0.434734
\(956\) −22118.9 −0.748300
\(957\) −249.848 −0.00843932
\(958\) 77200.5 2.60358
\(959\) 33403.5 1.12477
\(960\) 16414.5 0.551851
\(961\) −26951.5 −0.904688
\(962\) 39825.5 1.33475
\(963\) 17110.9 0.572576
\(964\) −49932.2 −1.66826
\(965\) 1974.99 0.0658830
\(966\) 67751.6 2.25660
\(967\) 21505.3 0.715163 0.357581 0.933882i \(-0.383601\pi\)
0.357581 + 0.933882i \(0.383601\pi\)
\(968\) −40531.7 −1.34580
\(969\) 0 0
\(970\) −41527.9 −1.37462
\(971\) 45685.3 1.50990 0.754950 0.655783i \(-0.227661\pi\)
0.754950 + 0.655783i \(0.227661\pi\)
\(972\) −3561.45 −0.117524
\(973\) −28579.4 −0.941636
\(974\) −12971.2 −0.426719
\(975\) 16794.9 0.551659
\(976\) −1997.24 −0.0655020
\(977\) 31710.3 1.03839 0.519193 0.854657i \(-0.326233\pi\)
0.519193 + 0.854657i \(0.326233\pi\)
\(978\) 27455.9 0.897693
\(979\) −2657.99 −0.0867721
\(980\) 73455.7 2.39434
\(981\) −5260.99 −0.171224
\(982\) −39716.8 −1.29065
\(983\) −46038.9 −1.49381 −0.746904 0.664932i \(-0.768460\pi\)
−0.746904 + 0.664932i \(0.768460\pi\)
\(984\) 11239.2 0.364120
\(985\) 5309.28 0.171744
\(986\) 0 0
\(987\) −54106.8 −1.74492
\(988\) −45835.6 −1.47593
\(989\) 68501.8 2.20246
\(990\) 2357.88 0.0756952
\(991\) −14394.9 −0.461420 −0.230710 0.973023i \(-0.574105\pi\)
−0.230710 + 0.973023i \(0.574105\pi\)
\(992\) −4995.50 −0.159886
\(993\) 14011.5 0.447775
\(994\) 139883. 4.46359
\(995\) 1839.74 0.0586167
\(996\) 976.289 0.0310591
\(997\) 33473.4 1.06330 0.531652 0.846963i \(-0.321572\pi\)
0.531652 + 0.846963i \(0.321572\pi\)
\(998\) −65505.0 −2.07768
\(999\) −2678.76 −0.0848371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.4.a.k.1.3 3
17.16 even 2 51.4.a.e.1.3 3
51.50 odd 2 153.4.a.f.1.1 3
68.67 odd 2 816.4.a.s.1.1 3
85.84 even 2 1275.4.a.q.1.1 3
119.118 odd 2 2499.4.a.n.1.3 3
204.203 even 2 2448.4.a.bd.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.e.1.3 3 17.16 even 2
153.4.a.f.1.1 3 51.50 odd 2
816.4.a.s.1.1 3 68.67 odd 2
867.4.a.k.1.3 3 1.1 even 1 trivial
1275.4.a.q.1.1 3 85.84 even 2
2448.4.a.bd.1.3 3 204.203 even 2
2499.4.a.n.1.3 3 119.118 odd 2