Properties

Label 867.4.a.c.1.1
Level $867$
Weight $4$
Character 867.1
Self dual yes
Analytic conductor $51.155$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,4,Mod(1,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 867.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.1546559750\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 867.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -3.00000 q^{3} -7.00000 q^{4} +20.0000 q^{5} +3.00000 q^{6} +2.00000 q^{7} +15.0000 q^{8} +9.00000 q^{9} -20.0000 q^{10} +48.0000 q^{11} +21.0000 q^{12} -14.0000 q^{13} -2.00000 q^{14} -60.0000 q^{15} +41.0000 q^{16} -9.00000 q^{18} +92.0000 q^{19} -140.000 q^{20} -6.00000 q^{21} -48.0000 q^{22} +122.000 q^{23} -45.0000 q^{24} +275.000 q^{25} +14.0000 q^{26} -27.0000 q^{27} -14.0000 q^{28} +36.0000 q^{29} +60.0000 q^{30} +182.000 q^{31} -161.000 q^{32} -144.000 q^{33} +40.0000 q^{35} -63.0000 q^{36} -76.0000 q^{37} -92.0000 q^{38} +42.0000 q^{39} +300.000 q^{40} -294.000 q^{41} +6.00000 q^{42} -428.000 q^{43} -336.000 q^{44} +180.000 q^{45} -122.000 q^{46} -12.0000 q^{47} -123.000 q^{48} -339.000 q^{49} -275.000 q^{50} +98.0000 q^{52} -234.000 q^{53} +27.0000 q^{54} +960.000 q^{55} +30.0000 q^{56} -276.000 q^{57} -36.0000 q^{58} -540.000 q^{59} +420.000 q^{60} +820.000 q^{61} -182.000 q^{62} +18.0000 q^{63} -167.000 q^{64} -280.000 q^{65} +144.000 q^{66} +700.000 q^{67} -366.000 q^{69} -40.0000 q^{70} -794.000 q^{71} +135.000 q^{72} +1038.00 q^{73} +76.0000 q^{74} -825.000 q^{75} -644.000 q^{76} +96.0000 q^{77} -42.0000 q^{78} -858.000 q^{79} +820.000 q^{80} +81.0000 q^{81} +294.000 q^{82} +1052.00 q^{83} +42.0000 q^{84} +428.000 q^{86} -108.000 q^{87} +720.000 q^{88} +1102.00 q^{89} -180.000 q^{90} -28.0000 q^{91} -854.000 q^{92} -546.000 q^{93} +12.0000 q^{94} +1840.00 q^{95} +483.000 q^{96} -710.000 q^{97} +339.000 q^{98} +432.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.353553 −0.176777 0.984251i \(-0.556567\pi\)
−0.176777 + 0.984251i \(0.556567\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.00000 −0.875000
\(5\) 20.0000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 3.00000 0.204124
\(7\) 2.00000 0.107990 0.0539949 0.998541i \(-0.482805\pi\)
0.0539949 + 0.998541i \(0.482805\pi\)
\(8\) 15.0000 0.662913
\(9\) 9.00000 0.333333
\(10\) −20.0000 −0.632456
\(11\) 48.0000 1.31569 0.657843 0.753155i \(-0.271469\pi\)
0.657843 + 0.753155i \(0.271469\pi\)
\(12\) 21.0000 0.505181
\(13\) −14.0000 −0.298685 −0.149342 0.988786i \(-0.547716\pi\)
−0.149342 + 0.988786i \(0.547716\pi\)
\(14\) −2.00000 −0.0381802
\(15\) −60.0000 −1.03280
\(16\) 41.0000 0.640625
\(17\) 0 0
\(18\) −9.00000 −0.117851
\(19\) 92.0000 1.11086 0.555428 0.831565i \(-0.312555\pi\)
0.555428 + 0.831565i \(0.312555\pi\)
\(20\) −140.000 −1.56525
\(21\) −6.00000 −0.0623480
\(22\) −48.0000 −0.465165
\(23\) 122.000 1.10603 0.553016 0.833170i \(-0.313477\pi\)
0.553016 + 0.833170i \(0.313477\pi\)
\(24\) −45.0000 −0.382733
\(25\) 275.000 2.20000
\(26\) 14.0000 0.105601
\(27\) −27.0000 −0.192450
\(28\) −14.0000 −0.0944911
\(29\) 36.0000 0.230518 0.115259 0.993335i \(-0.463230\pi\)
0.115259 + 0.993335i \(0.463230\pi\)
\(30\) 60.0000 0.365148
\(31\) 182.000 1.05446 0.527228 0.849724i \(-0.323231\pi\)
0.527228 + 0.849724i \(0.323231\pi\)
\(32\) −161.000 −0.889408
\(33\) −144.000 −0.759612
\(34\) 0 0
\(35\) 40.0000 0.193178
\(36\) −63.0000 −0.291667
\(37\) −76.0000 −0.337684 −0.168842 0.985643i \(-0.554003\pi\)
−0.168842 + 0.985643i \(0.554003\pi\)
\(38\) −92.0000 −0.392747
\(39\) 42.0000 0.172446
\(40\) 300.000 1.18585
\(41\) −294.000 −1.11988 −0.559940 0.828533i \(-0.689176\pi\)
−0.559940 + 0.828533i \(0.689176\pi\)
\(42\) 6.00000 0.0220433
\(43\) −428.000 −1.51789 −0.758946 0.651153i \(-0.774286\pi\)
−0.758946 + 0.651153i \(0.774286\pi\)
\(44\) −336.000 −1.15123
\(45\) 180.000 0.596285
\(46\) −122.000 −0.391042
\(47\) −12.0000 −0.0372421 −0.0186211 0.999827i \(-0.505928\pi\)
−0.0186211 + 0.999827i \(0.505928\pi\)
\(48\) −123.000 −0.369865
\(49\) −339.000 −0.988338
\(50\) −275.000 −0.777817
\(51\) 0 0
\(52\) 98.0000 0.261349
\(53\) −234.000 −0.606460 −0.303230 0.952917i \(-0.598065\pi\)
−0.303230 + 0.952917i \(0.598065\pi\)
\(54\) 27.0000 0.0680414
\(55\) 960.000 2.35357
\(56\) 30.0000 0.0715878
\(57\) −276.000 −0.641353
\(58\) −36.0000 −0.0815005
\(59\) −540.000 −1.19156 −0.595780 0.803148i \(-0.703157\pi\)
−0.595780 + 0.803148i \(0.703157\pi\)
\(60\) 420.000 0.903696
\(61\) 820.000 1.72115 0.860576 0.509322i \(-0.170104\pi\)
0.860576 + 0.509322i \(0.170104\pi\)
\(62\) −182.000 −0.372807
\(63\) 18.0000 0.0359966
\(64\) −167.000 −0.326172
\(65\) −280.000 −0.534303
\(66\) 144.000 0.268563
\(67\) 700.000 1.27640 0.638199 0.769872i \(-0.279680\pi\)
0.638199 + 0.769872i \(0.279680\pi\)
\(68\) 0 0
\(69\) −366.000 −0.638568
\(70\) −40.0000 −0.0682988
\(71\) −794.000 −1.32719 −0.663595 0.748092i \(-0.730970\pi\)
−0.663595 + 0.748092i \(0.730970\pi\)
\(72\) 135.000 0.220971
\(73\) 1038.00 1.66423 0.832114 0.554604i \(-0.187130\pi\)
0.832114 + 0.554604i \(0.187130\pi\)
\(74\) 76.0000 0.119389
\(75\) −825.000 −1.27017
\(76\) −644.000 −0.971998
\(77\) 96.0000 0.142081
\(78\) −42.0000 −0.0609688
\(79\) −858.000 −1.22193 −0.610965 0.791657i \(-0.709219\pi\)
−0.610965 + 0.791657i \(0.709219\pi\)
\(80\) 820.000 1.14598
\(81\) 81.0000 0.111111
\(82\) 294.000 0.395937
\(83\) 1052.00 1.39123 0.695614 0.718415i \(-0.255132\pi\)
0.695614 + 0.718415i \(0.255132\pi\)
\(84\) 42.0000 0.0545545
\(85\) 0 0
\(86\) 428.000 0.536656
\(87\) −108.000 −0.133090
\(88\) 720.000 0.872185
\(89\) 1102.00 1.31249 0.656246 0.754547i \(-0.272143\pi\)
0.656246 + 0.754547i \(0.272143\pi\)
\(90\) −180.000 −0.210819
\(91\) −28.0000 −0.0322549
\(92\) −854.000 −0.967779
\(93\) −546.000 −0.608791
\(94\) 12.0000 0.0131671
\(95\) 1840.00 1.98716
\(96\) 483.000 0.513500
\(97\) −710.000 −0.743192 −0.371596 0.928395i \(-0.621189\pi\)
−0.371596 + 0.928395i \(0.621189\pi\)
\(98\) 339.000 0.349430
\(99\) 432.000 0.438562
\(100\) −1925.00 −1.92500
\(101\) −1210.00 −1.19207 −0.596037 0.802957i \(-0.703259\pi\)
−0.596037 + 0.802957i \(0.703259\pi\)
\(102\) 0 0
\(103\) 644.000 0.616070 0.308035 0.951375i \(-0.400329\pi\)
0.308035 + 0.951375i \(0.400329\pi\)
\(104\) −210.000 −0.198002
\(105\) −120.000 −0.111531
\(106\) 234.000 0.214416
\(107\) 256.000 0.231294 0.115647 0.993290i \(-0.463106\pi\)
0.115647 + 0.993290i \(0.463106\pi\)
\(108\) 189.000 0.168394
\(109\) 1248.00 1.09667 0.548334 0.836260i \(-0.315262\pi\)
0.548334 + 0.836260i \(0.315262\pi\)
\(110\) −960.000 −0.832113
\(111\) 228.000 0.194962
\(112\) 82.0000 0.0691810
\(113\) 350.000 0.291374 0.145687 0.989331i \(-0.453461\pi\)
0.145687 + 0.989331i \(0.453461\pi\)
\(114\) 276.000 0.226752
\(115\) 2440.00 1.97853
\(116\) −252.000 −0.201704
\(117\) −126.000 −0.0995616
\(118\) 540.000 0.421280
\(119\) 0 0
\(120\) −900.000 −0.684653
\(121\) 973.000 0.731029
\(122\) −820.000 −0.608519
\(123\) 882.000 0.646563
\(124\) −1274.00 −0.922650
\(125\) 3000.00 2.14663
\(126\) −18.0000 −0.0127267
\(127\) −328.000 −0.229176 −0.114588 0.993413i \(-0.536555\pi\)
−0.114588 + 0.993413i \(0.536555\pi\)
\(128\) 1455.00 1.00473
\(129\) 1284.00 0.876356
\(130\) 280.000 0.188905
\(131\) 1952.00 1.30189 0.650943 0.759127i \(-0.274374\pi\)
0.650943 + 0.759127i \(0.274374\pi\)
\(132\) 1008.00 0.664660
\(133\) 184.000 0.119961
\(134\) −700.000 −0.451275
\(135\) −540.000 −0.344265
\(136\) 0 0
\(137\) 2634.00 1.64261 0.821306 0.570488i \(-0.193246\pi\)
0.821306 + 0.570488i \(0.193246\pi\)
\(138\) 366.000 0.225768
\(139\) −1864.00 −1.13743 −0.568714 0.822536i \(-0.692559\pi\)
−0.568714 + 0.822536i \(0.692559\pi\)
\(140\) −280.000 −0.169031
\(141\) 36.0000 0.0215018
\(142\) 794.000 0.469232
\(143\) −672.000 −0.392975
\(144\) 369.000 0.213542
\(145\) 720.000 0.412364
\(146\) −1038.00 −0.588394
\(147\) 1017.00 0.570617
\(148\) 532.000 0.295474
\(149\) −286.000 −0.157249 −0.0786243 0.996904i \(-0.525053\pi\)
−0.0786243 + 0.996904i \(0.525053\pi\)
\(150\) 825.000 0.449073
\(151\) −1624.00 −0.875227 −0.437613 0.899163i \(-0.644176\pi\)
−0.437613 + 0.899163i \(0.644176\pi\)
\(152\) 1380.00 0.736400
\(153\) 0 0
\(154\) −96.0000 −0.0502331
\(155\) 3640.00 1.88627
\(156\) −294.000 −0.150890
\(157\) 2542.00 1.29219 0.646095 0.763257i \(-0.276401\pi\)
0.646095 + 0.763257i \(0.276401\pi\)
\(158\) 858.000 0.432018
\(159\) 702.000 0.350140
\(160\) −3220.00 −1.59102
\(161\) 244.000 0.119440
\(162\) −81.0000 −0.0392837
\(163\) −684.000 −0.328681 −0.164341 0.986404i \(-0.552550\pi\)
−0.164341 + 0.986404i \(0.552550\pi\)
\(164\) 2058.00 0.979895
\(165\) −2880.00 −1.35883
\(166\) −1052.00 −0.491874
\(167\) −542.000 −0.251145 −0.125573 0.992084i \(-0.540077\pi\)
−0.125573 + 0.992084i \(0.540077\pi\)
\(168\) −90.0000 −0.0413313
\(169\) −2001.00 −0.910787
\(170\) 0 0
\(171\) 828.000 0.370285
\(172\) 2996.00 1.32816
\(173\) 836.000 0.367398 0.183699 0.982983i \(-0.441193\pi\)
0.183699 + 0.982983i \(0.441193\pi\)
\(174\) 108.000 0.0470544
\(175\) 550.000 0.237578
\(176\) 1968.00 0.842861
\(177\) 1620.00 0.687947
\(178\) −1102.00 −0.464036
\(179\) −3444.00 −1.43808 −0.719041 0.694968i \(-0.755419\pi\)
−0.719041 + 0.694968i \(0.755419\pi\)
\(180\) −1260.00 −0.521749
\(181\) 3284.00 1.34861 0.674303 0.738454i \(-0.264444\pi\)
0.674303 + 0.738454i \(0.264444\pi\)
\(182\) 28.0000 0.0114038
\(183\) −2460.00 −0.993707
\(184\) 1830.00 0.733203
\(185\) −1520.00 −0.604068
\(186\) 546.000 0.215240
\(187\) 0 0
\(188\) 84.0000 0.0325869
\(189\) −54.0000 −0.0207827
\(190\) −1840.00 −0.702566
\(191\) −340.000 −0.128804 −0.0644019 0.997924i \(-0.520514\pi\)
−0.0644019 + 0.997924i \(0.520514\pi\)
\(192\) 501.000 0.188315
\(193\) 1498.00 0.558696 0.279348 0.960190i \(-0.409882\pi\)
0.279348 + 0.960190i \(0.409882\pi\)
\(194\) 710.000 0.262758
\(195\) 840.000 0.308480
\(196\) 2373.00 0.864796
\(197\) 1176.00 0.425312 0.212656 0.977127i \(-0.431789\pi\)
0.212656 + 0.977127i \(0.431789\pi\)
\(198\) −432.000 −0.155055
\(199\) 2450.00 0.872743 0.436372 0.899767i \(-0.356263\pi\)
0.436372 + 0.899767i \(0.356263\pi\)
\(200\) 4125.00 1.45841
\(201\) −2100.00 −0.736928
\(202\) 1210.00 0.421462
\(203\) 72.0000 0.0248936
\(204\) 0 0
\(205\) −5880.00 −2.00330
\(206\) −644.000 −0.217814
\(207\) 1098.00 0.368678
\(208\) −574.000 −0.191345
\(209\) 4416.00 1.46154
\(210\) 120.000 0.0394323
\(211\) −1064.00 −0.347151 −0.173575 0.984821i \(-0.555532\pi\)
−0.173575 + 0.984821i \(0.555532\pi\)
\(212\) 1638.00 0.530652
\(213\) 2382.00 0.766253
\(214\) −256.000 −0.0817748
\(215\) −8560.00 −2.71529
\(216\) −405.000 −0.127578
\(217\) 364.000 0.113871
\(218\) −1248.00 −0.387730
\(219\) −3114.00 −0.960843
\(220\) −6720.00 −2.05937
\(221\) 0 0
\(222\) −228.000 −0.0689295
\(223\) −2244.00 −0.673854 −0.336927 0.941531i \(-0.609387\pi\)
−0.336927 + 0.941531i \(0.609387\pi\)
\(224\) −322.000 −0.0960470
\(225\) 2475.00 0.733333
\(226\) −350.000 −0.103016
\(227\) −516.000 −0.150873 −0.0754364 0.997151i \(-0.524035\pi\)
−0.0754364 + 0.997151i \(0.524035\pi\)
\(228\) 1932.00 0.561183
\(229\) −2922.00 −0.843193 −0.421596 0.906784i \(-0.638530\pi\)
−0.421596 + 0.906784i \(0.638530\pi\)
\(230\) −2440.00 −0.699517
\(231\) −288.000 −0.0820303
\(232\) 540.000 0.152814
\(233\) −3114.00 −0.875558 −0.437779 0.899083i \(-0.644235\pi\)
−0.437779 + 0.899083i \(0.644235\pi\)
\(234\) 126.000 0.0352003
\(235\) −240.000 −0.0666207
\(236\) 3780.00 1.04261
\(237\) 2574.00 0.705482
\(238\) 0 0
\(239\) 4124.00 1.11615 0.558074 0.829791i \(-0.311541\pi\)
0.558074 + 0.829791i \(0.311541\pi\)
\(240\) −2460.00 −0.661635
\(241\) 2034.00 0.543658 0.271829 0.962346i \(-0.412372\pi\)
0.271829 + 0.962346i \(0.412372\pi\)
\(242\) −973.000 −0.258458
\(243\) −243.000 −0.0641500
\(244\) −5740.00 −1.50601
\(245\) −6780.00 −1.76799
\(246\) −882.000 −0.228595
\(247\) −1288.00 −0.331795
\(248\) 2730.00 0.699013
\(249\) −3156.00 −0.803226
\(250\) −3000.00 −0.758947
\(251\) 996.000 0.250466 0.125233 0.992127i \(-0.460032\pi\)
0.125233 + 0.992127i \(0.460032\pi\)
\(252\) −126.000 −0.0314970
\(253\) 5856.00 1.45519
\(254\) 328.000 0.0810258
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) −3246.00 −0.787860 −0.393930 0.919141i \(-0.628885\pi\)
−0.393930 + 0.919141i \(0.628885\pi\)
\(258\) −1284.00 −0.309839
\(259\) −152.000 −0.0364665
\(260\) 1960.00 0.467516
\(261\) 324.000 0.0768395
\(262\) −1952.00 −0.460286
\(263\) 932.000 0.218516 0.109258 0.994013i \(-0.465153\pi\)
0.109258 + 0.994013i \(0.465153\pi\)
\(264\) −2160.00 −0.503556
\(265\) −4680.00 −1.08487
\(266\) −184.000 −0.0424126
\(267\) −3306.00 −0.757767
\(268\) −4900.00 −1.11685
\(269\) 3884.00 0.880341 0.440170 0.897914i \(-0.354918\pi\)
0.440170 + 0.897914i \(0.354918\pi\)
\(270\) 540.000 0.121716
\(271\) −1936.00 −0.433962 −0.216981 0.976176i \(-0.569621\pi\)
−0.216981 + 0.976176i \(0.569621\pi\)
\(272\) 0 0
\(273\) 84.0000 0.0186224
\(274\) −2634.00 −0.580751
\(275\) 13200.0 2.89451
\(276\) 2562.00 0.558747
\(277\) −872.000 −0.189146 −0.0945729 0.995518i \(-0.530149\pi\)
−0.0945729 + 0.995518i \(0.530149\pi\)
\(278\) 1864.00 0.402141
\(279\) 1638.00 0.351486
\(280\) 600.000 0.128060
\(281\) 3198.00 0.678921 0.339460 0.940620i \(-0.389756\pi\)
0.339460 + 0.940620i \(0.389756\pi\)
\(282\) −36.0000 −0.00760202
\(283\) 1936.00 0.406655 0.203327 0.979111i \(-0.434824\pi\)
0.203327 + 0.979111i \(0.434824\pi\)
\(284\) 5558.00 1.16129
\(285\) −5520.00 −1.14729
\(286\) 672.000 0.138938
\(287\) −588.000 −0.120936
\(288\) −1449.00 −0.296469
\(289\) 0 0
\(290\) −720.000 −0.145793
\(291\) 2130.00 0.429082
\(292\) −7266.00 −1.45620
\(293\) −5718.00 −1.14010 −0.570050 0.821610i \(-0.693076\pi\)
−0.570050 + 0.821610i \(0.693076\pi\)
\(294\) −1017.00 −0.201744
\(295\) −10800.0 −2.13153
\(296\) −1140.00 −0.223855
\(297\) −1296.00 −0.253204
\(298\) 286.000 0.0555958
\(299\) −1708.00 −0.330355
\(300\) 5775.00 1.11140
\(301\) −856.000 −0.163917
\(302\) 1624.00 0.309439
\(303\) 3630.00 0.688244
\(304\) 3772.00 0.711642
\(305\) 16400.0 3.07889
\(306\) 0 0
\(307\) 684.000 0.127159 0.0635797 0.997977i \(-0.479748\pi\)
0.0635797 + 0.997977i \(0.479748\pi\)
\(308\) −672.000 −0.124321
\(309\) −1932.00 −0.355688
\(310\) −3640.00 −0.666897
\(311\) 290.000 0.0528759 0.0264379 0.999650i \(-0.491584\pi\)
0.0264379 + 0.999650i \(0.491584\pi\)
\(312\) 630.000 0.114316
\(313\) 11050.0 1.99547 0.997736 0.0672478i \(-0.0214218\pi\)
0.997736 + 0.0672478i \(0.0214218\pi\)
\(314\) −2542.00 −0.456858
\(315\) 360.000 0.0643927
\(316\) 6006.00 1.06919
\(317\) −992.000 −0.175761 −0.0878806 0.996131i \(-0.528009\pi\)
−0.0878806 + 0.996131i \(0.528009\pi\)
\(318\) −702.000 −0.123793
\(319\) 1728.00 0.303290
\(320\) −3340.00 −0.583474
\(321\) −768.000 −0.133538
\(322\) −244.000 −0.0422285
\(323\) 0 0
\(324\) −567.000 −0.0972222
\(325\) −3850.00 −0.657106
\(326\) 684.000 0.116206
\(327\) −3744.00 −0.633161
\(328\) −4410.00 −0.742383
\(329\) −24.0000 −0.00402177
\(330\) 2880.00 0.480421
\(331\) 2860.00 0.474924 0.237462 0.971397i \(-0.423684\pi\)
0.237462 + 0.971397i \(0.423684\pi\)
\(332\) −7364.00 −1.21733
\(333\) −684.000 −0.112561
\(334\) 542.000 0.0887932
\(335\) 14000.0 2.28329
\(336\) −246.000 −0.0399417
\(337\) −6298.00 −1.01802 −0.509012 0.860760i \(-0.669989\pi\)
−0.509012 + 0.860760i \(0.669989\pi\)
\(338\) 2001.00 0.322012
\(339\) −1050.00 −0.168225
\(340\) 0 0
\(341\) 8736.00 1.38733
\(342\) −828.000 −0.130916
\(343\) −1364.00 −0.214720
\(344\) −6420.00 −1.00623
\(345\) −7320.00 −1.14231
\(346\) −836.000 −0.129895
\(347\) 3508.00 0.542707 0.271353 0.962480i \(-0.412529\pi\)
0.271353 + 0.962480i \(0.412529\pi\)
\(348\) 756.000 0.116454
\(349\) −2406.00 −0.369026 −0.184513 0.982830i \(-0.559071\pi\)
−0.184513 + 0.982830i \(0.559071\pi\)
\(350\) −550.000 −0.0839964
\(351\) 378.000 0.0574819
\(352\) −7728.00 −1.17018
\(353\) −1842.00 −0.277733 −0.138867 0.990311i \(-0.544346\pi\)
−0.138867 + 0.990311i \(0.544346\pi\)
\(354\) −1620.00 −0.243226
\(355\) −15880.0 −2.37415
\(356\) −7714.00 −1.14843
\(357\) 0 0
\(358\) 3444.00 0.508439
\(359\) 3264.00 0.479853 0.239927 0.970791i \(-0.422877\pi\)
0.239927 + 0.970791i \(0.422877\pi\)
\(360\) 2700.00 0.395285
\(361\) 1605.00 0.233999
\(362\) −3284.00 −0.476804
\(363\) −2919.00 −0.422060
\(364\) 196.000 0.0282231
\(365\) 20760.0 2.97706
\(366\) 2460.00 0.351329
\(367\) −7354.00 −1.04598 −0.522991 0.852338i \(-0.675184\pi\)
−0.522991 + 0.852338i \(0.675184\pi\)
\(368\) 5002.00 0.708552
\(369\) −2646.00 −0.373293
\(370\) 1520.00 0.213570
\(371\) −468.000 −0.0654915
\(372\) 3822.00 0.532692
\(373\) 11322.0 1.57166 0.785832 0.618440i \(-0.212235\pi\)
0.785832 + 0.618440i \(0.212235\pi\)
\(374\) 0 0
\(375\) −9000.00 −1.23935
\(376\) −180.000 −0.0246883
\(377\) −504.000 −0.0688523
\(378\) 54.0000 0.00734778
\(379\) −12796.0 −1.73426 −0.867132 0.498078i \(-0.834039\pi\)
−0.867132 + 0.498078i \(0.834039\pi\)
\(380\) −12880.0 −1.73876
\(381\) 984.000 0.132315
\(382\) 340.000 0.0455390
\(383\) −420.000 −0.0560339 −0.0280170 0.999607i \(-0.508919\pi\)
−0.0280170 + 0.999607i \(0.508919\pi\)
\(384\) −4365.00 −0.580079
\(385\) 1920.00 0.254162
\(386\) −1498.00 −0.197529
\(387\) −3852.00 −0.505964
\(388\) 4970.00 0.650293
\(389\) 6426.00 0.837561 0.418780 0.908088i \(-0.362458\pi\)
0.418780 + 0.908088i \(0.362458\pi\)
\(390\) −840.000 −0.109064
\(391\) 0 0
\(392\) −5085.00 −0.655182
\(393\) −5856.00 −0.751644
\(394\) −1176.00 −0.150371
\(395\) −17160.0 −2.18586
\(396\) −3024.00 −0.383742
\(397\) 13212.0 1.67026 0.835128 0.550056i \(-0.185394\pi\)
0.835128 + 0.550056i \(0.185394\pi\)
\(398\) −2450.00 −0.308561
\(399\) −552.000 −0.0692596
\(400\) 11275.0 1.40938
\(401\) 6242.00 0.777333 0.388667 0.921378i \(-0.372936\pi\)
0.388667 + 0.921378i \(0.372936\pi\)
\(402\) 2100.00 0.260543
\(403\) −2548.00 −0.314950
\(404\) 8470.00 1.04306
\(405\) 1620.00 0.198762
\(406\) −72.0000 −0.00880123
\(407\) −3648.00 −0.444287
\(408\) 0 0
\(409\) −5194.00 −0.627938 −0.313969 0.949433i \(-0.601659\pi\)
−0.313969 + 0.949433i \(0.601659\pi\)
\(410\) 5880.00 0.708274
\(411\) −7902.00 −0.948362
\(412\) −4508.00 −0.539061
\(413\) −1080.00 −0.128676
\(414\) −1098.00 −0.130347
\(415\) 21040.0 2.48871
\(416\) 2254.00 0.265653
\(417\) 5592.00 0.656694
\(418\) −4416.00 −0.516731
\(419\) −15956.0 −1.86039 −0.930193 0.367071i \(-0.880361\pi\)
−0.930193 + 0.367071i \(0.880361\pi\)
\(420\) 840.000 0.0975900
\(421\) −15254.0 −1.76588 −0.882939 0.469488i \(-0.844438\pi\)
−0.882939 + 0.469488i \(0.844438\pi\)
\(422\) 1064.00 0.122736
\(423\) −108.000 −0.0124140
\(424\) −3510.00 −0.402030
\(425\) 0 0
\(426\) −2382.00 −0.270911
\(427\) 1640.00 0.185867
\(428\) −1792.00 −0.202382
\(429\) 2016.00 0.226884
\(430\) 8560.00 0.960000
\(431\) 5538.00 0.618924 0.309462 0.950912i \(-0.399851\pi\)
0.309462 + 0.950912i \(0.399851\pi\)
\(432\) −1107.00 −0.123288
\(433\) 11342.0 1.25880 0.629402 0.777080i \(-0.283300\pi\)
0.629402 + 0.777080i \(0.283300\pi\)
\(434\) −364.000 −0.0402594
\(435\) −2160.00 −0.238078
\(436\) −8736.00 −0.959584
\(437\) 11224.0 1.22864
\(438\) 3114.00 0.339709
\(439\) −982.000 −0.106762 −0.0533808 0.998574i \(-0.517000\pi\)
−0.0533808 + 0.998574i \(0.517000\pi\)
\(440\) 14400.0 1.56021
\(441\) −3051.00 −0.329446
\(442\) 0 0
\(443\) −2492.00 −0.267265 −0.133633 0.991031i \(-0.542664\pi\)
−0.133633 + 0.991031i \(0.542664\pi\)
\(444\) −1596.00 −0.170592
\(445\) 22040.0 2.34786
\(446\) 2244.00 0.238243
\(447\) 858.000 0.0907875
\(448\) −334.000 −0.0352233
\(449\) 5498.00 0.577877 0.288938 0.957348i \(-0.406698\pi\)
0.288938 + 0.957348i \(0.406698\pi\)
\(450\) −2475.00 −0.259272
\(451\) −14112.0 −1.47341
\(452\) −2450.00 −0.254952
\(453\) 4872.00 0.505312
\(454\) 516.000 0.0533416
\(455\) −560.000 −0.0576994
\(456\) −4140.00 −0.425161
\(457\) 4998.00 0.511590 0.255795 0.966731i \(-0.417663\pi\)
0.255795 + 0.966731i \(0.417663\pi\)
\(458\) 2922.00 0.298114
\(459\) 0 0
\(460\) −17080.0 −1.73122
\(461\) −7586.00 −0.766411 −0.383205 0.923663i \(-0.625180\pi\)
−0.383205 + 0.923663i \(0.625180\pi\)
\(462\) 288.000 0.0290021
\(463\) 5900.00 0.592217 0.296108 0.955154i \(-0.404311\pi\)
0.296108 + 0.955154i \(0.404311\pi\)
\(464\) 1476.00 0.147676
\(465\) −10920.0 −1.08904
\(466\) 3114.00 0.309556
\(467\) −19404.0 −1.92272 −0.961360 0.275295i \(-0.911224\pi\)
−0.961360 + 0.275295i \(0.911224\pi\)
\(468\) 882.000 0.0871164
\(469\) 1400.00 0.137838
\(470\) 240.000 0.0235540
\(471\) −7626.00 −0.746046
\(472\) −8100.00 −0.789900
\(473\) −20544.0 −1.99707
\(474\) −2574.00 −0.249426
\(475\) 25300.0 2.44388
\(476\) 0 0
\(477\) −2106.00 −0.202153
\(478\) −4124.00 −0.394618
\(479\) −2586.00 −0.246675 −0.123338 0.992365i \(-0.539360\pi\)
−0.123338 + 0.992365i \(0.539360\pi\)
\(480\) 9660.00 0.918576
\(481\) 1064.00 0.100861
\(482\) −2034.00 −0.192212
\(483\) −732.000 −0.0689589
\(484\) −6811.00 −0.639651
\(485\) −14200.0 −1.32946
\(486\) 243.000 0.0226805
\(487\) −10106.0 −0.940342 −0.470171 0.882575i \(-0.655808\pi\)
−0.470171 + 0.882575i \(0.655808\pi\)
\(488\) 12300.0 1.14097
\(489\) 2052.00 0.189764
\(490\) 6780.00 0.625080
\(491\) −76.0000 −0.00698540 −0.00349270 0.999994i \(-0.501112\pi\)
−0.00349270 + 0.999994i \(0.501112\pi\)
\(492\) −6174.00 −0.565743
\(493\) 0 0
\(494\) 1288.00 0.117307
\(495\) 8640.00 0.784523
\(496\) 7462.00 0.675511
\(497\) −1588.00 −0.143323
\(498\) 3156.00 0.283983
\(499\) −8096.00 −0.726306 −0.363153 0.931730i \(-0.618300\pi\)
−0.363153 + 0.931730i \(0.618300\pi\)
\(500\) −21000.0 −1.87830
\(501\) 1626.00 0.144999
\(502\) −996.000 −0.0885531
\(503\) −15942.0 −1.41316 −0.706579 0.707634i \(-0.749763\pi\)
−0.706579 + 0.707634i \(0.749763\pi\)
\(504\) 270.000 0.0238626
\(505\) −24200.0 −2.13245
\(506\) −5856.00 −0.514488
\(507\) 6003.00 0.525843
\(508\) 2296.00 0.200529
\(509\) −13742.0 −1.19667 −0.598333 0.801247i \(-0.704170\pi\)
−0.598333 + 0.801247i \(0.704170\pi\)
\(510\) 0 0
\(511\) 2076.00 0.179720
\(512\) −11521.0 −0.994455
\(513\) −2484.00 −0.213784
\(514\) 3246.00 0.278550
\(515\) 12880.0 1.10206
\(516\) −8988.00 −0.766811
\(517\) −576.000 −0.0489989
\(518\) 152.000 0.0128929
\(519\) −2508.00 −0.212117
\(520\) −4200.00 −0.354197
\(521\) −11942.0 −1.00420 −0.502100 0.864809i \(-0.667439\pi\)
−0.502100 + 0.864809i \(0.667439\pi\)
\(522\) −324.000 −0.0271668
\(523\) −6012.00 −0.502651 −0.251325 0.967903i \(-0.580866\pi\)
−0.251325 + 0.967903i \(0.580866\pi\)
\(524\) −13664.0 −1.13915
\(525\) −1650.00 −0.137166
\(526\) −932.000 −0.0772569
\(527\) 0 0
\(528\) −5904.00 −0.486626
\(529\) 2717.00 0.223309
\(530\) 4680.00 0.383559
\(531\) −4860.00 −0.397187
\(532\) −1288.00 −0.104966
\(533\) 4116.00 0.334491
\(534\) 3306.00 0.267911
\(535\) 5120.00 0.413751
\(536\) 10500.0 0.846140
\(537\) 10332.0 0.830277
\(538\) −3884.00 −0.311247
\(539\) −16272.0 −1.30034
\(540\) 3780.00 0.301232
\(541\) −6420.00 −0.510198 −0.255099 0.966915i \(-0.582108\pi\)
−0.255099 + 0.966915i \(0.582108\pi\)
\(542\) 1936.00 0.153429
\(543\) −9852.00 −0.778618
\(544\) 0 0
\(545\) 24960.0 1.96178
\(546\) −84.0000 −0.00658401
\(547\) −1576.00 −0.123190 −0.0615950 0.998101i \(-0.519619\pi\)
−0.0615950 + 0.998101i \(0.519619\pi\)
\(548\) −18438.0 −1.43729
\(549\) 7380.00 0.573717
\(550\) −13200.0 −1.02336
\(551\) 3312.00 0.256072
\(552\) −5490.00 −0.423315
\(553\) −1716.00 −0.131956
\(554\) 872.000 0.0668732
\(555\) 4560.00 0.348759
\(556\) 13048.0 0.995249
\(557\) 15318.0 1.16525 0.582625 0.812741i \(-0.302026\pi\)
0.582625 + 0.812741i \(0.302026\pi\)
\(558\) −1638.00 −0.124269
\(559\) 5992.00 0.453371
\(560\) 1640.00 0.123755
\(561\) 0 0
\(562\) −3198.00 −0.240035
\(563\) 13220.0 0.989621 0.494810 0.869001i \(-0.335237\pi\)
0.494810 + 0.869001i \(0.335237\pi\)
\(564\) −252.000 −0.0188140
\(565\) 7000.00 0.521225
\(566\) −1936.00 −0.143774
\(567\) 162.000 0.0119989
\(568\) −11910.0 −0.879811
\(569\) 2794.00 0.205853 0.102927 0.994689i \(-0.467179\pi\)
0.102927 + 0.994689i \(0.467179\pi\)
\(570\) 5520.00 0.405627
\(571\) 14756.0 1.08147 0.540735 0.841193i \(-0.318146\pi\)
0.540735 + 0.841193i \(0.318146\pi\)
\(572\) 4704.00 0.343853
\(573\) 1020.00 0.0743649
\(574\) 588.000 0.0427572
\(575\) 33550.0 2.43327
\(576\) −1503.00 −0.108724
\(577\) −2846.00 −0.205339 −0.102669 0.994716i \(-0.532738\pi\)
−0.102669 + 0.994716i \(0.532738\pi\)
\(578\) 0 0
\(579\) −4494.00 −0.322563
\(580\) −5040.00 −0.360818
\(581\) 2104.00 0.150239
\(582\) −2130.00 −0.151703
\(583\) −11232.0 −0.797911
\(584\) 15570.0 1.10324
\(585\) −2520.00 −0.178101
\(586\) 5718.00 0.403086
\(587\) −16820.0 −1.18268 −0.591342 0.806421i \(-0.701402\pi\)
−0.591342 + 0.806421i \(0.701402\pi\)
\(588\) −7119.00 −0.499290
\(589\) 16744.0 1.17135
\(590\) 10800.0 0.753608
\(591\) −3528.00 −0.245554
\(592\) −3116.00 −0.216329
\(593\) 13314.0 0.921991 0.460995 0.887403i \(-0.347492\pi\)
0.460995 + 0.887403i \(0.347492\pi\)
\(594\) 1296.00 0.0895211
\(595\) 0 0
\(596\) 2002.00 0.137592
\(597\) −7350.00 −0.503879
\(598\) 1708.00 0.116798
\(599\) 2880.00 0.196450 0.0982250 0.995164i \(-0.468683\pi\)
0.0982250 + 0.995164i \(0.468683\pi\)
\(600\) −12375.0 −0.842012
\(601\) 24854.0 1.68688 0.843441 0.537222i \(-0.180526\pi\)
0.843441 + 0.537222i \(0.180526\pi\)
\(602\) 856.000 0.0579534
\(603\) 6300.00 0.425466
\(604\) 11368.0 0.765823
\(605\) 19460.0 1.30770
\(606\) −3630.00 −0.243331
\(607\) −6122.00 −0.409365 −0.204682 0.978828i \(-0.565616\pi\)
−0.204682 + 0.978828i \(0.565616\pi\)
\(608\) −14812.0 −0.988003
\(609\) −216.000 −0.0143724
\(610\) −16400.0 −1.08855
\(611\) 168.000 0.0111237
\(612\) 0 0
\(613\) 17398.0 1.14633 0.573164 0.819441i \(-0.305716\pi\)
0.573164 + 0.819441i \(0.305716\pi\)
\(614\) −684.000 −0.0449576
\(615\) 17640.0 1.15661
\(616\) 1440.00 0.0941871
\(617\) −2922.00 −0.190657 −0.0953284 0.995446i \(-0.530390\pi\)
−0.0953284 + 0.995446i \(0.530390\pi\)
\(618\) 1932.00 0.125755
\(619\) −9660.00 −0.627251 −0.313625 0.949547i \(-0.601544\pi\)
−0.313625 + 0.949547i \(0.601544\pi\)
\(620\) −25480.0 −1.65049
\(621\) −3294.00 −0.212856
\(622\) −290.000 −0.0186944
\(623\) 2204.00 0.141736
\(624\) 1722.00 0.110473
\(625\) 25625.0 1.64000
\(626\) −11050.0 −0.705506
\(627\) −13248.0 −0.843818
\(628\) −17794.0 −1.13067
\(629\) 0 0
\(630\) −360.000 −0.0227663
\(631\) 2788.00 0.175893 0.0879465 0.996125i \(-0.471970\pi\)
0.0879465 + 0.996125i \(0.471970\pi\)
\(632\) −12870.0 −0.810033
\(633\) 3192.00 0.200428
\(634\) 992.000 0.0621409
\(635\) −6560.00 −0.409962
\(636\) −4914.00 −0.306372
\(637\) 4746.00 0.295202
\(638\) −1728.00 −0.107229
\(639\) −7146.00 −0.442397
\(640\) 29100.0 1.79731
\(641\) 16290.0 1.00377 0.501885 0.864934i \(-0.332640\pi\)
0.501885 + 0.864934i \(0.332640\pi\)
\(642\) 768.000 0.0472127
\(643\) 16588.0 1.01737 0.508683 0.860954i \(-0.330132\pi\)
0.508683 + 0.860954i \(0.330132\pi\)
\(644\) −1708.00 −0.104510
\(645\) 25680.0 1.56767
\(646\) 0 0
\(647\) 22364.0 1.35892 0.679459 0.733714i \(-0.262215\pi\)
0.679459 + 0.733714i \(0.262215\pi\)
\(648\) 1215.00 0.0736570
\(649\) −25920.0 −1.56772
\(650\) 3850.00 0.232322
\(651\) −1092.00 −0.0657432
\(652\) 4788.00 0.287596
\(653\) 19356.0 1.15997 0.579984 0.814628i \(-0.303059\pi\)
0.579984 + 0.814628i \(0.303059\pi\)
\(654\) 3744.00 0.223856
\(655\) 39040.0 2.32888
\(656\) −12054.0 −0.717423
\(657\) 9342.00 0.554743
\(658\) 24.0000 0.00142191
\(659\) −4220.00 −0.249450 −0.124725 0.992191i \(-0.539805\pi\)
−0.124725 + 0.992191i \(0.539805\pi\)
\(660\) 20160.0 1.18898
\(661\) −12070.0 −0.710240 −0.355120 0.934821i \(-0.615560\pi\)
−0.355120 + 0.934821i \(0.615560\pi\)
\(662\) −2860.00 −0.167911
\(663\) 0 0
\(664\) 15780.0 0.922263
\(665\) 3680.00 0.214593
\(666\) 684.000 0.0397965
\(667\) 4392.00 0.254961
\(668\) 3794.00 0.219752
\(669\) 6732.00 0.389050
\(670\) −14000.0 −0.807264
\(671\) 39360.0 2.26449
\(672\) 966.000 0.0554528
\(673\) 5914.00 0.338734 0.169367 0.985553i \(-0.445828\pi\)
0.169367 + 0.985553i \(0.445828\pi\)
\(674\) 6298.00 0.359926
\(675\) −7425.00 −0.423390
\(676\) 14007.0 0.796939
\(677\) 27624.0 1.56821 0.784104 0.620630i \(-0.213123\pi\)
0.784104 + 0.620630i \(0.213123\pi\)
\(678\) 1050.00 0.0594764
\(679\) −1420.00 −0.0802571
\(680\) 0 0
\(681\) 1548.00 0.0871064
\(682\) −8736.00 −0.490497
\(683\) −29132.0 −1.63207 −0.816036 0.578001i \(-0.803833\pi\)
−0.816036 + 0.578001i \(0.803833\pi\)
\(684\) −5796.00 −0.323999
\(685\) 52680.0 2.93839
\(686\) 1364.00 0.0759151
\(687\) 8766.00 0.486818
\(688\) −17548.0 −0.972400
\(689\) 3276.00 0.181140
\(690\) 7320.00 0.403866
\(691\) 20336.0 1.11956 0.559781 0.828640i \(-0.310885\pi\)
0.559781 + 0.828640i \(0.310885\pi\)
\(692\) −5852.00 −0.321473
\(693\) 864.000 0.0473602
\(694\) −3508.00 −0.191876
\(695\) −37280.0 −2.03469
\(696\) −1620.00 −0.0882269
\(697\) 0 0
\(698\) 2406.00 0.130471
\(699\) 9342.00 0.505503
\(700\) −3850.00 −0.207880
\(701\) 17142.0 0.923601 0.461801 0.886984i \(-0.347204\pi\)
0.461801 + 0.886984i \(0.347204\pi\)
\(702\) −378.000 −0.0203229
\(703\) −6992.00 −0.375118
\(704\) −8016.00 −0.429140
\(705\) 720.000 0.0384635
\(706\) 1842.00 0.0981935
\(707\) −2420.00 −0.128732
\(708\) −11340.0 −0.601954
\(709\) −22784.0 −1.20687 −0.603435 0.797412i \(-0.706202\pi\)
−0.603435 + 0.797412i \(0.706202\pi\)
\(710\) 15880.0 0.839388
\(711\) −7722.00 −0.407310
\(712\) 16530.0 0.870067
\(713\) 22204.0 1.16626
\(714\) 0 0
\(715\) −13440.0 −0.702976
\(716\) 24108.0 1.25832
\(717\) −12372.0 −0.644408
\(718\) −3264.00 −0.169654
\(719\) −58.0000 −0.00300839 −0.00150420 0.999999i \(-0.500479\pi\)
−0.00150420 + 0.999999i \(0.500479\pi\)
\(720\) 7380.00 0.381995
\(721\) 1288.00 0.0665293
\(722\) −1605.00 −0.0827312
\(723\) −6102.00 −0.313881
\(724\) −22988.0 −1.18003
\(725\) 9900.00 0.507140
\(726\) 2919.00 0.149221
\(727\) 712.000 0.0363227 0.0181614 0.999835i \(-0.494219\pi\)
0.0181614 + 0.999835i \(0.494219\pi\)
\(728\) −420.000 −0.0213822
\(729\) 729.000 0.0370370
\(730\) −20760.0 −1.05255
\(731\) 0 0
\(732\) 17220.0 0.869494
\(733\) 23050.0 1.16149 0.580744 0.814086i \(-0.302762\pi\)
0.580744 + 0.814086i \(0.302762\pi\)
\(734\) 7354.00 0.369811
\(735\) 20340.0 1.02075
\(736\) −19642.0 −0.983714
\(737\) 33600.0 1.67934
\(738\) 2646.00 0.131979
\(739\) −38708.0 −1.92679 −0.963394 0.268088i \(-0.913608\pi\)
−0.963394 + 0.268088i \(0.913608\pi\)
\(740\) 10640.0 0.528560
\(741\) 3864.00 0.191562
\(742\) 468.000 0.0231547
\(743\) 11034.0 0.544816 0.272408 0.962182i \(-0.412180\pi\)
0.272408 + 0.962182i \(0.412180\pi\)
\(744\) −8190.00 −0.403575
\(745\) −5720.00 −0.281295
\(746\) −11322.0 −0.555667
\(747\) 9468.00 0.463743
\(748\) 0 0
\(749\) 512.000 0.0249774
\(750\) 9000.00 0.438178
\(751\) −7502.00 −0.364516 −0.182258 0.983251i \(-0.558341\pi\)
−0.182258 + 0.983251i \(0.558341\pi\)
\(752\) −492.000 −0.0238582
\(753\) −2988.00 −0.144607
\(754\) 504.000 0.0243430
\(755\) −32480.0 −1.56565
\(756\) 378.000 0.0181848
\(757\) −20954.0 −1.00606 −0.503029 0.864269i \(-0.667781\pi\)
−0.503029 + 0.864269i \(0.667781\pi\)
\(758\) 12796.0 0.613155
\(759\) −17568.0 −0.840155
\(760\) 27600.0 1.31731
\(761\) 8186.00 0.389937 0.194969 0.980809i \(-0.437539\pi\)
0.194969 + 0.980809i \(0.437539\pi\)
\(762\) −984.000 −0.0467803
\(763\) 2496.00 0.118429
\(764\) 2380.00 0.112703
\(765\) 0 0
\(766\) 420.000 0.0198110
\(767\) 7560.00 0.355901
\(768\) 357.000 0.0167736
\(769\) −5798.00 −0.271887 −0.135944 0.990717i \(-0.543407\pi\)
−0.135944 + 0.990717i \(0.543407\pi\)
\(770\) −1920.00 −0.0898597
\(771\) 9738.00 0.454871
\(772\) −10486.0 −0.488859
\(773\) −39950.0 −1.85886 −0.929432 0.368994i \(-0.879702\pi\)
−0.929432 + 0.368994i \(0.879702\pi\)
\(774\) 3852.00 0.178885
\(775\) 50050.0 2.31981
\(776\) −10650.0 −0.492671
\(777\) 456.000 0.0210539
\(778\) −6426.00 −0.296122
\(779\) −27048.0 −1.24402
\(780\) −5880.00 −0.269920
\(781\) −38112.0 −1.74616
\(782\) 0 0
\(783\) −972.000 −0.0443633
\(784\) −13899.0 −0.633154
\(785\) 50840.0 2.31154
\(786\) 5856.00 0.265746
\(787\) −20656.0 −0.935587 −0.467793 0.883838i \(-0.654951\pi\)
−0.467793 + 0.883838i \(0.654951\pi\)
\(788\) −8232.00 −0.372148
\(789\) −2796.00 −0.126160
\(790\) 17160.0 0.772817
\(791\) 700.000 0.0314654
\(792\) 6480.00 0.290728
\(793\) −11480.0 −0.514082
\(794\) −13212.0 −0.590524
\(795\) 14040.0 0.626349
\(796\) −17150.0 −0.763650
\(797\) −3722.00 −0.165420 −0.0827102 0.996574i \(-0.526358\pi\)
−0.0827102 + 0.996574i \(0.526358\pi\)
\(798\) 552.000 0.0244870
\(799\) 0 0
\(800\) −44275.0 −1.95670
\(801\) 9918.00 0.437497
\(802\) −6242.00 −0.274829
\(803\) 49824.0 2.18960
\(804\) 14700.0 0.644812
\(805\) 4880.00 0.213661
\(806\) 2548.00 0.111352
\(807\) −11652.0 −0.508265
\(808\) −18150.0 −0.790241
\(809\) −6518.00 −0.283264 −0.141632 0.989919i \(-0.545235\pi\)
−0.141632 + 0.989919i \(0.545235\pi\)
\(810\) −1620.00 −0.0702728
\(811\) 33068.0 1.43178 0.715891 0.698212i \(-0.246021\pi\)
0.715891 + 0.698212i \(0.246021\pi\)
\(812\) −504.000 −0.0217819
\(813\) 5808.00 0.250548
\(814\) 3648.00 0.157079
\(815\) −13680.0 −0.587963
\(816\) 0 0
\(817\) −39376.0 −1.68616
\(818\) 5194.00 0.222010
\(819\) −252.000 −0.0107516
\(820\) 41160.0 1.75289
\(821\) 5328.00 0.226490 0.113245 0.993567i \(-0.463875\pi\)
0.113245 + 0.993567i \(0.463875\pi\)
\(822\) 7902.00 0.335297
\(823\) −25874.0 −1.09588 −0.547941 0.836517i \(-0.684588\pi\)
−0.547941 + 0.836517i \(0.684588\pi\)
\(824\) 9660.00 0.408401
\(825\) −39600.0 −1.67115
\(826\) 1080.00 0.0454940
\(827\) −29184.0 −1.22712 −0.613559 0.789649i \(-0.710263\pi\)
−0.613559 + 0.789649i \(0.710263\pi\)
\(828\) −7686.00 −0.322593
\(829\) −9394.00 −0.393567 −0.196784 0.980447i \(-0.563050\pi\)
−0.196784 + 0.980447i \(0.563050\pi\)
\(830\) −21040.0 −0.879890
\(831\) 2616.00 0.109203
\(832\) 2338.00 0.0974226
\(833\) 0 0
\(834\) −5592.00 −0.232176
\(835\) −10840.0 −0.449262
\(836\) −30912.0 −1.27884
\(837\) −4914.00 −0.202930
\(838\) 15956.0 0.657746
\(839\) 32062.0 1.31931 0.659656 0.751567i \(-0.270702\pi\)
0.659656 + 0.751567i \(0.270702\pi\)
\(840\) −1800.00 −0.0739356
\(841\) −23093.0 −0.946861
\(842\) 15254.0 0.624332
\(843\) −9594.00 −0.391975
\(844\) 7448.00 0.303757
\(845\) −40020.0 −1.62927
\(846\) 108.000 0.00438903
\(847\) 1946.00 0.0789437
\(848\) −9594.00 −0.388513
\(849\) −5808.00 −0.234782
\(850\) 0 0
\(851\) −9272.00 −0.373490
\(852\) −16674.0 −0.670472
\(853\) −9152.00 −0.367361 −0.183680 0.982986i \(-0.558801\pi\)
−0.183680 + 0.982986i \(0.558801\pi\)
\(854\) −1640.00 −0.0657139
\(855\) 16560.0 0.662386
\(856\) 3840.00 0.153328
\(857\) 19706.0 0.785466 0.392733 0.919653i \(-0.371530\pi\)
0.392733 + 0.919653i \(0.371530\pi\)
\(858\) −2016.00 −0.0802157
\(859\) 28684.0 1.13933 0.569666 0.821877i \(-0.307073\pi\)
0.569666 + 0.821877i \(0.307073\pi\)
\(860\) 59920.0 2.37588
\(861\) 1764.00 0.0698223
\(862\) −5538.00 −0.218823
\(863\) −6320.00 −0.249288 −0.124644 0.992202i \(-0.539779\pi\)
−0.124644 + 0.992202i \(0.539779\pi\)
\(864\) 4347.00 0.171167
\(865\) 16720.0 0.657222
\(866\) −11342.0 −0.445054
\(867\) 0 0
\(868\) −2548.00 −0.0996368
\(869\) −41184.0 −1.60768
\(870\) 2160.00 0.0841734
\(871\) −9800.00 −0.381240
\(872\) 18720.0 0.726994
\(873\) −6390.00 −0.247731
\(874\) −11224.0 −0.434391
\(875\) 6000.00 0.231814
\(876\) 21798.0 0.840738
\(877\) −49272.0 −1.89715 −0.948573 0.316558i \(-0.897473\pi\)
−0.948573 + 0.316558i \(0.897473\pi\)
\(878\) 982.000 0.0377459
\(879\) 17154.0 0.658237
\(880\) 39360.0 1.50776
\(881\) 16462.0 0.629533 0.314767 0.949169i \(-0.398074\pi\)
0.314767 + 0.949169i \(0.398074\pi\)
\(882\) 3051.00 0.116477
\(883\) 21300.0 0.811780 0.405890 0.913922i \(-0.366962\pi\)
0.405890 + 0.913922i \(0.366962\pi\)
\(884\) 0 0
\(885\) 32400.0 1.23064
\(886\) 2492.00 0.0944925
\(887\) 16590.0 0.628002 0.314001 0.949423i \(-0.398330\pi\)
0.314001 + 0.949423i \(0.398330\pi\)
\(888\) 3420.00 0.129243
\(889\) −656.000 −0.0247486
\(890\) −22040.0 −0.830093
\(891\) 3888.00 0.146187
\(892\) 15708.0 0.589622
\(893\) −1104.00 −0.0413706
\(894\) −858.000 −0.0320982
\(895\) −68880.0 −2.57252
\(896\) 2910.00 0.108500
\(897\) 5124.00 0.190731
\(898\) −5498.00 −0.204310
\(899\) 6552.00 0.243072
\(900\) −17325.0 −0.641667
\(901\) 0 0
\(902\) 14112.0 0.520929
\(903\) 2568.00 0.0946375
\(904\) 5250.00 0.193155
\(905\) 65680.0 2.41246
\(906\) −4872.00 −0.178655
\(907\) 36184.0 1.32466 0.662332 0.749211i \(-0.269567\pi\)
0.662332 + 0.749211i \(0.269567\pi\)
\(908\) 3612.00 0.132014
\(909\) −10890.0 −0.397358
\(910\) 560.000 0.0203998
\(911\) −15626.0 −0.568290 −0.284145 0.958781i \(-0.591710\pi\)
−0.284145 + 0.958781i \(0.591710\pi\)
\(912\) −11316.0 −0.410866
\(913\) 50496.0 1.83042
\(914\) −4998.00 −0.180874
\(915\) −49200.0 −1.77760
\(916\) 20454.0 0.737794
\(917\) 3904.00 0.140590
\(918\) 0 0
\(919\) 36672.0 1.31632 0.658160 0.752878i \(-0.271335\pi\)
0.658160 + 0.752878i \(0.271335\pi\)
\(920\) 36600.0 1.31159
\(921\) −2052.00 −0.0734155
\(922\) 7586.00 0.270967
\(923\) 11116.0 0.396411
\(924\) 2016.00 0.0717765
\(925\) −20900.0 −0.742906
\(926\) −5900.00 −0.209380
\(927\) 5796.00 0.205357
\(928\) −5796.00 −0.205025
\(929\) 15810.0 0.558352 0.279176 0.960240i \(-0.409939\pi\)
0.279176 + 0.960240i \(0.409939\pi\)
\(930\) 10920.0 0.385033
\(931\) −31188.0 −1.09790
\(932\) 21798.0 0.766113
\(933\) −870.000 −0.0305279
\(934\) 19404.0 0.679784
\(935\) 0 0
\(936\) −1890.00 −0.0660006
\(937\) 48646.0 1.69605 0.848023 0.529959i \(-0.177793\pi\)
0.848023 + 0.529959i \(0.177793\pi\)
\(938\) −1400.00 −0.0487331
\(939\) −33150.0 −1.15209
\(940\) 1680.00 0.0582931
\(941\) −43872.0 −1.51986 −0.759929 0.650006i \(-0.774766\pi\)
−0.759929 + 0.650006i \(0.774766\pi\)
\(942\) 7626.00 0.263767
\(943\) −35868.0 −1.23862
\(944\) −22140.0 −0.763343
\(945\) −1080.00 −0.0371771
\(946\) 20544.0 0.706071
\(947\) −38552.0 −1.32288 −0.661442 0.749996i \(-0.730055\pi\)
−0.661442 + 0.749996i \(0.730055\pi\)
\(948\) −18018.0 −0.617297
\(949\) −14532.0 −0.497080
\(950\) −25300.0 −0.864043
\(951\) 2976.00 0.101476
\(952\) 0 0
\(953\) −52954.0 −1.79995 −0.899973 0.435946i \(-0.856414\pi\)
−0.899973 + 0.435946i \(0.856414\pi\)
\(954\) 2106.00 0.0714720
\(955\) −6800.00 −0.230411
\(956\) −28868.0 −0.976630
\(957\) −5184.00 −0.175104
\(958\) 2586.00 0.0872128
\(959\) 5268.00 0.177385
\(960\) 10020.0 0.336869
\(961\) 3333.00 0.111879
\(962\) −1064.00 −0.0356598
\(963\) 2304.00 0.0770980
\(964\) −14238.0 −0.475700
\(965\) 29960.0 0.999426
\(966\) 732.000 0.0243807
\(967\) −46428.0 −1.54398 −0.771988 0.635638i \(-0.780737\pi\)
−0.771988 + 0.635638i \(0.780737\pi\)
\(968\) 14595.0 0.484609
\(969\) 0 0
\(970\) 14200.0 0.470036
\(971\) −40980.0 −1.35439 −0.677194 0.735804i \(-0.736804\pi\)
−0.677194 + 0.735804i \(0.736804\pi\)
\(972\) 1701.00 0.0561313
\(973\) −3728.00 −0.122831
\(974\) 10106.0 0.332461
\(975\) 11550.0 0.379381
\(976\) 33620.0 1.10261
\(977\) −10206.0 −0.334206 −0.167103 0.985939i \(-0.553441\pi\)
−0.167103 + 0.985939i \(0.553441\pi\)
\(978\) −2052.00 −0.0670917
\(979\) 52896.0 1.72683
\(980\) 47460.0 1.54699
\(981\) 11232.0 0.365556
\(982\) 76.0000 0.00246971
\(983\) 44934.0 1.45796 0.728979 0.684536i \(-0.239995\pi\)
0.728979 + 0.684536i \(0.239995\pi\)
\(984\) 13230.0 0.428615
\(985\) 23520.0 0.760822
\(986\) 0 0
\(987\) 72.0000 0.00232197
\(988\) 9016.00 0.290321
\(989\) −52216.0 −1.67884
\(990\) −8640.00 −0.277371
\(991\) −20526.0 −0.657951 −0.328976 0.944338i \(-0.606703\pi\)
−0.328976 + 0.944338i \(0.606703\pi\)
\(992\) −29302.0 −0.937842
\(993\) −8580.00 −0.274197
\(994\) 1588.00 0.0506723
\(995\) 49000.0 1.56121
\(996\) 22092.0 0.702823
\(997\) −29260.0 −0.929462 −0.464731 0.885452i \(-0.653849\pi\)
−0.464731 + 0.885452i \(0.653849\pi\)
\(998\) 8096.00 0.256788
\(999\) 2052.00 0.0649874
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.4.a.c.1.1 1
17.16 even 2 51.4.a.b.1.1 1
51.50 odd 2 153.4.a.c.1.1 1
68.67 odd 2 816.4.a.a.1.1 1
85.84 even 2 1275.4.a.e.1.1 1
119.118 odd 2 2499.4.a.d.1.1 1
204.203 even 2 2448.4.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.b.1.1 1 17.16 even 2
153.4.a.c.1.1 1 51.50 odd 2
816.4.a.a.1.1 1 68.67 odd 2
867.4.a.c.1.1 1 1.1 even 1 trivial
1275.4.a.e.1.1 1 85.84 even 2
2448.4.a.r.1.1 1 204.203 even 2
2499.4.a.d.1.1 1 119.118 odd 2