Defining parameters
Level: | \( N \) | \(=\) | \( 867 = 3 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 867.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 23 \) | ||
Sturm bound: | \(408\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(867))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 324 | 136 | 188 |
Cusp forms | 288 | 136 | 152 |
Eisenstein series | 36 | 0 | 36 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(17\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(35\) |
\(+\) | \(-\) | \(-\) | \(33\) |
\(-\) | \(+\) | \(-\) | \(29\) |
\(-\) | \(-\) | \(+\) | \(39\) |
Plus space | \(+\) | \(74\) | |
Minus space | \(-\) | \(62\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(867))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(867))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(867)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 2}\)