Defining parameters
Level: | \( N \) | = | \( 867 = 3 \cdot 17^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 10 \) | ||
Sturm bound: | \(221952\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(867))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84032 | 62360 | 21672 |
Cusp forms | 82432 | 61624 | 20808 |
Eisenstein series | 1600 | 736 | 864 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(867))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
867.4.a | \(\chi_{867}(1, \cdot)\) | 867.4.a.a | 1 | 1 |
867.4.a.b | 1 | |||
867.4.a.c | 1 | |||
867.4.a.d | 1 | |||
867.4.a.e | 1 | |||
867.4.a.f | 1 | |||
867.4.a.g | 1 | |||
867.4.a.h | 2 | |||
867.4.a.i | 2 | |||
867.4.a.j | 2 | |||
867.4.a.k | 3 | |||
867.4.a.l | 4 | |||
867.4.a.m | 4 | |||
867.4.a.n | 4 | |||
867.4.a.o | 4 | |||
867.4.a.p | 8 | |||
867.4.a.q | 8 | |||
867.4.a.r | 9 | |||
867.4.a.s | 9 | |||
867.4.a.t | 15 | |||
867.4.a.u | 15 | |||
867.4.a.v | 20 | |||
867.4.a.w | 20 | |||
867.4.d | \(\chi_{867}(577, \cdot)\) | n/a | 136 | 1 |
867.4.e | \(\chi_{867}(616, \cdot)\) | n/a | 272 | 2 |
867.4.h | \(\chi_{867}(688, \cdot)\) | n/a | 536 | 4 |
867.4.i | \(\chi_{867}(65, \cdot)\) | n/a | 2048 | 8 |
867.4.k | \(\chi_{867}(52, \cdot)\) | n/a | 2432 | 16 |
867.4.l | \(\chi_{867}(16, \cdot)\) | n/a | 2432 | 16 |
867.4.p | \(\chi_{867}(4, \cdot)\) | n/a | 4864 | 32 |
867.4.q | \(\chi_{867}(19, \cdot)\) | n/a | 9856 | 64 |
867.4.t | \(\chi_{867}(5, \cdot)\) | n/a | 38912 | 128 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(867))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(867)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(289))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(867))\)\(^{\oplus 1}\)