Properties

Label 867.4
Level 867
Weight 4
Dimension 61624
Nonzero newspaces 10
Sturm bound 221952
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 10 \)
Sturm bound: \(221952\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(867))\).

Total New Old
Modular forms 84032 62360 21672
Cusp forms 82432 61624 20808
Eisenstein series 1600 736 864

Trace form

\( 61624 q - 120 q^{3} - 240 q^{4} - 120 q^{6} - 240 q^{7} - 120 q^{9} - 656 q^{10} - 448 q^{11} - 312 q^{12} - 112 q^{13} + 640 q^{14} + 552 q^{15} + 1520 q^{16} + 256 q^{17} + 664 q^{18} + 80 q^{19} + 448 q^{20}+ \cdots - 26216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(867))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
867.4.a \(\chi_{867}(1, \cdot)\) 867.4.a.a 1 1
867.4.a.b 1
867.4.a.c 1
867.4.a.d 1
867.4.a.e 1
867.4.a.f 1
867.4.a.g 1
867.4.a.h 2
867.4.a.i 2
867.4.a.j 2
867.4.a.k 3
867.4.a.l 4
867.4.a.m 4
867.4.a.n 4
867.4.a.o 4
867.4.a.p 8
867.4.a.q 8
867.4.a.r 9
867.4.a.s 9
867.4.a.t 15
867.4.a.u 15
867.4.a.v 20
867.4.a.w 20
867.4.d \(\chi_{867}(577, \cdot)\) n/a 136 1
867.4.e \(\chi_{867}(616, \cdot)\) n/a 272 2
867.4.h \(\chi_{867}(688, \cdot)\) n/a 536 4
867.4.i \(\chi_{867}(65, \cdot)\) n/a 2048 8
867.4.k \(\chi_{867}(52, \cdot)\) n/a 2432 16
867.4.l \(\chi_{867}(16, \cdot)\) n/a 2432 16
867.4.p \(\chi_{867}(4, \cdot)\) n/a 4864 32
867.4.q \(\chi_{867}(19, \cdot)\) n/a 9856 64
867.4.t \(\chi_{867}(5, \cdot)\) n/a 38912 128

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(867))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(867)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(289))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(867))\)\(^{\oplus 1}\)