Defining parameters
| Level: | \( N \) | \(=\) | \( 8664 = 2^{3} \cdot 3 \cdot 19^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 8664.cj (of order \(38\) and degree \(18\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4332 \) |
| Character field: | \(\Q(\zeta_{38})\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(3040\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8664, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 27504 | 0 | 27504 |
| Cusp forms | 27216 | 0 | 27216 |
| Eisenstein series | 288 | 0 | 288 |
Decomposition of \(S_{2}^{\mathrm{old}}(8664, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8664, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(4332, [\chi])\)\(^{\oplus 2}\)