Properties

Label 8664.2.a.m.1.1
Level $8664$
Weight $2$
Character 8664.1
Self dual yes
Analytic conductor $69.182$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8664,2,Mod(1,8664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8664, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8664.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8664 = 2^{3} \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8664.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1823883112\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 456)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8664.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +2.00000 q^{5} -3.00000 q^{7} +1.00000 q^{9} +5.00000 q^{13} +2.00000 q^{15} -4.00000 q^{17} -3.00000 q^{21} +6.00000 q^{23} -1.00000 q^{25} +1.00000 q^{27} -4.00000 q^{29} -7.00000 q^{31} -6.00000 q^{35} -1.00000 q^{37} +5.00000 q^{39} +11.0000 q^{43} +2.00000 q^{45} +6.00000 q^{47} +2.00000 q^{49} -4.00000 q^{51} -2.00000 q^{53} +8.00000 q^{59} +7.00000 q^{61} -3.00000 q^{63} +10.0000 q^{65} +3.00000 q^{67} +6.00000 q^{69} +6.00000 q^{71} +9.00000 q^{73} -1.00000 q^{75} +5.00000 q^{79} +1.00000 q^{81} +16.0000 q^{83} -8.00000 q^{85} -4.00000 q^{87} +12.0000 q^{89} -15.0000 q^{91} -7.00000 q^{93} -14.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.00000 −1.01419
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) 5.00000 0.800641
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 11.0000 1.67748 0.838742 0.544529i \(-0.183292\pi\)
0.838742 + 0.544529i \(0.183292\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 0 0
\(63\) −3.00000 −0.377964
\(64\) 0 0
\(65\) 10.0000 1.24035
\(66\) 0 0
\(67\) 3.00000 0.366508 0.183254 0.983066i \(-0.441337\pi\)
0.183254 + 0.983066i \(0.441337\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.00000 0.562544 0.281272 0.959628i \(-0.409244\pi\)
0.281272 + 0.959628i \(0.409244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) −8.00000 −0.867722
\(86\) 0 0
\(87\) −4.00000 −0.428845
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) −15.0000 −1.57243
\(92\) 0 0
\(93\) −7.00000 −0.725866
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) 13.0000 1.28093 0.640464 0.767988i \(-0.278742\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) 0 0
\(105\) −6.00000 −0.585540
\(106\) 0 0
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 0 0
\(109\) 18.0000 1.72409 0.862044 0.506834i \(-0.169184\pi\)
0.862044 + 0.506834i \(0.169184\pi\)
\(110\) 0 0
\(111\) −1.00000 −0.0949158
\(112\) 0 0
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 0 0
\(115\) 12.0000 1.11901
\(116\) 0 0
\(117\) 5.00000 0.462250
\(118\) 0 0
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 11.0000 0.968496
\(130\) 0 0
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.00000 0.172133
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) −4.00000 −0.327693 −0.163846 0.986486i \(-0.552390\pi\)
−0.163846 + 0.986486i \(0.552390\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) −14.0000 −1.12451
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) 0 0
\(159\) −2.00000 −0.158610
\(160\) 0 0
\(161\) −18.0000 −1.41860
\(162\) 0 0
\(163\) 7.00000 0.548282 0.274141 0.961689i \(-0.411606\pi\)
0.274141 + 0.961689i \(0.411606\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.00000 0.304114 0.152057 0.988372i \(-0.451410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 0 0
\(175\) 3.00000 0.226779
\(176\) 0 0
\(177\) 8.00000 0.601317
\(178\) 0 0
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 7.00000 0.517455
\(184\) 0 0
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) 3.00000 0.215945 0.107972 0.994154i \(-0.465564\pi\)
0.107972 + 0.994154i \(0.465564\pi\)
\(194\) 0 0
\(195\) 10.0000 0.716115
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) −3.00000 −0.212664 −0.106332 0.994331i \(-0.533911\pi\)
−0.106332 + 0.994331i \(0.533911\pi\)
\(200\) 0 0
\(201\) 3.00000 0.211604
\(202\) 0 0
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −3.00000 −0.206529 −0.103264 0.994654i \(-0.532929\pi\)
−0.103264 + 0.994654i \(0.532929\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) 22.0000 1.50039
\(216\) 0 0
\(217\) 21.0000 1.42557
\(218\) 0 0
\(219\) 9.00000 0.608164
\(220\) 0 0
\(221\) −20.0000 −1.34535
\(222\) 0 0
\(223\) 1.00000 0.0669650 0.0334825 0.999439i \(-0.489340\pi\)
0.0334825 + 0.999439i \(0.489340\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −14.0000 −0.929213 −0.464606 0.885517i \(-0.653804\pi\)
−0.464606 + 0.885517i \(0.653804\pi\)
\(228\) 0 0
\(229\) −11.0000 −0.726900 −0.363450 0.931614i \(-0.618401\pi\)
−0.363450 + 0.931614i \(0.618401\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.0000 1.70332 0.851658 0.524097i \(-0.175597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) 0 0
\(237\) 5.00000 0.324785
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 21.0000 1.35273 0.676364 0.736567i \(-0.263554\pi\)
0.676364 + 0.736567i \(0.263554\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 4.00000 0.255551
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 16.0000 1.01396
\(250\) 0 0
\(251\) −10.0000 −0.631194 −0.315597 0.948893i \(-0.602205\pi\)
−0.315597 + 0.948893i \(0.602205\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −8.00000 −0.500979
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) 0 0
\(263\) −14.0000 −0.863277 −0.431638 0.902047i \(-0.642064\pi\)
−0.431638 + 0.902047i \(0.642064\pi\)
\(264\) 0 0
\(265\) −4.00000 −0.245718
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 0 0
\(269\) 4.00000 0.243884 0.121942 0.992537i \(-0.461088\pi\)
0.121942 + 0.992537i \(0.461088\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) −15.0000 −0.907841
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) 0 0
\(279\) −7.00000 −0.419079
\(280\) 0 0
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) −34.0000 −1.98630 −0.993151 0.116841i \(-0.962723\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) 16.0000 0.931556
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 30.0000 1.73494
\(300\) 0 0
\(301\) −33.0000 −1.90209
\(302\) 0 0
\(303\) −18.0000 −1.03407
\(304\) 0 0
\(305\) 14.0000 0.801638
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 13.0000 0.739544
\(310\) 0 0
\(311\) 28.0000 1.58773 0.793867 0.608091i \(-0.208065\pi\)
0.793867 + 0.608091i \(0.208065\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 0 0
\(315\) −6.00000 −0.338062
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 10.0000 0.558146
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −5.00000 −0.277350
\(326\) 0 0
\(327\) 18.0000 0.995402
\(328\) 0 0
\(329\) −18.0000 −0.992372
\(330\) 0 0
\(331\) 19.0000 1.04433 0.522167 0.852843i \(-0.325124\pi\)
0.522167 + 0.852843i \(0.325124\pi\)
\(332\) 0 0
\(333\) −1.00000 −0.0547997
\(334\) 0 0
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) 9.00000 0.490261 0.245131 0.969490i \(-0.421169\pi\)
0.245131 + 0.969490i \(0.421169\pi\)
\(338\) 0 0
\(339\) −4.00000 −0.217250
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) 12.0000 0.646058
\(346\) 0 0
\(347\) 18.0000 0.966291 0.483145 0.875540i \(-0.339494\pi\)
0.483145 + 0.875540i \(0.339494\pi\)
\(348\) 0 0
\(349\) 35.0000 1.87351 0.936754 0.349990i \(-0.113815\pi\)
0.936754 + 0.349990i \(0.113815\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 0 0
\(357\) 12.0000 0.635107
\(358\) 0 0
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) 18.0000 0.942163
\(366\) 0 0
\(367\) 31.0000 1.61819 0.809093 0.587680i \(-0.199959\pi\)
0.809093 + 0.587680i \(0.199959\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.00000 0.311504
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 0 0
\(377\) −20.0000 −1.03005
\(378\) 0 0
\(379\) −21.0000 −1.07870 −0.539349 0.842082i \(-0.681330\pi\)
−0.539349 + 0.842082i \(0.681330\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) 0 0
\(383\) 16.0000 0.817562 0.408781 0.912633i \(-0.365954\pi\)
0.408781 + 0.912633i \(0.365954\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 11.0000 0.559161
\(388\) 0 0
\(389\) −38.0000 −1.92668 −0.963338 0.268290i \(-0.913542\pi\)
−0.963338 + 0.268290i \(0.913542\pi\)
\(390\) 0 0
\(391\) −24.0000 −1.21373
\(392\) 0 0
\(393\) −6.00000 −0.302660
\(394\) 0 0
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) 7.00000 0.351320 0.175660 0.984451i \(-0.443794\pi\)
0.175660 + 0.984451i \(0.443794\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.0000 −1.19850 −0.599251 0.800561i \(-0.704535\pi\)
−0.599251 + 0.800561i \(0.704535\pi\)
\(402\) 0 0
\(403\) −35.0000 −1.74347
\(404\) 0 0
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 0 0
\(413\) −24.0000 −1.18096
\(414\) 0 0
\(415\) 32.0000 1.57082
\(416\) 0 0
\(417\) 5.00000 0.244851
\(418\) 0 0
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) 38.0000 1.85201 0.926003 0.377515i \(-0.123221\pi\)
0.926003 + 0.377515i \(0.123221\pi\)
\(422\) 0 0
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) 4.00000 0.194029
\(426\) 0 0
\(427\) −21.0000 −1.01626
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −30.0000 −1.44505 −0.722525 0.691345i \(-0.757018\pi\)
−0.722525 + 0.691345i \(0.757018\pi\)
\(432\) 0 0
\(433\) 19.0000 0.913082 0.456541 0.889702i \(-0.349088\pi\)
0.456541 + 0.889702i \(0.349088\pi\)
\(434\) 0 0
\(435\) −8.00000 −0.383571
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −5.00000 −0.238637 −0.119318 0.992856i \(-0.538071\pi\)
−0.119318 + 0.992856i \(0.538071\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) −20.0000 −0.950229 −0.475114 0.879924i \(-0.657593\pi\)
−0.475114 + 0.879924i \(0.657593\pi\)
\(444\) 0 0
\(445\) 24.0000 1.13771
\(446\) 0 0
\(447\) −4.00000 −0.189194
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −16.0000 −0.751746
\(454\) 0 0
\(455\) −30.0000 −1.40642
\(456\) 0 0
\(457\) −23.0000 −1.07589 −0.537947 0.842978i \(-0.680800\pi\)
−0.537947 + 0.842978i \(0.680800\pi\)
\(458\) 0 0
\(459\) −4.00000 −0.186704
\(460\) 0 0
\(461\) 24.0000 1.11779 0.558896 0.829238i \(-0.311225\pi\)
0.558896 + 0.829238i \(0.311225\pi\)
\(462\) 0 0
\(463\) −1.00000 −0.0464739 −0.0232370 0.999730i \(-0.507397\pi\)
−0.0232370 + 0.999730i \(0.507397\pi\)
\(464\) 0 0
\(465\) −14.0000 −0.649234
\(466\) 0 0
\(467\) 20.0000 0.925490 0.462745 0.886492i \(-0.346865\pi\)
0.462745 + 0.886492i \(0.346865\pi\)
\(468\) 0 0
\(469\) −9.00000 −0.415581
\(470\) 0 0
\(471\) −13.0000 −0.599008
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) 0 0
\(479\) −10.0000 −0.456912 −0.228456 0.973554i \(-0.573368\pi\)
−0.228456 + 0.973554i \(0.573368\pi\)
\(480\) 0 0
\(481\) −5.00000 −0.227980
\(482\) 0 0
\(483\) −18.0000 −0.819028
\(484\) 0 0
\(485\) −28.0000 −1.27141
\(486\) 0 0
\(487\) 28.0000 1.26880 0.634401 0.773004i \(-0.281247\pi\)
0.634401 + 0.773004i \(0.281247\pi\)
\(488\) 0 0
\(489\) 7.00000 0.316551
\(490\) 0 0
\(491\) −26.0000 −1.17336 −0.586682 0.809818i \(-0.699566\pi\)
−0.586682 + 0.809818i \(0.699566\pi\)
\(492\) 0 0
\(493\) 16.0000 0.720604
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −18.0000 −0.807410
\(498\) 0 0
\(499\) −11.0000 −0.492428 −0.246214 0.969216i \(-0.579187\pi\)
−0.246214 + 0.969216i \(0.579187\pi\)
\(500\) 0 0
\(501\) 16.0000 0.714827
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) −36.0000 −1.60198
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 0 0
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) −27.0000 −1.19441
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 26.0000 1.14570
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) 0 0
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) 0 0
\(523\) 41.0000 1.79280 0.896402 0.443241i \(-0.146171\pi\)
0.896402 + 0.443241i \(0.146171\pi\)
\(524\) 0 0
\(525\) 3.00000 0.130931
\(526\) 0 0
\(527\) 28.0000 1.21970
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 20.0000 0.864675
\(536\) 0 0
\(537\) 6.00000 0.258919
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.00000 0.0429934 0.0214967 0.999769i \(-0.493157\pi\)
0.0214967 + 0.999769i \(0.493157\pi\)
\(542\) 0 0
\(543\) 14.0000 0.600798
\(544\) 0 0
\(545\) 36.0000 1.54207
\(546\) 0 0
\(547\) −17.0000 −0.726868 −0.363434 0.931620i \(-0.618396\pi\)
−0.363434 + 0.931620i \(0.618396\pi\)
\(548\) 0 0
\(549\) 7.00000 0.298753
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −15.0000 −0.637865
\(554\) 0 0
\(555\) −2.00000 −0.0848953
\(556\) 0 0
\(557\) 38.0000 1.61011 0.805056 0.593199i \(-0.202135\pi\)
0.805056 + 0.593199i \(0.202135\pi\)
\(558\) 0 0
\(559\) 55.0000 2.32625
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −34.0000 −1.43293 −0.716465 0.697623i \(-0.754241\pi\)
−0.716465 + 0.697623i \(0.754241\pi\)
\(564\) 0 0
\(565\) −8.00000 −0.336563
\(566\) 0 0
\(567\) −3.00000 −0.125988
\(568\) 0 0
\(569\) 20.0000 0.838444 0.419222 0.907884i \(-0.362303\pi\)
0.419222 + 0.907884i \(0.362303\pi\)
\(570\) 0 0
\(571\) −43.0000 −1.79949 −0.899747 0.436412i \(-0.856249\pi\)
−0.899747 + 0.436412i \(0.856249\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) 0 0
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) 0 0
\(579\) 3.00000 0.124676
\(580\) 0 0
\(581\) −48.0000 −1.99138
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 10.0000 0.413449
\(586\) 0 0
\(587\) −44.0000 −1.81607 −0.908037 0.418890i \(-0.862419\pi\)
−0.908037 + 0.418890i \(0.862419\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −12.0000 −0.493614
\(592\) 0 0
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 0 0
\(595\) 24.0000 0.983904
\(596\) 0 0
\(597\) −3.00000 −0.122782
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 0 0
\(601\) −25.0000 −1.01977 −0.509886 0.860242i \(-0.670312\pi\)
−0.509886 + 0.860242i \(0.670312\pi\)
\(602\) 0 0
\(603\) 3.00000 0.122169
\(604\) 0 0
\(605\) −22.0000 −0.894427
\(606\) 0 0
\(607\) −27.0000 −1.09590 −0.547948 0.836512i \(-0.684591\pi\)
−0.547948 + 0.836512i \(0.684591\pi\)
\(608\) 0 0
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) 30.0000 1.21367
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 36.0000 1.44931 0.724653 0.689114i \(-0.242000\pi\)
0.724653 + 0.689114i \(0.242000\pi\)
\(618\) 0 0
\(619\) −35.0000 −1.40677 −0.703384 0.710810i \(-0.748329\pi\)
−0.703384 + 0.710810i \(0.748329\pi\)
\(620\) 0 0
\(621\) 6.00000 0.240772
\(622\) 0 0
\(623\) −36.0000 −1.44231
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −11.0000 −0.437903 −0.218952 0.975736i \(-0.570264\pi\)
−0.218952 + 0.975736i \(0.570264\pi\)
\(632\) 0 0
\(633\) −3.00000 −0.119239
\(634\) 0 0
\(635\) 24.0000 0.952411
\(636\) 0 0
\(637\) 10.0000 0.396214
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 29.0000 1.14365 0.571824 0.820376i \(-0.306236\pi\)
0.571824 + 0.820376i \(0.306236\pi\)
\(644\) 0 0
\(645\) 22.0000 0.866249
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 21.0000 0.823055
\(652\) 0 0
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) 0 0
\(657\) 9.00000 0.351123
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −46.0000 −1.78919 −0.894596 0.446875i \(-0.852537\pi\)
−0.894596 + 0.446875i \(0.852537\pi\)
\(662\) 0 0
\(663\) −20.0000 −0.776736
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 0 0
\(669\) 1.00000 0.0386622
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −21.0000 −0.809491 −0.404745 0.914429i \(-0.632640\pi\)
−0.404745 + 0.914429i \(0.632640\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −14.0000 −0.538064 −0.269032 0.963131i \(-0.586704\pi\)
−0.269032 + 0.963131i \(0.586704\pi\)
\(678\) 0 0
\(679\) 42.0000 1.61181
\(680\) 0 0
\(681\) −14.0000 −0.536481
\(682\) 0 0
\(683\) −22.0000 −0.841807 −0.420903 0.907106i \(-0.638287\pi\)
−0.420903 + 0.907106i \(0.638287\pi\)
\(684\) 0 0
\(685\) −36.0000 −1.37549
\(686\) 0 0
\(687\) −11.0000 −0.419676
\(688\) 0 0
\(689\) −10.0000 −0.380970
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.0000 0.379322
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 26.0000 0.983410
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 12.0000 0.451946
\(706\) 0 0
\(707\) 54.0000 2.03088
\(708\) 0 0
\(709\) −3.00000 −0.112667 −0.0563337 0.998412i \(-0.517941\pi\)
−0.0563337 + 0.998412i \(0.517941\pi\)
\(710\) 0 0
\(711\) 5.00000 0.187515
\(712\) 0 0
\(713\) −42.0000 −1.57291
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −6.00000 −0.224074
\(718\) 0 0
\(719\) 26.0000 0.969636 0.484818 0.874615i \(-0.338886\pi\)
0.484818 + 0.874615i \(0.338886\pi\)
\(720\) 0 0
\(721\) −39.0000 −1.45244
\(722\) 0 0
\(723\) 21.0000 0.780998
\(724\) 0 0
\(725\) 4.00000 0.148556
\(726\) 0 0
\(727\) 13.0000 0.482143 0.241072 0.970507i \(-0.422501\pi\)
0.241072 + 0.970507i \(0.422501\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −44.0000 −1.62740
\(732\) 0 0
\(733\) −50.0000 −1.84679 −0.923396 0.383849i \(-0.874598\pi\)
−0.923396 + 0.383849i \(0.874598\pi\)
\(734\) 0 0
\(735\) 4.00000 0.147542
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −29.0000 −1.06678 −0.533391 0.845869i \(-0.679083\pi\)
−0.533391 + 0.845869i \(0.679083\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.0000 −0.440237 −0.220119 0.975473i \(-0.570644\pi\)
−0.220119 + 0.975473i \(0.570644\pi\)
\(744\) 0 0
\(745\) −8.00000 −0.293097
\(746\) 0 0
\(747\) 16.0000 0.585409
\(748\) 0 0
\(749\) −30.0000 −1.09618
\(750\) 0 0
\(751\) 29.0000 1.05823 0.529113 0.848552i \(-0.322525\pi\)
0.529113 + 0.848552i \(0.322525\pi\)
\(752\) 0 0
\(753\) −10.0000 −0.364420
\(754\) 0 0
\(755\) −32.0000 −1.16460
\(756\) 0 0
\(757\) −7.00000 −0.254419 −0.127210 0.991876i \(-0.540602\pi\)
−0.127210 + 0.991876i \(0.540602\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 20.0000 0.724999 0.362500 0.931984i \(-0.381923\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(762\) 0 0
\(763\) −54.0000 −1.95493
\(764\) 0 0
\(765\) −8.00000 −0.289241
\(766\) 0 0
\(767\) 40.0000 1.44432
\(768\) 0 0
\(769\) −37.0000 −1.33425 −0.667127 0.744944i \(-0.732476\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) 34.0000 1.22290 0.611448 0.791285i \(-0.290588\pi\)
0.611448 + 0.791285i \(0.290588\pi\)
\(774\) 0 0
\(775\) 7.00000 0.251447
\(776\) 0 0
\(777\) 3.00000 0.107624
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −4.00000 −0.142948
\(784\) 0 0
\(785\) −26.0000 −0.927980
\(786\) 0 0
\(787\) −43.0000 −1.53278 −0.766392 0.642373i \(-0.777950\pi\)
−0.766392 + 0.642373i \(0.777950\pi\)
\(788\) 0 0
\(789\) −14.0000 −0.498413
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 35.0000 1.24289
\(794\) 0 0
\(795\) −4.00000 −0.141865
\(796\) 0 0
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 0 0
\(801\) 12.0000 0.423999
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −36.0000 −1.26883
\(806\) 0 0
\(807\) 4.00000 0.140807
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) −8.00000 −0.280572
\(814\) 0 0
\(815\) 14.0000 0.490399
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −15.0000 −0.524142
\(820\) 0 0
\(821\) 4.00000 0.139601 0.0698005 0.997561i \(-0.477764\pi\)
0.0698005 + 0.997561i \(0.477764\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.0000 1.11275 0.556375 0.830932i \(-0.312192\pi\)
0.556375 + 0.830932i \(0.312192\pi\)
\(828\) 0 0
\(829\) −27.0000 −0.937749 −0.468874 0.883265i \(-0.655340\pi\)
−0.468874 + 0.883265i \(0.655340\pi\)
\(830\) 0 0
\(831\) 6.00000 0.208138
\(832\) 0 0
\(833\) −8.00000 −0.277184
\(834\) 0 0
\(835\) 32.0000 1.10741
\(836\) 0 0
\(837\) −7.00000 −0.241955
\(838\) 0 0
\(839\) 42.0000 1.45000 0.725001 0.688748i \(-0.241839\pi\)
0.725001 + 0.688748i \(0.241839\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 0 0
\(843\) 26.0000 0.895488
\(844\) 0 0
\(845\) 24.0000 0.825625
\(846\) 0 0
\(847\) 33.0000 1.13389
\(848\) 0 0
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) −6.00000 −0.205677
\(852\) 0 0
\(853\) 15.0000 0.513590 0.256795 0.966466i \(-0.417333\pi\)
0.256795 + 0.966466i \(0.417333\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −38.0000 −1.29806 −0.649028 0.760765i \(-0.724824\pi\)
−0.649028 + 0.760765i \(0.724824\pi\)
\(858\) 0 0
\(859\) −1.00000 −0.0341196 −0.0170598 0.999854i \(-0.505431\pi\)
−0.0170598 + 0.999854i \(0.505431\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) 0 0
\(865\) 8.00000 0.272008
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 15.0000 0.508256
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) 36.0000 1.21702
\(876\) 0 0
\(877\) −5.00000 −0.168838 −0.0844190 0.996430i \(-0.526903\pi\)
−0.0844190 + 0.996430i \(0.526903\pi\)
\(878\) 0 0
\(879\) −34.0000 −1.14679
\(880\) 0 0
\(881\) −38.0000 −1.28025 −0.640126 0.768270i \(-0.721118\pi\)
−0.640126 + 0.768270i \(0.721118\pi\)
\(882\) 0 0
\(883\) 11.0000 0.370179 0.185090 0.982722i \(-0.440742\pi\)
0.185090 + 0.982722i \(0.440742\pi\)
\(884\) 0 0
\(885\) 16.0000 0.537834
\(886\) 0 0
\(887\) −52.0000 −1.74599 −0.872995 0.487730i \(-0.837825\pi\)
−0.872995 + 0.487730i \(0.837825\pi\)
\(888\) 0 0
\(889\) −36.0000 −1.20740
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) 30.0000 1.00167
\(898\) 0 0
\(899\) 28.0000 0.933852
\(900\) 0 0
\(901\) 8.00000 0.266519
\(902\) 0 0
\(903\) −33.0000 −1.09817
\(904\) 0 0
\(905\) 28.0000 0.930751
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 14.0000 0.462826
\(916\) 0 0
\(917\) 18.0000 0.594412
\(918\) 0 0
\(919\) 31.0000 1.02260 0.511298 0.859404i \(-0.329165\pi\)
0.511298 + 0.859404i \(0.329165\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 0 0
\(923\) 30.0000 0.987462
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) 0 0
\(927\) 13.0000 0.426976
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 28.0000 0.916679
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −49.0000 −1.60076 −0.800380 0.599493i \(-0.795369\pi\)
−0.800380 + 0.599493i \(0.795369\pi\)
\(938\) 0 0
\(939\) −22.0000 −0.717943
\(940\) 0 0
\(941\) −40.0000 −1.30396 −0.651981 0.758235i \(-0.726062\pi\)
−0.651981 + 0.758235i \(0.726062\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −6.00000 −0.195180
\(946\) 0 0
\(947\) −22.0000 −0.714904 −0.357452 0.933932i \(-0.616354\pi\)
−0.357452 + 0.933932i \(0.616354\pi\)
\(948\) 0 0
\(949\) 45.0000 1.46076
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) 40.0000 1.29573 0.647864 0.761756i \(-0.275663\pi\)
0.647864 + 0.761756i \(0.275663\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 54.0000 1.74375
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 0 0
\(963\) 10.0000 0.322245
\(964\) 0 0
\(965\) 6.00000 0.193147
\(966\) 0 0
\(967\) −57.0000 −1.83300 −0.916498 0.400039i \(-0.868997\pi\)
−0.916498 + 0.400039i \(0.868997\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 50.0000 1.60458 0.802288 0.596937i \(-0.203616\pi\)
0.802288 + 0.596937i \(0.203616\pi\)
\(972\) 0 0
\(973\) −15.0000 −0.480878
\(974\) 0 0
\(975\) −5.00000 −0.160128
\(976\) 0 0
\(977\) −38.0000 −1.21573 −0.607864 0.794041i \(-0.707973\pi\)
−0.607864 + 0.794041i \(0.707973\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 18.0000 0.574696
\(982\) 0 0
\(983\) 20.0000 0.637901 0.318950 0.947771i \(-0.396670\pi\)
0.318950 + 0.947771i \(0.396670\pi\)
\(984\) 0 0
\(985\) −24.0000 −0.764704
\(986\) 0 0
\(987\) −18.0000 −0.572946
\(988\) 0 0
\(989\) 66.0000 2.09868
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 0 0
\(993\) 19.0000 0.602947
\(994\) 0 0
\(995\) −6.00000 −0.190213
\(996\) 0 0
\(997\) −17.0000 −0.538395 −0.269198 0.963085i \(-0.586759\pi\)
−0.269198 + 0.963085i \(0.586759\pi\)
\(998\) 0 0
\(999\) −1.00000 −0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8664.2.a.m.1.1 1
19.7 even 3 456.2.q.a.49.1 2
19.11 even 3 456.2.q.a.121.1 yes 2
19.18 odd 2 8664.2.a.e.1.1 1
57.11 odd 6 1368.2.s.e.577.1 2
57.26 odd 6 1368.2.s.e.505.1 2
76.7 odd 6 912.2.q.e.49.1 2
76.11 odd 6 912.2.q.e.577.1 2
228.11 even 6 2736.2.s.p.577.1 2
228.83 even 6 2736.2.s.p.1873.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.q.a.49.1 2 19.7 even 3
456.2.q.a.121.1 yes 2 19.11 even 3
912.2.q.e.49.1 2 76.7 odd 6
912.2.q.e.577.1 2 76.11 odd 6
1368.2.s.e.505.1 2 57.26 odd 6
1368.2.s.e.577.1 2 57.11 odd 6
2736.2.s.p.577.1 2 228.11 even 6
2736.2.s.p.1873.1 2 228.83 even 6
8664.2.a.e.1.1 1 19.18 odd 2
8664.2.a.m.1.1 1 1.1 even 1 trivial