Properties

Label 8664.2.a.bb
Level $8664$
Weight $2$
Character orbit 8664.a
Self dual yes
Analytic conductor $69.182$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8664,2,Mod(1,8664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8664 = 2^{3} \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,-2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1823883112\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.34025.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 19x^{2} + 20x + 80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + \beta_{2} q^{5} + ( - \beta_{3} + \beta_{2}) q^{7} + q^{9} + (\beta_1 - 1) q^{11} + (\beta_{2} + \beta_1) q^{13} - \beta_{2} q^{15} + (\beta_{3} - 2 \beta_{2} - 1) q^{17} + (\beta_{3} - \beta_{2}) q^{21}+ \cdots + (\beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 2 q^{5} - q^{7} + 4 q^{9} - 2 q^{11} + 2 q^{15} - q^{17} + q^{21} + 2 q^{23} - 14 q^{25} - 4 q^{27} + 3 q^{29} + 17 q^{31} + 2 q^{33} + 3 q^{35} + 5 q^{37} - 16 q^{41} - 12 q^{43} - 2 q^{45}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 19x^{2} + 20x + 80 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 12 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 12\nu ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 4\beta_{2} + \beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{3} + 4\beta_{2} + 13\beta _1 + 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.90372
2.90372
4.33694
−3.33694
0 −1.00000 0 −1.61803 0 −4.69832 0 1.00000 0
1.2 0 −1.00000 0 −1.61803 0 3.08028 0 1.00000 0
1.3 0 −1.00000 0 0.618034 0 −2.06234 0 1.00000 0
1.4 0 −1.00000 0 0.618034 0 2.68038 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8664.2.a.bb 4
19.b odd 2 1 8664.2.a.bd yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8664.2.a.bb 4 1.a even 1 1 trivial
8664.2.a.bd yes 4 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8664))\):

\( T_{5}^{2} + T_{5} - 1 \) Copy content Toggle raw display
\( T_{7}^{4} + T_{7}^{3} - 21T_{7}^{2} + 80 \) Copy content Toggle raw display
\( T_{13}^{4} - 23T_{13}^{2} - 20T_{13} + 61 \) Copy content Toggle raw display
\( T_{29}^{4} - 3T_{29}^{3} - 43T_{29}^{2} - 54T_{29} + 44 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + T^{3} + \cdots + 80 \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots + 80 \) Copy content Toggle raw display
$13$ \( T^{4} - 23 T^{2} + \cdots + 61 \) Copy content Toggle raw display
$17$ \( T^{4} + T^{3} + \cdots + 25 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 2 T^{3} + \cdots + 80 \) Copy content Toggle raw display
$29$ \( T^{4} - 3 T^{3} + \cdots + 44 \) Copy content Toggle raw display
$31$ \( T^{4} - 17 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( T^{4} - 5 T^{3} + \cdots - 244 \) Copy content Toggle raw display
$41$ \( T^{4} + 16 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$43$ \( T^{4} + 12 T^{3} + \cdots - 1616 \) Copy content Toggle raw display
$47$ \( T^{4} - T^{3} + \cdots + 80 \) Copy content Toggle raw display
$53$ \( T^{4} - 7 T^{3} + \cdots + 55 \) Copy content Toggle raw display
$59$ \( T^{4} - 20 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$61$ \( T^{4} + 15 T^{3} + \cdots - 964 \) Copy content Toggle raw display
$67$ \( T^{4} - 11 T^{3} + \cdots - 1616 \) Copy content Toggle raw display
$71$ \( T^{4} - T^{3} + \cdots + 80 \) Copy content Toggle raw display
$73$ \( T^{4} + 33 T^{3} + \cdots + 449 \) Copy content Toggle raw display
$79$ \( T^{4} + 24 T^{3} + \cdots - 3904 \) Copy content Toggle raw display
$83$ \( T^{4} - 2 T^{3} + \cdots + 3904 \) Copy content Toggle raw display
$89$ \( T^{4} - 25 T^{3} + \cdots - 944 \) Copy content Toggle raw display
$97$ \( T^{4} + 21 T^{3} + \cdots + 5324 \) Copy content Toggle raw display
show more
show less