Properties

Label 8664.2.a.b.1.1
Level $8664$
Weight $2$
Character 8664.1
Self dual yes
Analytic conductor $69.182$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8664,2,Mod(1,8664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8664 = 2^{3} \cdot 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-1,0,-2,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1823883112\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 456)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8664.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -2.00000 q^{5} -5.00000 q^{7} +1.00000 q^{9} -4.00000 q^{11} +5.00000 q^{13} +2.00000 q^{15} +5.00000 q^{21} -6.00000 q^{23} -1.00000 q^{25} -1.00000 q^{27} +8.00000 q^{29} -1.00000 q^{31} +4.00000 q^{33} +10.0000 q^{35} +7.00000 q^{37} -5.00000 q^{39} -11.0000 q^{43} -2.00000 q^{45} +10.0000 q^{47} +18.0000 q^{49} +6.00000 q^{53} +8.00000 q^{55} +8.00000 q^{59} -1.00000 q^{61} -5.00000 q^{63} -10.0000 q^{65} +5.00000 q^{67} +6.00000 q^{69} +6.00000 q^{71} +1.00000 q^{73} +1.00000 q^{75} +20.0000 q^{77} -13.0000 q^{79} +1.00000 q^{81} -4.00000 q^{83} -8.00000 q^{87} -12.0000 q^{89} -25.0000 q^{91} +1.00000 q^{93} +2.00000 q^{97} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −5.00000 −1.88982 −0.944911 0.327327i \(-0.893852\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 5.00000 1.09109
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 8.00000 1.48556 0.742781 0.669534i \(-0.233506\pi\)
0.742781 + 0.669534i \(0.233506\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) 10.0000 1.69031
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 0 0
\(39\) −5.00000 −0.800641
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −11.0000 −1.67748 −0.838742 0.544529i \(-0.816708\pi\)
−0.838742 + 0.544529i \(0.816708\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 10.0000 1.45865 0.729325 0.684167i \(-0.239834\pi\)
0.729325 + 0.684167i \(0.239834\pi\)
\(48\) 0 0
\(49\) 18.0000 2.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) −5.00000 −0.629941
\(64\) 0 0
\(65\) −10.0000 −1.24035
\(66\) 0 0
\(67\) 5.00000 0.610847 0.305424 0.952217i \(-0.401202\pi\)
0.305424 + 0.952217i \(0.401202\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 1.00000 0.117041 0.0585206 0.998286i \(-0.481362\pi\)
0.0585206 + 0.998286i \(0.481362\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 20.0000 2.27921
\(78\) 0 0
\(79\) −13.0000 −1.46261 −0.731307 0.682048i \(-0.761089\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −8.00000 −0.857690
\(88\) 0 0
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) −25.0000 −2.62071
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) −5.00000 −0.492665 −0.246332 0.969185i \(-0.579225\pi\)
−0.246332 + 0.969185i \(0.579225\pi\)
\(104\) 0 0
\(105\) −10.0000 −0.975900
\(106\) 0 0
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −7.00000 −0.664411
\(112\) 0 0
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 0 0
\(115\) 12.0000 1.11901
\(116\) 0 0
\(117\) 5.00000 0.462250
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 0 0
\(129\) 11.0000 0.968496
\(130\) 0 0
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.00000 0.172133
\(136\) 0 0
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) −10.0000 −0.842152
\(142\) 0 0
\(143\) −20.0000 −1.67248
\(144\) 0 0
\(145\) −16.0000 −1.32873
\(146\) 0 0
\(147\) −18.0000 −1.48461
\(148\) 0 0
\(149\) 8.00000 0.655386 0.327693 0.944784i \(-0.393729\pi\)
0.327693 + 0.944784i \(0.393729\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00000 0.160644
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 30.0000 2.36433
\(162\) 0 0
\(163\) 1.00000 0.0783260 0.0391630 0.999233i \(-0.487531\pi\)
0.0391630 + 0.999233i \(0.487531\pi\)
\(164\) 0 0
\(165\) −8.00000 −0.622799
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 5.00000 0.377964
\(176\) 0 0
\(177\) −8.00000 −0.601317
\(178\) 0 0
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 0 0
\(185\) −14.0000 −1.02930
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) −26.0000 −1.88129 −0.940647 0.339387i \(-0.889781\pi\)
−0.940647 + 0.339387i \(0.889781\pi\)
\(192\) 0 0
\(193\) −5.00000 −0.359908 −0.179954 0.983675i \(-0.557595\pi\)
−0.179954 + 0.983675i \(0.557595\pi\)
\(194\) 0 0
\(195\) 10.0000 0.716115
\(196\) 0 0
\(197\) −20.0000 −1.42494 −0.712470 0.701702i \(-0.752424\pi\)
−0.712470 + 0.701702i \(0.752424\pi\)
\(198\) 0 0
\(199\) 3.00000 0.212664 0.106332 0.994331i \(-0.466089\pi\)
0.106332 + 0.994331i \(0.466089\pi\)
\(200\) 0 0
\(201\) −5.00000 −0.352673
\(202\) 0 0
\(203\) −40.0000 −2.80745
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −21.0000 −1.44570 −0.722850 0.691005i \(-0.757168\pi\)
−0.722850 + 0.691005i \(0.757168\pi\)
\(212\) 0 0
\(213\) −6.00000 −0.411113
\(214\) 0 0
\(215\) 22.0000 1.50039
\(216\) 0 0
\(217\) 5.00000 0.339422
\(218\) 0 0
\(219\) −1.00000 −0.0675737
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 −0.0669650 −0.0334825 0.999439i \(-0.510660\pi\)
−0.0334825 + 0.999439i \(0.510660\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 0 0
\(229\) −27.0000 −1.78421 −0.892105 0.451828i \(-0.850772\pi\)
−0.892105 + 0.451828i \(0.850772\pi\)
\(230\) 0 0
\(231\) −20.0000 −1.31590
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −20.0000 −1.30466
\(236\) 0 0
\(237\) 13.0000 0.844441
\(238\) 0 0
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) −11.0000 −0.708572 −0.354286 0.935137i \(-0.615276\pi\)
−0.354286 + 0.935137i \(0.615276\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −36.0000 −2.29996
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 26.0000 1.64111 0.820553 0.571571i \(-0.193666\pi\)
0.820553 + 0.571571i \(0.193666\pi\)
\(252\) 0 0
\(253\) 24.0000 1.50887
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.0000 0.623783 0.311891 0.950118i \(-0.399037\pi\)
0.311891 + 0.950118i \(0.399037\pi\)
\(258\) 0 0
\(259\) −35.0000 −2.17479
\(260\) 0 0
\(261\) 8.00000 0.495188
\(262\) 0 0
\(263\) −14.0000 −0.863277 −0.431638 0.902047i \(-0.642064\pi\)
−0.431638 + 0.902047i \(0.642064\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 0 0
\(269\) −12.0000 −0.731653 −0.365826 0.930683i \(-0.619214\pi\)
−0.365826 + 0.930683i \(0.619214\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 25.0000 1.51307
\(274\) 0 0
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) −2.00000 −0.117242
\(292\) 0 0
\(293\) −10.0000 −0.584206 −0.292103 0.956387i \(-0.594355\pi\)
−0.292103 + 0.956387i \(0.594355\pi\)
\(294\) 0 0
\(295\) −16.0000 −0.931556
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) −30.0000 −1.73494
\(300\) 0 0
\(301\) 55.0000 3.17015
\(302\) 0 0
\(303\) 6.00000 0.344691
\(304\) 0 0
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 5.00000 0.284440
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 0 0
\(315\) 10.0000 0.563436
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) −32.0000 −1.79166
\(320\) 0 0
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −5.00000 −0.277350
\(326\) 0 0
\(327\) −2.00000 −0.110600
\(328\) 0 0
\(329\) −50.0000 −2.75659
\(330\) 0 0
\(331\) 5.00000 0.274825 0.137412 0.990514i \(-0.456121\pi\)
0.137412 + 0.990514i \(0.456121\pi\)
\(332\) 0 0
\(333\) 7.00000 0.383598
\(334\) 0 0
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) −7.00000 −0.381314 −0.190657 0.981657i \(-0.561062\pi\)
−0.190657 + 0.981657i \(0.561062\pi\)
\(338\) 0 0
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) 4.00000 0.216612
\(342\) 0 0
\(343\) −55.0000 −2.96972
\(344\) 0 0
\(345\) −12.0000 −0.646058
\(346\) 0 0
\(347\) −30.0000 −1.61048 −0.805242 0.592946i \(-0.797965\pi\)
−0.805242 + 0.592946i \(0.797965\pi\)
\(348\) 0 0
\(349\) 11.0000 0.588817 0.294408 0.955680i \(-0.404877\pi\)
0.294408 + 0.955680i \(0.404877\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) −15.0000 −0.782994 −0.391497 0.920179i \(-0.628043\pi\)
−0.391497 + 0.920179i \(0.628043\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −30.0000 −1.55752
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 0 0
\(377\) 40.0000 2.06010
\(378\) 0 0
\(379\) 13.0000 0.667765 0.333883 0.942615i \(-0.391641\pi\)
0.333883 + 0.942615i \(0.391641\pi\)
\(380\) 0 0
\(381\) −20.0000 −1.02463
\(382\) 0 0
\(383\) 20.0000 1.02195 0.510976 0.859595i \(-0.329284\pi\)
0.510976 + 0.859595i \(0.329284\pi\)
\(384\) 0 0
\(385\) −40.0000 −2.03859
\(386\) 0 0
\(387\) −11.0000 −0.559161
\(388\) 0 0
\(389\) −22.0000 −1.11544 −0.557722 0.830028i \(-0.688325\pi\)
−0.557722 + 0.830028i \(0.688325\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −10.0000 −0.504433
\(394\) 0 0
\(395\) 26.0000 1.30820
\(396\) 0 0
\(397\) −25.0000 −1.25471 −0.627357 0.778732i \(-0.715863\pi\)
−0.627357 + 0.778732i \(0.715863\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.0000 −1.19850 −0.599251 0.800561i \(-0.704535\pi\)
−0.599251 + 0.800561i \(0.704535\pi\)
\(402\) 0 0
\(403\) −5.00000 −0.249068
\(404\) 0 0
\(405\) −2.00000 −0.0993808
\(406\) 0 0
\(407\) −28.0000 −1.38791
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) −10.0000 −0.493264
\(412\) 0 0
\(413\) −40.0000 −1.96827
\(414\) 0 0
\(415\) 8.00000 0.392705
\(416\) 0 0
\(417\) 5.00000 0.244851
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) 10.0000 0.486217
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.00000 0.241967
\(428\) 0 0
\(429\) 20.0000 0.965609
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) 0 0
\(433\) −5.00000 −0.240285 −0.120142 0.992757i \(-0.538335\pi\)
−0.120142 + 0.992757i \(0.538335\pi\)
\(434\) 0 0
\(435\) 16.0000 0.767141
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 13.0000 0.620456 0.310228 0.950662i \(-0.399595\pi\)
0.310228 + 0.950662i \(0.399595\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 24.0000 1.13771
\(446\) 0 0
\(447\) −8.00000 −0.378387
\(448\) 0 0
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −16.0000 −0.751746
\(454\) 0 0
\(455\) 50.0000 2.34404
\(456\) 0 0
\(457\) −15.0000 −0.701670 −0.350835 0.936437i \(-0.614102\pi\)
−0.350835 + 0.936437i \(0.614102\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.0000 −0.745194 −0.372597 0.927993i \(-0.621533\pi\)
−0.372597 + 0.927993i \(0.621533\pi\)
\(462\) 0 0
\(463\) 25.0000 1.16185 0.580924 0.813958i \(-0.302691\pi\)
0.580924 + 0.813958i \(0.302691\pi\)
\(464\) 0 0
\(465\) −2.00000 −0.0927478
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) −25.0000 −1.15439
\(470\) 0 0
\(471\) 13.0000 0.599008
\(472\) 0 0
\(473\) 44.0000 2.02312
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −18.0000 −0.822441 −0.411220 0.911536i \(-0.634897\pi\)
−0.411220 + 0.911536i \(0.634897\pi\)
\(480\) 0 0
\(481\) 35.0000 1.59586
\(482\) 0 0
\(483\) −30.0000 −1.36505
\(484\) 0 0
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 0 0
\(489\) −1.00000 −0.0452216
\(490\) 0 0
\(491\) −26.0000 −1.17336 −0.586682 0.809818i \(-0.699566\pi\)
−0.586682 + 0.809818i \(0.699566\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 8.00000 0.359573
\(496\) 0 0
\(497\) −30.0000 −1.34568
\(498\) 0 0
\(499\) −5.00000 −0.223831 −0.111915 0.993718i \(-0.535699\pi\)
−0.111915 + 0.993718i \(0.535699\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) −12.0000 −0.532939
\(508\) 0 0
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) −5.00000 −0.221187
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.0000 0.440653
\(516\) 0 0
\(517\) −40.0000 −1.75920
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.0000 −0.700973 −0.350486 0.936568i \(-0.613984\pi\)
−0.350486 + 0.936568i \(0.613984\pi\)
\(522\) 0 0
\(523\) −9.00000 −0.393543 −0.196771 0.980449i \(-0.563046\pi\)
−0.196771 + 0.980449i \(0.563046\pi\)
\(524\) 0 0
\(525\) −5.00000 −0.218218
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −36.0000 −1.55642
\(536\) 0 0
\(537\) −18.0000 −0.776757
\(538\) 0 0
\(539\) −72.0000 −3.10126
\(540\) 0 0
\(541\) 1.00000 0.0429934 0.0214967 0.999769i \(-0.493157\pi\)
0.0214967 + 0.999769i \(0.493157\pi\)
\(542\) 0 0
\(543\) 18.0000 0.772454
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) 17.0000 0.726868 0.363434 0.931620i \(-0.381604\pi\)
0.363434 + 0.931620i \(0.381604\pi\)
\(548\) 0 0
\(549\) −1.00000 −0.0426790
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 65.0000 2.76408
\(554\) 0 0
\(555\) 14.0000 0.594267
\(556\) 0 0
\(557\) 42.0000 1.77960 0.889799 0.456354i \(-0.150845\pi\)
0.889799 + 0.456354i \(0.150845\pi\)
\(558\) 0 0
\(559\) −55.0000 −2.32625
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.0000 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(564\) 0 0
\(565\) 8.00000 0.336563
\(566\) 0 0
\(567\) −5.00000 −0.209980
\(568\) 0 0
\(569\) 12.0000 0.503066 0.251533 0.967849i \(-0.419065\pi\)
0.251533 + 0.967849i \(0.419065\pi\)
\(570\) 0 0
\(571\) 11.0000 0.460336 0.230168 0.973151i \(-0.426072\pi\)
0.230168 + 0.973151i \(0.426072\pi\)
\(572\) 0 0
\(573\) 26.0000 1.08617
\(574\) 0 0
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) 5.00000 0.207793
\(580\) 0 0
\(581\) 20.0000 0.829740
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 0 0
\(585\) −10.0000 −0.413449
\(586\) 0 0
\(587\) 20.0000 0.825488 0.412744 0.910847i \(-0.364570\pi\)
0.412744 + 0.910847i \(0.364570\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 20.0000 0.822690
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.00000 −0.122782
\(598\) 0 0
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) 0 0
\(601\) 31.0000 1.26452 0.632258 0.774758i \(-0.282128\pi\)
0.632258 + 0.774758i \(0.282128\pi\)
\(602\) 0 0
\(603\) 5.00000 0.203616
\(604\) 0 0
\(605\) −10.0000 −0.406558
\(606\) 0 0
\(607\) −5.00000 −0.202944 −0.101472 0.994838i \(-0.532355\pi\)
−0.101472 + 0.994838i \(0.532355\pi\)
\(608\) 0 0
\(609\) 40.0000 1.62088
\(610\) 0 0
\(611\) 50.0000 2.02278
\(612\) 0 0
\(613\) −46.0000 −1.85792 −0.928961 0.370177i \(-0.879297\pi\)
−0.928961 + 0.370177i \(0.879297\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 48.0000 1.93241 0.966204 0.257780i \(-0.0829910\pi\)
0.966204 + 0.257780i \(0.0829910\pi\)
\(618\) 0 0
\(619\) −45.0000 −1.80870 −0.904351 0.426789i \(-0.859645\pi\)
−0.904351 + 0.426789i \(0.859645\pi\)
\(620\) 0 0
\(621\) 6.00000 0.240772
\(622\) 0 0
\(623\) 60.0000 2.40385
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −29.0000 −1.15447 −0.577236 0.816577i \(-0.695869\pi\)
−0.577236 + 0.816577i \(0.695869\pi\)
\(632\) 0 0
\(633\) 21.0000 0.834675
\(634\) 0 0
\(635\) −40.0000 −1.58735
\(636\) 0 0
\(637\) 90.0000 3.56593
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) 46.0000 1.81689 0.908445 0.418004i \(-0.137270\pi\)
0.908445 + 0.418004i \(0.137270\pi\)
\(642\) 0 0
\(643\) −5.00000 −0.197181 −0.0985904 0.995128i \(-0.531433\pi\)
−0.0985904 + 0.995128i \(0.531433\pi\)
\(644\) 0 0
\(645\) −22.0000 −0.866249
\(646\) 0 0
\(647\) 40.0000 1.57256 0.786281 0.617869i \(-0.212004\pi\)
0.786281 + 0.617869i \(0.212004\pi\)
\(648\) 0 0
\(649\) −32.0000 −1.25611
\(650\) 0 0
\(651\) −5.00000 −0.195965
\(652\) 0 0
\(653\) 34.0000 1.33052 0.665261 0.746611i \(-0.268320\pi\)
0.665261 + 0.746611i \(0.268320\pi\)
\(654\) 0 0
\(655\) −20.0000 −0.781465
\(656\) 0 0
\(657\) 1.00000 0.0390137
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −48.0000 −1.85857
\(668\) 0 0
\(669\) 1.00000 0.0386622
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) 35.0000 1.34915 0.674575 0.738206i \(-0.264327\pi\)
0.674575 + 0.738206i \(0.264327\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) −10.0000 −0.383765
\(680\) 0 0
\(681\) −2.00000 −0.0766402
\(682\) 0 0
\(683\) 10.0000 0.382639 0.191320 0.981528i \(-0.438723\pi\)
0.191320 + 0.981528i \(0.438723\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) 27.0000 1.03011
\(688\) 0 0
\(689\) 30.0000 1.14291
\(690\) 0 0
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) 0 0
\(693\) 20.0000 0.759737
\(694\) 0 0
\(695\) 10.0000 0.379322
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) −2.00000 −0.0755390 −0.0377695 0.999286i \(-0.512025\pi\)
−0.0377695 + 0.999286i \(0.512025\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 20.0000 0.753244
\(706\) 0 0
\(707\) 30.0000 1.12827
\(708\) 0 0
\(709\) −27.0000 −1.01401 −0.507003 0.861944i \(-0.669247\pi\)
−0.507003 + 0.861944i \(0.669247\pi\)
\(710\) 0 0
\(711\) −13.0000 −0.487538
\(712\) 0 0
\(713\) 6.00000 0.224702
\(714\) 0 0
\(715\) 40.0000 1.49592
\(716\) 0 0
\(717\) −2.00000 −0.0746914
\(718\) 0 0
\(719\) −42.0000 −1.56634 −0.783168 0.621810i \(-0.786397\pi\)
−0.783168 + 0.621810i \(0.786397\pi\)
\(720\) 0 0
\(721\) 25.0000 0.931049
\(722\) 0 0
\(723\) 11.0000 0.409094
\(724\) 0 0
\(725\) −8.00000 −0.297113
\(726\) 0 0
\(727\) −37.0000 −1.37225 −0.686127 0.727482i \(-0.740691\pi\)
−0.686127 + 0.727482i \(0.740691\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −26.0000 −0.960332 −0.480166 0.877178i \(-0.659424\pi\)
−0.480166 + 0.877178i \(0.659424\pi\)
\(734\) 0 0
\(735\) 36.0000 1.32788
\(736\) 0 0
\(737\) −20.0000 −0.736709
\(738\) 0 0
\(739\) −3.00000 −0.110357 −0.0551784 0.998477i \(-0.517573\pi\)
−0.0551784 + 0.998477i \(0.517573\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −16.0000 −0.586195
\(746\) 0 0
\(747\) −4.00000 −0.146352
\(748\) 0 0
\(749\) −90.0000 −3.28853
\(750\) 0 0
\(751\) −29.0000 −1.05823 −0.529113 0.848552i \(-0.677475\pi\)
−0.529113 + 0.848552i \(0.677475\pi\)
\(752\) 0 0
\(753\) −26.0000 −0.947493
\(754\) 0 0
\(755\) −32.0000 −1.16460
\(756\) 0 0
\(757\) −15.0000 −0.545184 −0.272592 0.962130i \(-0.587881\pi\)
−0.272592 + 0.962130i \(0.587881\pi\)
\(758\) 0 0
\(759\) −24.0000 −0.871145
\(760\) 0 0
\(761\) −12.0000 −0.435000 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 40.0000 1.44432
\(768\) 0 0
\(769\) 43.0000 1.55062 0.775310 0.631581i \(-0.217594\pi\)
0.775310 + 0.631581i \(0.217594\pi\)
\(770\) 0 0
\(771\) −10.0000 −0.360141
\(772\) 0 0
\(773\) −30.0000 −1.07903 −0.539513 0.841978i \(-0.681391\pi\)
−0.539513 + 0.841978i \(0.681391\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) 35.0000 1.25562
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −24.0000 −0.858788
\(782\) 0 0
\(783\) −8.00000 −0.285897
\(784\) 0 0
\(785\) 26.0000 0.927980
\(786\) 0 0
\(787\) −5.00000 −0.178231 −0.0891154 0.996021i \(-0.528404\pi\)
−0.0891154 + 0.996021i \(0.528404\pi\)
\(788\) 0 0
\(789\) 14.0000 0.498413
\(790\) 0 0
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) −5.00000 −0.177555
\(794\) 0 0
\(795\) 12.0000 0.425596
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −12.0000 −0.423999
\(802\) 0 0
\(803\) −4.00000 −0.141157
\(804\) 0 0
\(805\) −60.0000 −2.11472
\(806\) 0 0
\(807\) 12.0000 0.422420
\(808\) 0 0
\(809\) −2.00000 −0.0703163 −0.0351581 0.999382i \(-0.511193\pi\)
−0.0351581 + 0.999382i \(0.511193\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) −2.00000 −0.0700569
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −25.0000 −0.873571
\(820\) 0 0
\(821\) −24.0000 −0.837606 −0.418803 0.908077i \(-0.637550\pi\)
−0.418803 + 0.908077i \(0.637550\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 0 0
\(829\) 45.0000 1.56291 0.781457 0.623959i \(-0.214477\pi\)
0.781457 + 0.623959i \(0.214477\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) −30.0000 −1.03572 −0.517858 0.855467i \(-0.673270\pi\)
−0.517858 + 0.855467i \(0.673270\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) 10.0000 0.344418
\(844\) 0 0
\(845\) −24.0000 −0.825625
\(846\) 0 0
\(847\) −25.0000 −0.859010
\(848\) 0 0
\(849\) −20.0000 −0.686398
\(850\) 0 0
\(851\) −42.0000 −1.43974
\(852\) 0 0
\(853\) −1.00000 −0.0342393 −0.0171197 0.999853i \(-0.505450\pi\)
−0.0171197 + 0.999853i \(0.505450\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) 0 0
\(859\) 17.0000 0.580033 0.290016 0.957022i \(-0.406339\pi\)
0.290016 + 0.957022i \(0.406339\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.0000 1.15737 0.578687 0.815550i \(-0.303565\pi\)
0.578687 + 0.815550i \(0.303565\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) 52.0000 1.76398
\(870\) 0 0
\(871\) 25.0000 0.847093
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) −60.0000 −2.02837
\(876\) 0 0
\(877\) −13.0000 −0.438979 −0.219489 0.975615i \(-0.570439\pi\)
−0.219489 + 0.975615i \(0.570439\pi\)
\(878\) 0 0
\(879\) 10.0000 0.337292
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) −35.0000 −1.17784 −0.588922 0.808190i \(-0.700447\pi\)
−0.588922 + 0.808190i \(0.700447\pi\)
\(884\) 0 0
\(885\) 16.0000 0.537834
\(886\) 0 0
\(887\) −20.0000 −0.671534 −0.335767 0.941945i \(-0.608996\pi\)
−0.335767 + 0.941945i \(0.608996\pi\)
\(888\) 0 0
\(889\) −100.000 −3.35389
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −36.0000 −1.20335
\(896\) 0 0
\(897\) 30.0000 1.00167
\(898\) 0 0
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −55.0000 −1.83029
\(904\) 0 0
\(905\) 36.0000 1.19668
\(906\) 0 0
\(907\) −20.0000 −0.664089 −0.332045 0.943264i \(-0.607738\pi\)
−0.332045 + 0.943264i \(0.607738\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 0 0
\(915\) −2.00000 −0.0661180
\(916\) 0 0
\(917\) −50.0000 −1.65115
\(918\) 0 0
\(919\) −55.0000 −1.81428 −0.907141 0.420826i \(-0.861740\pi\)
−0.907141 + 0.420826i \(0.861740\pi\)
\(920\) 0 0
\(921\) −12.0000 −0.395413
\(922\) 0 0
\(923\) 30.0000 0.987462
\(924\) 0 0
\(925\) −7.00000 −0.230159
\(926\) 0 0
\(927\) −5.00000 −0.164222
\(928\) 0 0
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −12.0000 −0.392862
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 23.0000 0.751377 0.375689 0.926746i \(-0.377406\pi\)
0.375689 + 0.926746i \(0.377406\pi\)
\(938\) 0 0
\(939\) −10.0000 −0.326338
\(940\) 0 0
\(941\) −56.0000 −1.82555 −0.912774 0.408465i \(-0.866064\pi\)
−0.912774 + 0.408465i \(0.866064\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −10.0000 −0.325300
\(946\) 0 0
\(947\) −30.0000 −0.974869 −0.487435 0.873160i \(-0.662067\pi\)
−0.487435 + 0.873160i \(0.662067\pi\)
\(948\) 0 0
\(949\) 5.00000 0.162307
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) 60.0000 1.94359 0.971795 0.235826i \(-0.0757795\pi\)
0.971795 + 0.235826i \(0.0757795\pi\)
\(954\) 0 0
\(955\) 52.0000 1.68268
\(956\) 0 0
\(957\) 32.0000 1.03441
\(958\) 0 0
\(959\) −50.0000 −1.61458
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) 18.0000 0.580042
\(964\) 0 0
\(965\) 10.0000 0.321911
\(966\) 0 0
\(967\) −23.0000 −0.739630 −0.369815 0.929105i \(-0.620579\pi\)
−0.369815 + 0.929105i \(0.620579\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.0000 0.706014 0.353007 0.935621i \(-0.385159\pi\)
0.353007 + 0.935621i \(0.385159\pi\)
\(972\) 0 0
\(973\) 25.0000 0.801463
\(974\) 0 0
\(975\) 5.00000 0.160128
\(976\) 0 0
\(977\) 50.0000 1.59964 0.799821 0.600239i \(-0.204928\pi\)
0.799821 + 0.600239i \(0.204928\pi\)
\(978\) 0 0
\(979\) 48.0000 1.53409
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) 40.0000 1.27580 0.637901 0.770118i \(-0.279803\pi\)
0.637901 + 0.770118i \(0.279803\pi\)
\(984\) 0 0
\(985\) 40.0000 1.27451
\(986\) 0 0
\(987\) 50.0000 1.59152
\(988\) 0 0
\(989\) 66.0000 2.09868
\(990\) 0 0
\(991\) 25.0000 0.794151 0.397076 0.917786i \(-0.370025\pi\)
0.397076 + 0.917786i \(0.370025\pi\)
\(992\) 0 0
\(993\) −5.00000 −0.158670
\(994\) 0 0
\(995\) −6.00000 −0.190213
\(996\) 0 0
\(997\) −25.0000 −0.791758 −0.395879 0.918303i \(-0.629560\pi\)
−0.395879 + 0.918303i \(0.629560\pi\)
\(998\) 0 0
\(999\) −7.00000 −0.221470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8664.2.a.b.1.1 1
19.7 even 3 456.2.q.c.49.1 2
19.11 even 3 456.2.q.c.121.1 yes 2
19.18 odd 2 8664.2.a.h.1.1 1
57.11 odd 6 1368.2.s.b.577.1 2
57.26 odd 6 1368.2.s.b.505.1 2
76.7 odd 6 912.2.q.c.49.1 2
76.11 odd 6 912.2.q.c.577.1 2
228.11 even 6 2736.2.s.f.577.1 2
228.83 even 6 2736.2.s.f.1873.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.q.c.49.1 2 19.7 even 3
456.2.q.c.121.1 yes 2 19.11 even 3
912.2.q.c.49.1 2 76.7 odd 6
912.2.q.c.577.1 2 76.11 odd 6
1368.2.s.b.505.1 2 57.26 odd 6
1368.2.s.b.577.1 2 57.11 odd 6
2736.2.s.f.577.1 2 228.11 even 6
2736.2.s.f.1873.1 2 228.83 even 6
8664.2.a.b.1.1 1 1.1 even 1 trivial
8664.2.a.h.1.1 1 19.18 odd 2