Properties

Label 8649.2.a.bf.1.4
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8649,2,Mod(1,8649)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8649, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8649.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0,8,-3,0,-2,9,0,-13,18,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.143490\) of defining polynomial
Character \(\chi\) \(=\) 8649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.23217 q^{2} -0.481752 q^{4} +1.54562 q^{5} -3.80376 q^{7} +3.05795 q^{8} -1.90447 q^{10} +3.76152 q^{11} -2.63506 q^{13} +4.68689 q^{14} -2.80441 q^{16} -3.77434 q^{17} +6.09831 q^{19} -0.744606 q^{20} -4.63485 q^{22} -0.909847 q^{23} -2.61105 q^{25} +3.24685 q^{26} +1.83247 q^{28} +6.80859 q^{29} -2.66037 q^{32} +4.65064 q^{34} -5.87917 q^{35} -1.81406 q^{37} -7.51417 q^{38} +4.72643 q^{40} -0.337145 q^{41} +3.88400 q^{43} -1.81212 q^{44} +1.12109 q^{46} +1.18915 q^{47} +7.46858 q^{49} +3.21726 q^{50} +1.26945 q^{52} +2.34413 q^{53} +5.81390 q^{55} -11.6317 q^{56} -8.38936 q^{58} -7.77883 q^{59} -2.72343 q^{61} +8.88686 q^{64} -4.07281 q^{65} -7.42118 q^{67} +1.81829 q^{68} +7.24416 q^{70} +5.09818 q^{71} +5.39174 q^{73} +2.23524 q^{74} -2.93787 q^{76} -14.3079 q^{77} -9.73723 q^{79} -4.33456 q^{80} +0.415420 q^{82} +8.39515 q^{83} -5.83370 q^{85} -4.78575 q^{86} +11.5025 q^{88} -5.09560 q^{89} +10.0231 q^{91} +0.438320 q^{92} -1.46523 q^{94} +9.42569 q^{95} +10.9142 q^{97} -9.20257 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 8 q^{4} - 3 q^{5} - 2 q^{7} + 9 q^{8} - 13 q^{10} + 18 q^{11} - 8 q^{13} + 9 q^{14} + 4 q^{16} + 14 q^{17} - 6 q^{19} + 7 q^{20} - 4 q^{22} + 22 q^{23} + 13 q^{25} + 9 q^{26} - 5 q^{28}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.23217 −0.871277 −0.435639 0.900122i \(-0.643477\pi\)
−0.435639 + 0.900122i \(0.643477\pi\)
\(3\) 0 0
\(4\) −0.481752 −0.240876
\(5\) 1.54562 0.691223 0.345612 0.938378i \(-0.387671\pi\)
0.345612 + 0.938378i \(0.387671\pi\)
\(6\) 0 0
\(7\) −3.80376 −1.43769 −0.718843 0.695173i \(-0.755328\pi\)
−0.718843 + 0.695173i \(0.755328\pi\)
\(8\) 3.05795 1.08115
\(9\) 0 0
\(10\) −1.90447 −0.602247
\(11\) 3.76152 1.13414 0.567071 0.823669i \(-0.308076\pi\)
0.567071 + 0.823669i \(0.308076\pi\)
\(12\) 0 0
\(13\) −2.63506 −0.730835 −0.365418 0.930844i \(-0.619074\pi\)
−0.365418 + 0.930844i \(0.619074\pi\)
\(14\) 4.68689 1.25262
\(15\) 0 0
\(16\) −2.80441 −0.701103
\(17\) −3.77434 −0.915412 −0.457706 0.889104i \(-0.651329\pi\)
−0.457706 + 0.889104i \(0.651329\pi\)
\(18\) 0 0
\(19\) 6.09831 1.39905 0.699525 0.714608i \(-0.253395\pi\)
0.699525 + 0.714608i \(0.253395\pi\)
\(20\) −0.744606 −0.166499
\(21\) 0 0
\(22\) −4.63485 −0.988152
\(23\) −0.909847 −0.189716 −0.0948581 0.995491i \(-0.530240\pi\)
−0.0948581 + 0.995491i \(0.530240\pi\)
\(24\) 0 0
\(25\) −2.61105 −0.522210
\(26\) 3.24685 0.636760
\(27\) 0 0
\(28\) 1.83247 0.346304
\(29\) 6.80859 1.26432 0.632162 0.774836i \(-0.282168\pi\)
0.632162 + 0.774836i \(0.282168\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) −2.66037 −0.470292
\(33\) 0 0
\(34\) 4.65064 0.797578
\(35\) −5.87917 −0.993762
\(36\) 0 0
\(37\) −1.81406 −0.298230 −0.149115 0.988820i \(-0.547643\pi\)
−0.149115 + 0.988820i \(0.547643\pi\)
\(38\) −7.51417 −1.21896
\(39\) 0 0
\(40\) 4.72643 0.747314
\(41\) −0.337145 −0.0526531 −0.0263266 0.999653i \(-0.508381\pi\)
−0.0263266 + 0.999653i \(0.508381\pi\)
\(42\) 0 0
\(43\) 3.88400 0.592304 0.296152 0.955141i \(-0.404297\pi\)
0.296152 + 0.955141i \(0.404297\pi\)
\(44\) −1.81212 −0.273187
\(45\) 0 0
\(46\) 1.12109 0.165295
\(47\) 1.18915 0.173455 0.0867275 0.996232i \(-0.472359\pi\)
0.0867275 + 0.996232i \(0.472359\pi\)
\(48\) 0 0
\(49\) 7.46858 1.06694
\(50\) 3.21726 0.454990
\(51\) 0 0
\(52\) 1.26945 0.176040
\(53\) 2.34413 0.321990 0.160995 0.986955i \(-0.448530\pi\)
0.160995 + 0.986955i \(0.448530\pi\)
\(54\) 0 0
\(55\) 5.81390 0.783946
\(56\) −11.6317 −1.55435
\(57\) 0 0
\(58\) −8.38936 −1.10158
\(59\) −7.77883 −1.01272 −0.506359 0.862323i \(-0.669009\pi\)
−0.506359 + 0.862323i \(0.669009\pi\)
\(60\) 0 0
\(61\) −2.72343 −0.348700 −0.174350 0.984684i \(-0.555782\pi\)
−0.174350 + 0.984684i \(0.555782\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.88686 1.11086
\(65\) −4.07281 −0.505170
\(66\) 0 0
\(67\) −7.42118 −0.906642 −0.453321 0.891347i \(-0.649761\pi\)
−0.453321 + 0.891347i \(0.649761\pi\)
\(68\) 1.81829 0.220501
\(69\) 0 0
\(70\) 7.24416 0.865842
\(71\) 5.09818 0.605043 0.302521 0.953143i \(-0.402172\pi\)
0.302521 + 0.953143i \(0.402172\pi\)
\(72\) 0 0
\(73\) 5.39174 0.631056 0.315528 0.948916i \(-0.397818\pi\)
0.315528 + 0.948916i \(0.397818\pi\)
\(74\) 2.23524 0.259841
\(75\) 0 0
\(76\) −2.93787 −0.336997
\(77\) −14.3079 −1.63054
\(78\) 0 0
\(79\) −9.73723 −1.09552 −0.547762 0.836634i \(-0.684520\pi\)
−0.547762 + 0.836634i \(0.684520\pi\)
\(80\) −4.33456 −0.484619
\(81\) 0 0
\(82\) 0.415420 0.0458755
\(83\) 8.39515 0.921487 0.460743 0.887533i \(-0.347583\pi\)
0.460743 + 0.887533i \(0.347583\pi\)
\(84\) 0 0
\(85\) −5.83370 −0.632754
\(86\) −4.78575 −0.516061
\(87\) 0 0
\(88\) 11.5025 1.22617
\(89\) −5.09560 −0.540132 −0.270066 0.962842i \(-0.587046\pi\)
−0.270066 + 0.962842i \(0.587046\pi\)
\(90\) 0 0
\(91\) 10.0231 1.05071
\(92\) 0.438320 0.0456980
\(93\) 0 0
\(94\) −1.46523 −0.151127
\(95\) 9.42569 0.967056
\(96\) 0 0
\(97\) 10.9142 1.10817 0.554086 0.832460i \(-0.313068\pi\)
0.554086 + 0.832460i \(0.313068\pi\)
\(98\) −9.20257 −0.929600
\(99\) 0 0
\(100\) 1.25788 0.125788
\(101\) 0.398727 0.0396748 0.0198374 0.999803i \(-0.493685\pi\)
0.0198374 + 0.999803i \(0.493685\pi\)
\(102\) 0 0
\(103\) 3.27680 0.322873 0.161436 0.986883i \(-0.448387\pi\)
0.161436 + 0.986883i \(0.448387\pi\)
\(104\) −8.05788 −0.790140
\(105\) 0 0
\(106\) −2.88837 −0.280543
\(107\) −3.15685 −0.305184 −0.152592 0.988289i \(-0.548762\pi\)
−0.152592 + 0.988289i \(0.548762\pi\)
\(108\) 0 0
\(109\) 6.95622 0.666285 0.333142 0.942877i \(-0.391891\pi\)
0.333142 + 0.942877i \(0.391891\pi\)
\(110\) −7.16372 −0.683034
\(111\) 0 0
\(112\) 10.6673 1.00797
\(113\) 15.2468 1.43430 0.717148 0.696920i \(-0.245447\pi\)
0.717148 + 0.696920i \(0.245447\pi\)
\(114\) 0 0
\(115\) −1.40628 −0.131136
\(116\) −3.28005 −0.304545
\(117\) 0 0
\(118\) 9.58486 0.882358
\(119\) 14.3567 1.31607
\(120\) 0 0
\(121\) 3.14907 0.286279
\(122\) 3.35574 0.303814
\(123\) 0 0
\(124\) 0 0
\(125\) −11.7638 −1.05219
\(126\) 0 0
\(127\) −20.2264 −1.79480 −0.897400 0.441218i \(-0.854547\pi\)
−0.897400 + 0.441218i \(0.854547\pi\)
\(128\) −5.62940 −0.497573
\(129\) 0 0
\(130\) 5.01841 0.440143
\(131\) −12.6513 −1.10535 −0.552674 0.833398i \(-0.686392\pi\)
−0.552674 + 0.833398i \(0.686392\pi\)
\(132\) 0 0
\(133\) −23.1965 −2.01139
\(134\) 9.14417 0.789936
\(135\) 0 0
\(136\) −11.5417 −0.989695
\(137\) 9.87801 0.843936 0.421968 0.906611i \(-0.361340\pi\)
0.421968 + 0.906611i \(0.361340\pi\)
\(138\) 0 0
\(139\) −15.4990 −1.31461 −0.657303 0.753626i \(-0.728303\pi\)
−0.657303 + 0.753626i \(0.728303\pi\)
\(140\) 2.83230 0.239373
\(141\) 0 0
\(142\) −6.28184 −0.527160
\(143\) −9.91185 −0.828871
\(144\) 0 0
\(145\) 10.5235 0.873930
\(146\) −6.64356 −0.549825
\(147\) 0 0
\(148\) 0.873928 0.0718364
\(149\) 15.2432 1.24878 0.624388 0.781115i \(-0.285349\pi\)
0.624388 + 0.781115i \(0.285349\pi\)
\(150\) 0 0
\(151\) −0.261828 −0.0213073 −0.0106536 0.999943i \(-0.503391\pi\)
−0.0106536 + 0.999943i \(0.503391\pi\)
\(152\) 18.6483 1.51258
\(153\) 0 0
\(154\) 17.6298 1.42065
\(155\) 0 0
\(156\) 0 0
\(157\) 15.9265 1.27108 0.635538 0.772070i \(-0.280778\pi\)
0.635538 + 0.772070i \(0.280778\pi\)
\(158\) 11.9979 0.954505
\(159\) 0 0
\(160\) −4.11193 −0.325077
\(161\) 3.46084 0.272752
\(162\) 0 0
\(163\) −0.133175 −0.0104311 −0.00521555 0.999986i \(-0.501660\pi\)
−0.00521555 + 0.999986i \(0.501660\pi\)
\(164\) 0.162420 0.0126829
\(165\) 0 0
\(166\) −10.3443 −0.802871
\(167\) 3.94878 0.305566 0.152783 0.988260i \(-0.451176\pi\)
0.152783 + 0.988260i \(0.451176\pi\)
\(168\) 0 0
\(169\) −6.05644 −0.465880
\(170\) 7.18813 0.551304
\(171\) 0 0
\(172\) −1.87112 −0.142672
\(173\) 14.4569 1.09914 0.549570 0.835447i \(-0.314791\pi\)
0.549570 + 0.835447i \(0.314791\pi\)
\(174\) 0 0
\(175\) 9.93180 0.750774
\(176\) −10.5489 −0.795151
\(177\) 0 0
\(178\) 6.27865 0.470605
\(179\) 17.7199 1.32445 0.662223 0.749307i \(-0.269613\pi\)
0.662223 + 0.749307i \(0.269613\pi\)
\(180\) 0 0
\(181\) −12.0592 −0.896350 −0.448175 0.893946i \(-0.647926\pi\)
−0.448175 + 0.893946i \(0.647926\pi\)
\(182\) −12.3502 −0.915461
\(183\) 0 0
\(184\) −2.78226 −0.205111
\(185\) −2.80386 −0.206144
\(186\) 0 0
\(187\) −14.1973 −1.03821
\(188\) −0.572874 −0.0417811
\(189\) 0 0
\(190\) −11.6141 −0.842574
\(191\) −5.07152 −0.366962 −0.183481 0.983023i \(-0.558737\pi\)
−0.183481 + 0.983023i \(0.558737\pi\)
\(192\) 0 0
\(193\) −20.0417 −1.44264 −0.721318 0.692604i \(-0.756463\pi\)
−0.721318 + 0.692604i \(0.756463\pi\)
\(194\) −13.4482 −0.965525
\(195\) 0 0
\(196\) −3.59800 −0.257000
\(197\) −21.7084 −1.54666 −0.773328 0.634006i \(-0.781410\pi\)
−0.773328 + 0.634006i \(0.781410\pi\)
\(198\) 0 0
\(199\) 15.1655 1.07505 0.537527 0.843246i \(-0.319359\pi\)
0.537527 + 0.843246i \(0.319359\pi\)
\(200\) −7.98445 −0.564586
\(201\) 0 0
\(202\) −0.491300 −0.0345678
\(203\) −25.8982 −1.81770
\(204\) 0 0
\(205\) −0.521098 −0.0363951
\(206\) −4.03759 −0.281312
\(207\) 0 0
\(208\) 7.38980 0.512391
\(209\) 22.9390 1.58672
\(210\) 0 0
\(211\) 6.30441 0.434013 0.217007 0.976170i \(-0.430371\pi\)
0.217007 + 0.976170i \(0.430371\pi\)
\(212\) −1.12929 −0.0775597
\(213\) 0 0
\(214\) 3.88978 0.265900
\(215\) 6.00319 0.409414
\(216\) 0 0
\(217\) 0 0
\(218\) −8.57126 −0.580519
\(219\) 0 0
\(220\) −2.80085 −0.188834
\(221\) 9.94562 0.669015
\(222\) 0 0
\(223\) 7.38911 0.494811 0.247406 0.968912i \(-0.420422\pi\)
0.247406 + 0.968912i \(0.420422\pi\)
\(224\) 10.1194 0.676132
\(225\) 0 0
\(226\) −18.7867 −1.24967
\(227\) −19.2398 −1.27699 −0.638495 0.769626i \(-0.720443\pi\)
−0.638495 + 0.769626i \(0.720443\pi\)
\(228\) 0 0
\(229\) −6.08710 −0.402247 −0.201124 0.979566i \(-0.564459\pi\)
−0.201124 + 0.979566i \(0.564459\pi\)
\(230\) 1.73278 0.114256
\(231\) 0 0
\(232\) 20.8203 1.36692
\(233\) −17.5280 −1.14830 −0.574150 0.818750i \(-0.694667\pi\)
−0.574150 + 0.818750i \(0.694667\pi\)
\(234\) 0 0
\(235\) 1.83797 0.119896
\(236\) 3.74746 0.243939
\(237\) 0 0
\(238\) −17.6899 −1.14667
\(239\) 27.9120 1.80548 0.902740 0.430187i \(-0.141552\pi\)
0.902740 + 0.430187i \(0.141552\pi\)
\(240\) 0 0
\(241\) 22.7497 1.46544 0.732720 0.680531i \(-0.238251\pi\)
0.732720 + 0.680531i \(0.238251\pi\)
\(242\) −3.88019 −0.249428
\(243\) 0 0
\(244\) 1.31202 0.0839933
\(245\) 11.5436 0.737494
\(246\) 0 0
\(247\) −16.0694 −1.02247
\(248\) 0 0
\(249\) 0 0
\(250\) 14.4950 0.916747
\(251\) 16.2345 1.02471 0.512356 0.858773i \(-0.328773\pi\)
0.512356 + 0.858773i \(0.328773\pi\)
\(252\) 0 0
\(253\) −3.42241 −0.215165
\(254\) 24.9224 1.56377
\(255\) 0 0
\(256\) −10.8373 −0.677333
\(257\) −23.3521 −1.45666 −0.728332 0.685224i \(-0.759704\pi\)
−0.728332 + 0.685224i \(0.759704\pi\)
\(258\) 0 0
\(259\) 6.90026 0.428761
\(260\) 1.96208 0.121683
\(261\) 0 0
\(262\) 15.5886 0.963064
\(263\) 10.3944 0.640944 0.320472 0.947258i \(-0.396159\pi\)
0.320472 + 0.947258i \(0.396159\pi\)
\(264\) 0 0
\(265\) 3.62313 0.222567
\(266\) 28.5821 1.75248
\(267\) 0 0
\(268\) 3.57517 0.218388
\(269\) 4.41805 0.269373 0.134686 0.990888i \(-0.456997\pi\)
0.134686 + 0.990888i \(0.456997\pi\)
\(270\) 0 0
\(271\) 6.15286 0.373760 0.186880 0.982383i \(-0.440162\pi\)
0.186880 + 0.982383i \(0.440162\pi\)
\(272\) 10.5848 0.641798
\(273\) 0 0
\(274\) −12.1714 −0.735302
\(275\) −9.82153 −0.592261
\(276\) 0 0
\(277\) 22.0474 1.32470 0.662350 0.749194i \(-0.269559\pi\)
0.662350 + 0.749194i \(0.269559\pi\)
\(278\) 19.0974 1.14539
\(279\) 0 0
\(280\) −17.9782 −1.07440
\(281\) 30.7736 1.83580 0.917899 0.396815i \(-0.129885\pi\)
0.917899 + 0.396815i \(0.129885\pi\)
\(282\) 0 0
\(283\) −21.3453 −1.26884 −0.634422 0.772987i \(-0.718762\pi\)
−0.634422 + 0.772987i \(0.718762\pi\)
\(284\) −2.45606 −0.145740
\(285\) 0 0
\(286\) 12.2131 0.722176
\(287\) 1.28242 0.0756987
\(288\) 0 0
\(289\) −2.75436 −0.162021
\(290\) −12.9668 −0.761436
\(291\) 0 0
\(292\) −2.59748 −0.152006
\(293\) 1.79903 0.105100 0.0525501 0.998618i \(-0.483265\pi\)
0.0525501 + 0.998618i \(0.483265\pi\)
\(294\) 0 0
\(295\) −12.0231 −0.700014
\(296\) −5.54731 −0.322431
\(297\) 0 0
\(298\) −18.7823 −1.08803
\(299\) 2.39750 0.138651
\(300\) 0 0
\(301\) −14.7738 −0.851546
\(302\) 0.322617 0.0185645
\(303\) 0 0
\(304\) −17.1022 −0.980878
\(305\) −4.20940 −0.241030
\(306\) 0 0
\(307\) 26.7694 1.52781 0.763905 0.645328i \(-0.223279\pi\)
0.763905 + 0.645328i \(0.223279\pi\)
\(308\) 6.89287 0.392758
\(309\) 0 0
\(310\) 0 0
\(311\) −4.18114 −0.237090 −0.118545 0.992949i \(-0.537823\pi\)
−0.118545 + 0.992949i \(0.537823\pi\)
\(312\) 0 0
\(313\) −11.3428 −0.641135 −0.320567 0.947226i \(-0.603874\pi\)
−0.320567 + 0.947226i \(0.603874\pi\)
\(314\) −19.6242 −1.10746
\(315\) 0 0
\(316\) 4.69092 0.263885
\(317\) −25.8813 −1.45364 −0.726820 0.686828i \(-0.759003\pi\)
−0.726820 + 0.686828i \(0.759003\pi\)
\(318\) 0 0
\(319\) 25.6107 1.43392
\(320\) 13.7357 0.767851
\(321\) 0 0
\(322\) −4.26435 −0.237643
\(323\) −23.0171 −1.28071
\(324\) 0 0
\(325\) 6.88028 0.381649
\(326\) 0.164095 0.00908838
\(327\) 0 0
\(328\) −1.03097 −0.0569258
\(329\) −4.52323 −0.249374
\(330\) 0 0
\(331\) 0.765788 0.0420915 0.0210457 0.999779i \(-0.493300\pi\)
0.0210457 + 0.999779i \(0.493300\pi\)
\(332\) −4.04437 −0.221964
\(333\) 0 0
\(334\) −4.86558 −0.266232
\(335\) −11.4703 −0.626692
\(336\) 0 0
\(337\) 2.39434 0.130428 0.0652140 0.997871i \(-0.479227\pi\)
0.0652140 + 0.997871i \(0.479227\pi\)
\(338\) 7.46258 0.405911
\(339\) 0 0
\(340\) 2.81040 0.152415
\(341\) 0 0
\(342\) 0 0
\(343\) −1.78235 −0.0962378
\(344\) 11.8770 0.640367
\(345\) 0 0
\(346\) −17.8134 −0.957656
\(347\) −5.65780 −0.303727 −0.151863 0.988402i \(-0.548527\pi\)
−0.151863 + 0.988402i \(0.548527\pi\)
\(348\) 0 0
\(349\) 29.0676 1.55595 0.777977 0.628293i \(-0.216246\pi\)
0.777977 + 0.628293i \(0.216246\pi\)
\(350\) −12.2377 −0.654132
\(351\) 0 0
\(352\) −10.0071 −0.533378
\(353\) 19.2752 1.02592 0.512958 0.858414i \(-0.328550\pi\)
0.512958 + 0.858414i \(0.328550\pi\)
\(354\) 0 0
\(355\) 7.87986 0.418220
\(356\) 2.45481 0.130105
\(357\) 0 0
\(358\) −21.8340 −1.15396
\(359\) −10.3443 −0.545950 −0.272975 0.962021i \(-0.588008\pi\)
−0.272975 + 0.962021i \(0.588008\pi\)
\(360\) 0 0
\(361\) 18.1894 0.957339
\(362\) 14.8590 0.780970
\(363\) 0 0
\(364\) −4.82867 −0.253091
\(365\) 8.33360 0.436201
\(366\) 0 0
\(367\) −0.136564 −0.00712857 −0.00356428 0.999994i \(-0.501135\pi\)
−0.00356428 + 0.999994i \(0.501135\pi\)
\(368\) 2.55159 0.133011
\(369\) 0 0
\(370\) 3.45484 0.179608
\(371\) −8.91649 −0.462921
\(372\) 0 0
\(373\) −7.36393 −0.381290 −0.190645 0.981659i \(-0.561058\pi\)
−0.190645 + 0.981659i \(0.561058\pi\)
\(374\) 17.4935 0.904566
\(375\) 0 0
\(376\) 3.63635 0.187530
\(377\) −17.9411 −0.924012
\(378\) 0 0
\(379\) −4.60813 −0.236704 −0.118352 0.992972i \(-0.537761\pi\)
−0.118352 + 0.992972i \(0.537761\pi\)
\(380\) −4.54084 −0.232940
\(381\) 0 0
\(382\) 6.24899 0.319726
\(383\) 32.2948 1.65019 0.825093 0.564997i \(-0.191123\pi\)
0.825093 + 0.564997i \(0.191123\pi\)
\(384\) 0 0
\(385\) −22.1147 −1.12707
\(386\) 24.6949 1.25694
\(387\) 0 0
\(388\) −5.25794 −0.266932
\(389\) 35.2713 1.78832 0.894162 0.447743i \(-0.147772\pi\)
0.894162 + 0.447743i \(0.147772\pi\)
\(390\) 0 0
\(391\) 3.43407 0.173668
\(392\) 22.8385 1.15352
\(393\) 0 0
\(394\) 26.7484 1.34757
\(395\) −15.0501 −0.757252
\(396\) 0 0
\(397\) −4.03402 −0.202462 −0.101231 0.994863i \(-0.532278\pi\)
−0.101231 + 0.994863i \(0.532278\pi\)
\(398\) −18.6865 −0.936671
\(399\) 0 0
\(400\) 7.32246 0.366123
\(401\) −24.8832 −1.24261 −0.621304 0.783570i \(-0.713397\pi\)
−0.621304 + 0.783570i \(0.713397\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.192087 −0.00955671
\(405\) 0 0
\(406\) 31.9111 1.58372
\(407\) −6.82365 −0.338236
\(408\) 0 0
\(409\) 3.50722 0.173421 0.0867105 0.996234i \(-0.472364\pi\)
0.0867105 + 0.996234i \(0.472364\pi\)
\(410\) 0.642083 0.0317102
\(411\) 0 0
\(412\) −1.57860 −0.0777723
\(413\) 29.5888 1.45597
\(414\) 0 0
\(415\) 12.9757 0.636953
\(416\) 7.01025 0.343706
\(417\) 0 0
\(418\) −28.2647 −1.38247
\(419\) −4.12031 −0.201290 −0.100645 0.994922i \(-0.532091\pi\)
−0.100645 + 0.994922i \(0.532091\pi\)
\(420\) 0 0
\(421\) 27.6014 1.34521 0.672605 0.740002i \(-0.265175\pi\)
0.672605 + 0.740002i \(0.265175\pi\)
\(422\) −7.76812 −0.378146
\(423\) 0 0
\(424\) 7.16821 0.348119
\(425\) 9.85499 0.478037
\(426\) 0 0
\(427\) 10.3593 0.501321
\(428\) 1.52082 0.0735114
\(429\) 0 0
\(430\) −7.39697 −0.356713
\(431\) 14.8739 0.716452 0.358226 0.933635i \(-0.383382\pi\)
0.358226 + 0.933635i \(0.383382\pi\)
\(432\) 0 0
\(433\) 9.26195 0.445101 0.222550 0.974921i \(-0.428562\pi\)
0.222550 + 0.974921i \(0.428562\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.35117 −0.160492
\(437\) −5.54853 −0.265422
\(438\) 0 0
\(439\) 17.7182 0.845643 0.422821 0.906213i \(-0.361040\pi\)
0.422821 + 0.906213i \(0.361040\pi\)
\(440\) 17.7786 0.847561
\(441\) 0 0
\(442\) −12.2547 −0.582898
\(443\) 18.4502 0.876597 0.438299 0.898829i \(-0.355581\pi\)
0.438299 + 0.898829i \(0.355581\pi\)
\(444\) 0 0
\(445\) −7.87587 −0.373352
\(446\) −9.10465 −0.431118
\(447\) 0 0
\(448\) −33.8035 −1.59706
\(449\) −22.7102 −1.07176 −0.535881 0.844294i \(-0.680020\pi\)
−0.535881 + 0.844294i \(0.680020\pi\)
\(450\) 0 0
\(451\) −1.26818 −0.0597162
\(452\) −7.34516 −0.345487
\(453\) 0 0
\(454\) 23.7067 1.11261
\(455\) 15.4920 0.726276
\(456\) 0 0
\(457\) −16.1619 −0.756020 −0.378010 0.925802i \(-0.623392\pi\)
−0.378010 + 0.925802i \(0.623392\pi\)
\(458\) 7.50036 0.350469
\(459\) 0 0
\(460\) 0.677478 0.0315876
\(461\) −21.5388 −1.00316 −0.501580 0.865111i \(-0.667248\pi\)
−0.501580 + 0.865111i \(0.667248\pi\)
\(462\) 0 0
\(463\) −17.5098 −0.813750 −0.406875 0.913484i \(-0.633381\pi\)
−0.406875 + 0.913484i \(0.633381\pi\)
\(464\) −19.0941 −0.886421
\(465\) 0 0
\(466\) 21.5976 1.00049
\(467\) 11.8066 0.546346 0.273173 0.961965i \(-0.411927\pi\)
0.273173 + 0.961965i \(0.411927\pi\)
\(468\) 0 0
\(469\) 28.2284 1.30347
\(470\) −2.26470 −0.104463
\(471\) 0 0
\(472\) −23.7872 −1.09490
\(473\) 14.6097 0.671757
\(474\) 0 0
\(475\) −15.9230 −0.730598
\(476\) −6.91635 −0.317010
\(477\) 0 0
\(478\) −34.3924 −1.57307
\(479\) 15.8087 0.722319 0.361159 0.932504i \(-0.382381\pi\)
0.361159 + 0.932504i \(0.382381\pi\)
\(480\) 0 0
\(481\) 4.78017 0.217957
\(482\) −28.0316 −1.27680
\(483\) 0 0
\(484\) −1.51707 −0.0689576
\(485\) 16.8693 0.765994
\(486\) 0 0
\(487\) 12.7916 0.579645 0.289822 0.957080i \(-0.406404\pi\)
0.289822 + 0.957080i \(0.406404\pi\)
\(488\) −8.32811 −0.376996
\(489\) 0 0
\(490\) −14.2237 −0.642561
\(491\) 18.5282 0.836166 0.418083 0.908409i \(-0.362702\pi\)
0.418083 + 0.908409i \(0.362702\pi\)
\(492\) 0 0
\(493\) −25.6979 −1.15738
\(494\) 19.8003 0.890859
\(495\) 0 0
\(496\) 0 0
\(497\) −19.3922 −0.869861
\(498\) 0 0
\(499\) 40.8873 1.83036 0.915182 0.403040i \(-0.132046\pi\)
0.915182 + 0.403040i \(0.132046\pi\)
\(500\) 5.66723 0.253446
\(501\) 0 0
\(502\) −20.0037 −0.892809
\(503\) −20.0771 −0.895194 −0.447597 0.894235i \(-0.647720\pi\)
−0.447597 + 0.894235i \(0.647720\pi\)
\(504\) 0 0
\(505\) 0.616282 0.0274242
\(506\) 4.21700 0.187469
\(507\) 0 0
\(508\) 9.74408 0.432324
\(509\) 31.9112 1.41444 0.707220 0.706994i \(-0.249949\pi\)
0.707220 + 0.706994i \(0.249949\pi\)
\(510\) 0 0
\(511\) −20.5089 −0.907260
\(512\) 24.6123 1.08772
\(513\) 0 0
\(514\) 28.7738 1.26916
\(515\) 5.06470 0.223177
\(516\) 0 0
\(517\) 4.47301 0.196723
\(518\) −8.50231 −0.373570
\(519\) 0 0
\(520\) −12.4544 −0.546163
\(521\) −2.10756 −0.0923339 −0.0461670 0.998934i \(-0.514701\pi\)
−0.0461670 + 0.998934i \(0.514701\pi\)
\(522\) 0 0
\(523\) 4.90777 0.214602 0.107301 0.994227i \(-0.465779\pi\)
0.107301 + 0.994227i \(0.465779\pi\)
\(524\) 6.09477 0.266251
\(525\) 0 0
\(526\) −12.8076 −0.558440
\(527\) 0 0
\(528\) 0 0
\(529\) −22.1722 −0.964008
\(530\) −4.46432 −0.193918
\(531\) 0 0
\(532\) 11.1750 0.484496
\(533\) 0.888398 0.0384808
\(534\) 0 0
\(535\) −4.87929 −0.210950
\(536\) −22.6936 −0.980213
\(537\) 0 0
\(538\) −5.44379 −0.234699
\(539\) 28.0932 1.21006
\(540\) 0 0
\(541\) −12.4370 −0.534709 −0.267355 0.963598i \(-0.586150\pi\)
−0.267355 + 0.963598i \(0.586150\pi\)
\(542\) −7.58139 −0.325648
\(543\) 0 0
\(544\) 10.0411 0.430511
\(545\) 10.7517 0.460552
\(546\) 0 0
\(547\) −13.9650 −0.597101 −0.298550 0.954394i \(-0.596503\pi\)
−0.298550 + 0.954394i \(0.596503\pi\)
\(548\) −4.75875 −0.203284
\(549\) 0 0
\(550\) 12.1018 0.516023
\(551\) 41.5209 1.76885
\(552\) 0 0
\(553\) 37.0381 1.57502
\(554\) −27.1662 −1.15418
\(555\) 0 0
\(556\) 7.46666 0.316657
\(557\) 37.2207 1.57709 0.788546 0.614976i \(-0.210834\pi\)
0.788546 + 0.614976i \(0.210834\pi\)
\(558\) 0 0
\(559\) −10.2346 −0.432876
\(560\) 16.4876 0.696730
\(561\) 0 0
\(562\) −37.9183 −1.59949
\(563\) 30.0267 1.26548 0.632738 0.774366i \(-0.281931\pi\)
0.632738 + 0.774366i \(0.281931\pi\)
\(564\) 0 0
\(565\) 23.5658 0.991420
\(566\) 26.3010 1.10551
\(567\) 0 0
\(568\) 15.5900 0.654140
\(569\) 40.3713 1.69245 0.846227 0.532823i \(-0.178869\pi\)
0.846227 + 0.532823i \(0.178869\pi\)
\(570\) 0 0
\(571\) 42.6015 1.78282 0.891410 0.453199i \(-0.149717\pi\)
0.891410 + 0.453199i \(0.149717\pi\)
\(572\) 4.77505 0.199655
\(573\) 0 0
\(574\) −1.58016 −0.0659545
\(575\) 2.37566 0.0990717
\(576\) 0 0
\(577\) −6.53777 −0.272171 −0.136085 0.990697i \(-0.543452\pi\)
−0.136085 + 0.990697i \(0.543452\pi\)
\(578\) 3.39385 0.141165
\(579\) 0 0
\(580\) −5.06972 −0.210509
\(581\) −31.9331 −1.32481
\(582\) 0 0
\(583\) 8.81749 0.365183
\(584\) 16.4877 0.682264
\(585\) 0 0
\(586\) −2.21671 −0.0915715
\(587\) 21.3777 0.882352 0.441176 0.897421i \(-0.354561\pi\)
0.441176 + 0.897421i \(0.354561\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 14.8146 0.609907
\(591\) 0 0
\(592\) 5.08738 0.209090
\(593\) −25.9906 −1.06731 −0.533653 0.845704i \(-0.679181\pi\)
−0.533653 + 0.845704i \(0.679181\pi\)
\(594\) 0 0
\(595\) 22.1900 0.909701
\(596\) −7.34346 −0.300800
\(597\) 0 0
\(598\) −2.95414 −0.120804
\(599\) 9.18796 0.375410 0.187705 0.982225i \(-0.439895\pi\)
0.187705 + 0.982225i \(0.439895\pi\)
\(600\) 0 0
\(601\) 33.3190 1.35911 0.679556 0.733624i \(-0.262172\pi\)
0.679556 + 0.733624i \(0.262172\pi\)
\(602\) 18.2038 0.741933
\(603\) 0 0
\(604\) 0.126136 0.00513240
\(605\) 4.86727 0.197883
\(606\) 0 0
\(607\) −48.7008 −1.97670 −0.988352 0.152188i \(-0.951368\pi\)
−0.988352 + 0.152188i \(0.951368\pi\)
\(608\) −16.2238 −0.657961
\(609\) 0 0
\(610\) 5.18671 0.210004
\(611\) −3.13348 −0.126767
\(612\) 0 0
\(613\) 20.9140 0.844709 0.422354 0.906431i \(-0.361204\pi\)
0.422354 + 0.906431i \(0.361204\pi\)
\(614\) −32.9845 −1.33115
\(615\) 0 0
\(616\) −43.7529 −1.76285
\(617\) −45.3840 −1.82709 −0.913545 0.406738i \(-0.866666\pi\)
−0.913545 + 0.406738i \(0.866666\pi\)
\(618\) 0 0
\(619\) −10.2462 −0.411832 −0.205916 0.978570i \(-0.566017\pi\)
−0.205916 + 0.978570i \(0.566017\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 5.15188 0.206572
\(623\) 19.3824 0.776540
\(624\) 0 0
\(625\) −5.12716 −0.205086
\(626\) 13.9763 0.558606
\(627\) 0 0
\(628\) −7.67263 −0.306171
\(629\) 6.84689 0.273003
\(630\) 0 0
\(631\) −10.6770 −0.425043 −0.212522 0.977156i \(-0.568168\pi\)
−0.212522 + 0.977156i \(0.568168\pi\)
\(632\) −29.7759 −1.18442
\(633\) 0 0
\(634\) 31.8903 1.26652
\(635\) −31.2623 −1.24061
\(636\) 0 0
\(637\) −19.6802 −0.779757
\(638\) −31.5568 −1.24934
\(639\) 0 0
\(640\) −8.70093 −0.343934
\(641\) −23.8621 −0.942496 −0.471248 0.882001i \(-0.656196\pi\)
−0.471248 + 0.882001i \(0.656196\pi\)
\(642\) 0 0
\(643\) −7.93926 −0.313094 −0.156547 0.987671i \(-0.550036\pi\)
−0.156547 + 0.987671i \(0.550036\pi\)
\(644\) −1.66726 −0.0656994
\(645\) 0 0
\(646\) 28.3610 1.11585
\(647\) −2.47761 −0.0974050 −0.0487025 0.998813i \(-0.515509\pi\)
−0.0487025 + 0.998813i \(0.515509\pi\)
\(648\) 0 0
\(649\) −29.2603 −1.14857
\(650\) −8.47769 −0.332523
\(651\) 0 0
\(652\) 0.0641574 0.00251260
\(653\) −22.4940 −0.880260 −0.440130 0.897934i \(-0.645068\pi\)
−0.440130 + 0.897934i \(0.645068\pi\)
\(654\) 0 0
\(655\) −19.5541 −0.764042
\(656\) 0.945493 0.0369153
\(657\) 0 0
\(658\) 5.57340 0.217274
\(659\) 11.9596 0.465881 0.232941 0.972491i \(-0.425165\pi\)
0.232941 + 0.972491i \(0.425165\pi\)
\(660\) 0 0
\(661\) 23.8360 0.927112 0.463556 0.886068i \(-0.346573\pi\)
0.463556 + 0.886068i \(0.346573\pi\)
\(662\) −0.943582 −0.0366734
\(663\) 0 0
\(664\) 25.6719 0.996263
\(665\) −35.8531 −1.39032
\(666\) 0 0
\(667\) −6.19478 −0.239863
\(668\) −1.90233 −0.0736034
\(669\) 0 0
\(670\) 14.1334 0.546022
\(671\) −10.2443 −0.395475
\(672\) 0 0
\(673\) 3.49412 0.134688 0.0673442 0.997730i \(-0.478547\pi\)
0.0673442 + 0.997730i \(0.478547\pi\)
\(674\) −2.95024 −0.113639
\(675\) 0 0
\(676\) 2.91770 0.112219
\(677\) 19.2457 0.739674 0.369837 0.929097i \(-0.379414\pi\)
0.369837 + 0.929097i \(0.379414\pi\)
\(678\) 0 0
\(679\) −41.5151 −1.59320
\(680\) −17.8391 −0.684100
\(681\) 0 0
\(682\) 0 0
\(683\) 39.8738 1.52573 0.762865 0.646558i \(-0.223792\pi\)
0.762865 + 0.646558i \(0.223792\pi\)
\(684\) 0 0
\(685\) 15.2677 0.583348
\(686\) 2.19616 0.0838498
\(687\) 0 0
\(688\) −10.8923 −0.415266
\(689\) −6.17692 −0.235322
\(690\) 0 0
\(691\) 38.4104 1.46120 0.730601 0.682804i \(-0.239240\pi\)
0.730601 + 0.682804i \(0.239240\pi\)
\(692\) −6.96465 −0.264756
\(693\) 0 0
\(694\) 6.97139 0.264630
\(695\) −23.9556 −0.908687
\(696\) 0 0
\(697\) 1.27250 0.0481993
\(698\) −35.8163 −1.35567
\(699\) 0 0
\(700\) −4.78466 −0.180843
\(701\) 35.4255 1.33800 0.669001 0.743262i \(-0.266722\pi\)
0.669001 + 0.743262i \(0.266722\pi\)
\(702\) 0 0
\(703\) −11.0627 −0.417239
\(704\) 33.4281 1.25987
\(705\) 0 0
\(706\) −23.7504 −0.893857
\(707\) −1.51666 −0.0570399
\(708\) 0 0
\(709\) −25.8093 −0.969288 −0.484644 0.874711i \(-0.661051\pi\)
−0.484644 + 0.874711i \(0.661051\pi\)
\(710\) −9.70935 −0.364385
\(711\) 0 0
\(712\) −15.5821 −0.583962
\(713\) 0 0
\(714\) 0 0
\(715\) −15.3200 −0.572935
\(716\) −8.53658 −0.319027
\(717\) 0 0
\(718\) 12.7459 0.475674
\(719\) 39.0467 1.45620 0.728099 0.685472i \(-0.240404\pi\)
0.728099 + 0.685472i \(0.240404\pi\)
\(720\) 0 0
\(721\) −12.4642 −0.464190
\(722\) −22.4125 −0.834108
\(723\) 0 0
\(724\) 5.80952 0.215909
\(725\) −17.7776 −0.660243
\(726\) 0 0
\(727\) 24.9836 0.926592 0.463296 0.886204i \(-0.346667\pi\)
0.463296 + 0.886204i \(0.346667\pi\)
\(728\) 30.6502 1.13597
\(729\) 0 0
\(730\) −10.2684 −0.380052
\(731\) −14.6595 −0.542202
\(732\) 0 0
\(733\) −16.9490 −0.626027 −0.313014 0.949749i \(-0.601339\pi\)
−0.313014 + 0.949749i \(0.601339\pi\)
\(734\) 0.168270 0.00621096
\(735\) 0 0
\(736\) 2.42053 0.0892220
\(737\) −27.9150 −1.02826
\(738\) 0 0
\(739\) 14.3821 0.529055 0.264528 0.964378i \(-0.414784\pi\)
0.264528 + 0.964378i \(0.414784\pi\)
\(740\) 1.35076 0.0496550
\(741\) 0 0
\(742\) 10.9866 0.403333
\(743\) 27.7705 1.01880 0.509400 0.860530i \(-0.329867\pi\)
0.509400 + 0.860530i \(0.329867\pi\)
\(744\) 0 0
\(745\) 23.5603 0.863183
\(746\) 9.07363 0.332209
\(747\) 0 0
\(748\) 6.83956 0.250079
\(749\) 12.0079 0.438758
\(750\) 0 0
\(751\) −43.5702 −1.58990 −0.794950 0.606676i \(-0.792503\pi\)
−0.794950 + 0.606676i \(0.792503\pi\)
\(752\) −3.33486 −0.121610
\(753\) 0 0
\(754\) 22.1065 0.805071
\(755\) −0.404687 −0.0147281
\(756\) 0 0
\(757\) 25.2171 0.916531 0.458266 0.888815i \(-0.348471\pi\)
0.458266 + 0.888815i \(0.348471\pi\)
\(758\) 5.67802 0.206235
\(759\) 0 0
\(760\) 28.8233 1.04553
\(761\) 2.61593 0.0948274 0.0474137 0.998875i \(-0.484902\pi\)
0.0474137 + 0.998875i \(0.484902\pi\)
\(762\) 0 0
\(763\) −26.4598 −0.957908
\(764\) 2.44321 0.0883923
\(765\) 0 0
\(766\) −39.7927 −1.43777
\(767\) 20.4977 0.740130
\(768\) 0 0
\(769\) 11.3507 0.409316 0.204658 0.978834i \(-0.434392\pi\)
0.204658 + 0.978834i \(0.434392\pi\)
\(770\) 27.2491 0.981988
\(771\) 0 0
\(772\) 9.65514 0.347496
\(773\) 11.4174 0.410655 0.205327 0.978693i \(-0.434174\pi\)
0.205327 + 0.978693i \(0.434174\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 33.3751 1.19810
\(777\) 0 0
\(778\) −43.4603 −1.55813
\(779\) −2.05601 −0.0736644
\(780\) 0 0
\(781\) 19.1769 0.686204
\(782\) −4.23137 −0.151313
\(783\) 0 0
\(784\) −20.9450 −0.748035
\(785\) 24.6164 0.878597
\(786\) 0 0
\(787\) −27.0892 −0.965626 −0.482813 0.875723i \(-0.660385\pi\)
−0.482813 + 0.875723i \(0.660385\pi\)
\(788\) 10.4580 0.372552
\(789\) 0 0
\(790\) 18.5443 0.659776
\(791\) −57.9951 −2.06207
\(792\) 0 0
\(793\) 7.17642 0.254842
\(794\) 4.97060 0.176400
\(795\) 0 0
\(796\) −7.30601 −0.258955
\(797\) −48.6558 −1.72348 −0.861739 0.507352i \(-0.830624\pi\)
−0.861739 + 0.507352i \(0.830624\pi\)
\(798\) 0 0
\(799\) −4.48825 −0.158783
\(800\) 6.94637 0.245591
\(801\) 0 0
\(802\) 30.6604 1.08266
\(803\) 20.2812 0.715707
\(804\) 0 0
\(805\) 5.34915 0.188533
\(806\) 0 0
\(807\) 0 0
\(808\) 1.21929 0.0428943
\(809\) 18.8091 0.661294 0.330647 0.943755i \(-0.392733\pi\)
0.330647 + 0.943755i \(0.392733\pi\)
\(810\) 0 0
\(811\) −39.5385 −1.38839 −0.694193 0.719789i \(-0.744239\pi\)
−0.694193 + 0.719789i \(0.744239\pi\)
\(812\) 12.4765 0.437840
\(813\) 0 0
\(814\) 8.40791 0.294697
\(815\) −0.205839 −0.00721022
\(816\) 0 0
\(817\) 23.6858 0.828662
\(818\) −4.32150 −0.151098
\(819\) 0 0
\(820\) 0.251040 0.00876670
\(821\) 14.6367 0.510825 0.255412 0.966832i \(-0.417789\pi\)
0.255412 + 0.966832i \(0.417789\pi\)
\(822\) 0 0
\(823\) 41.7867 1.45659 0.728296 0.685262i \(-0.240312\pi\)
0.728296 + 0.685262i \(0.240312\pi\)
\(824\) 10.0203 0.349073
\(825\) 0 0
\(826\) −36.4585 −1.26855
\(827\) 9.40613 0.327083 0.163542 0.986536i \(-0.447708\pi\)
0.163542 + 0.986536i \(0.447708\pi\)
\(828\) 0 0
\(829\) 40.3307 1.40074 0.700372 0.713778i \(-0.253017\pi\)
0.700372 + 0.713778i \(0.253017\pi\)
\(830\) −15.9883 −0.554963
\(831\) 0 0
\(832\) −23.4174 −0.811854
\(833\) −28.1889 −0.976689
\(834\) 0 0
\(835\) 6.10332 0.211214
\(836\) −11.0509 −0.382203
\(837\) 0 0
\(838\) 5.07693 0.175380
\(839\) −7.14965 −0.246833 −0.123417 0.992355i \(-0.539385\pi\)
−0.123417 + 0.992355i \(0.539385\pi\)
\(840\) 0 0
\(841\) 17.3569 0.598514
\(842\) −34.0097 −1.17205
\(843\) 0 0
\(844\) −3.03716 −0.104543
\(845\) −9.36097 −0.322027
\(846\) 0 0
\(847\) −11.9783 −0.411579
\(848\) −6.57389 −0.225748
\(849\) 0 0
\(850\) −12.1430 −0.416503
\(851\) 1.65052 0.0565791
\(852\) 0 0
\(853\) 1.12667 0.0385765 0.0192882 0.999814i \(-0.493860\pi\)
0.0192882 + 0.999814i \(0.493860\pi\)
\(854\) −12.7644 −0.436789
\(855\) 0 0
\(856\) −9.65346 −0.329949
\(857\) 23.8540 0.814838 0.407419 0.913241i \(-0.366429\pi\)
0.407419 + 0.913241i \(0.366429\pi\)
\(858\) 0 0
\(859\) 32.4657 1.10771 0.553857 0.832612i \(-0.313155\pi\)
0.553857 + 0.832612i \(0.313155\pi\)
\(860\) −2.89205 −0.0986180
\(861\) 0 0
\(862\) −18.3273 −0.624229
\(863\) 23.8418 0.811585 0.405793 0.913965i \(-0.366996\pi\)
0.405793 + 0.913965i \(0.366996\pi\)
\(864\) 0 0
\(865\) 22.3450 0.759752
\(866\) −11.4123 −0.387806
\(867\) 0 0
\(868\) 0 0
\(869\) −36.6268 −1.24248
\(870\) 0 0
\(871\) 19.5553 0.662605
\(872\) 21.2717 0.720352
\(873\) 0 0
\(874\) 6.83675 0.231256
\(875\) 44.7467 1.51271
\(876\) 0 0
\(877\) 29.2746 0.988534 0.494267 0.869310i \(-0.335436\pi\)
0.494267 + 0.869310i \(0.335436\pi\)
\(878\) −21.8319 −0.736789
\(879\) 0 0
\(880\) −16.3046 −0.549627
\(881\) −9.03008 −0.304231 −0.152116 0.988363i \(-0.548609\pi\)
−0.152116 + 0.988363i \(0.548609\pi\)
\(882\) 0 0
\(883\) 21.4076 0.720422 0.360211 0.932871i \(-0.382705\pi\)
0.360211 + 0.932871i \(0.382705\pi\)
\(884\) −4.79132 −0.161150
\(885\) 0 0
\(886\) −22.7339 −0.763759
\(887\) −24.5950 −0.825820 −0.412910 0.910772i \(-0.635488\pi\)
−0.412910 + 0.910772i \(0.635488\pi\)
\(888\) 0 0
\(889\) 76.9362 2.58036
\(890\) 9.70443 0.325293
\(891\) 0 0
\(892\) −3.55971 −0.119188
\(893\) 7.25179 0.242672
\(894\) 0 0
\(895\) 27.3883 0.915488
\(896\) 21.4129 0.715354
\(897\) 0 0
\(898\) 27.9829 0.933801
\(899\) 0 0
\(900\) 0 0
\(901\) −8.84753 −0.294754
\(902\) 1.56261 0.0520293
\(903\) 0 0
\(904\) 46.6238 1.55069
\(905\) −18.6389 −0.619578
\(906\) 0 0
\(907\) −19.7663 −0.656329 −0.328165 0.944621i \(-0.606430\pi\)
−0.328165 + 0.944621i \(0.606430\pi\)
\(908\) 9.26880 0.307596
\(909\) 0 0
\(910\) −19.0888 −0.632788
\(911\) 35.6216 1.18020 0.590098 0.807332i \(-0.299089\pi\)
0.590098 + 0.807332i \(0.299089\pi\)
\(912\) 0 0
\(913\) 31.5785 1.04510
\(914\) 19.9142 0.658703
\(915\) 0 0
\(916\) 2.93247 0.0968916
\(917\) 48.1224 1.58914
\(918\) 0 0
\(919\) −17.1563 −0.565935 −0.282968 0.959129i \(-0.591319\pi\)
−0.282968 + 0.959129i \(0.591319\pi\)
\(920\) −4.30033 −0.141778
\(921\) 0 0
\(922\) 26.5395 0.874030
\(923\) −13.4340 −0.442186
\(924\) 0 0
\(925\) 4.73661 0.155739
\(926\) 21.5751 0.709002
\(927\) 0 0
\(928\) −18.1134 −0.594601
\(929\) −45.5222 −1.49353 −0.746767 0.665086i \(-0.768395\pi\)
−0.746767 + 0.665086i \(0.768395\pi\)
\(930\) 0 0
\(931\) 45.5457 1.49270
\(932\) 8.44416 0.276598
\(933\) 0 0
\(934\) −14.5478 −0.476018
\(935\) −21.9436 −0.717633
\(936\) 0 0
\(937\) 25.6175 0.836887 0.418443 0.908243i \(-0.362576\pi\)
0.418443 + 0.908243i \(0.362576\pi\)
\(938\) −34.7822 −1.13568
\(939\) 0 0
\(940\) −0.885446 −0.0288801
\(941\) −12.1238 −0.395226 −0.197613 0.980280i \(-0.563319\pi\)
−0.197613 + 0.980280i \(0.563319\pi\)
\(942\) 0 0
\(943\) 0.306750 0.00998916
\(944\) 21.8151 0.710019
\(945\) 0 0
\(946\) −18.0017 −0.585286
\(947\) 27.2011 0.883916 0.441958 0.897036i \(-0.354284\pi\)
0.441958 + 0.897036i \(0.354284\pi\)
\(948\) 0 0
\(949\) −14.2076 −0.461198
\(950\) 19.6199 0.636553
\(951\) 0 0
\(952\) 43.9019 1.42287
\(953\) −24.8927 −0.806353 −0.403177 0.915122i \(-0.632094\pi\)
−0.403177 + 0.915122i \(0.632094\pi\)
\(954\) 0 0
\(955\) −7.83866 −0.253653
\(956\) −13.4467 −0.434896
\(957\) 0 0
\(958\) −19.4791 −0.629340
\(959\) −37.5736 −1.21331
\(960\) 0 0
\(961\) 0 0
\(962\) −5.89000 −0.189901
\(963\) 0 0
\(964\) −10.9597 −0.352989
\(965\) −30.9770 −0.997184
\(966\) 0 0
\(967\) 52.1998 1.67863 0.839316 0.543643i \(-0.182956\pi\)
0.839316 + 0.543643i \(0.182956\pi\)
\(968\) 9.62967 0.309509
\(969\) 0 0
\(970\) −20.7858 −0.667393
\(971\) 19.9608 0.640574 0.320287 0.947321i \(-0.396221\pi\)
0.320287 + 0.947321i \(0.396221\pi\)
\(972\) 0 0
\(973\) 58.9544 1.88999
\(974\) −15.7615 −0.505031
\(975\) 0 0
\(976\) 7.63763 0.244475
\(977\) 60.2506 1.92759 0.963794 0.266648i \(-0.0859162\pi\)
0.963794 + 0.266648i \(0.0859162\pi\)
\(978\) 0 0
\(979\) −19.1672 −0.612587
\(980\) −5.56115 −0.177644
\(981\) 0 0
\(982\) −22.8299 −0.728532
\(983\) 11.5387 0.368028 0.184014 0.982924i \(-0.441091\pi\)
0.184014 + 0.982924i \(0.441091\pi\)
\(984\) 0 0
\(985\) −33.5529 −1.06909
\(986\) 31.6643 1.00840
\(987\) 0 0
\(988\) 7.74148 0.246289
\(989\) −3.53384 −0.112370
\(990\) 0 0
\(991\) 37.3423 1.18622 0.593109 0.805122i \(-0.297900\pi\)
0.593109 + 0.805122i \(0.297900\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 23.8946 0.757890
\(995\) 23.4402 0.743103
\(996\) 0 0
\(997\) 20.8024 0.658820 0.329410 0.944187i \(-0.393150\pi\)
0.329410 + 0.944187i \(0.393150\pi\)
\(998\) −50.3801 −1.59476
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.bf.1.4 8
3.2 odd 2 961.2.a.i.1.5 8
31.10 even 15 279.2.y.c.100.1 16
31.28 even 15 279.2.y.c.226.1 16
31.30 odd 2 8649.2.a.be.1.4 8
93.2 odd 10 961.2.d.o.531.3 16
93.5 odd 6 961.2.c.j.521.5 16
93.8 odd 10 961.2.d.p.374.2 16
93.11 even 30 961.2.g.m.338.1 16
93.14 odd 30 961.2.g.s.816.1 16
93.17 even 30 961.2.g.m.816.1 16
93.20 odd 30 961.2.g.s.338.1 16
93.23 even 10 961.2.d.q.374.2 16
93.26 even 6 961.2.c.i.521.5 16
93.29 even 10 961.2.d.n.531.3 16
93.35 odd 10 961.2.d.p.388.2 16
93.38 odd 30 961.2.g.t.235.1 16
93.41 odd 30 31.2.g.a.7.2 16
93.44 even 30 961.2.g.j.448.2 16
93.47 odd 10 961.2.d.o.628.3 16
93.50 odd 30 961.2.g.k.547.2 16
93.53 even 30 961.2.g.n.732.1 16
93.56 odd 6 961.2.c.j.439.5 16
93.59 odd 30 31.2.g.a.9.2 yes 16
93.65 even 30 961.2.g.l.846.2 16
93.68 even 6 961.2.c.i.439.5 16
93.71 odd 30 961.2.g.t.732.1 16
93.74 even 30 961.2.g.j.547.2 16
93.77 even 10 961.2.d.n.628.3 16
93.80 odd 30 961.2.g.k.448.2 16
93.83 even 30 961.2.g.l.844.2 16
93.86 even 30 961.2.g.n.235.1 16
93.89 even 10 961.2.d.q.388.2 16
93.92 even 2 961.2.a.j.1.5 8
372.59 even 30 496.2.bg.c.257.2 16
372.227 even 30 496.2.bg.c.193.2 16
465.59 odd 30 775.2.bl.a.226.1 16
465.134 odd 30 775.2.bl.a.751.1 16
465.152 even 60 775.2.ck.a.474.3 32
465.227 even 60 775.2.ck.a.224.2 32
465.338 even 60 775.2.ck.a.474.2 32
465.413 even 60 775.2.ck.a.224.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.7.2 16 93.41 odd 30
31.2.g.a.9.2 yes 16 93.59 odd 30
279.2.y.c.100.1 16 31.10 even 15
279.2.y.c.226.1 16 31.28 even 15
496.2.bg.c.193.2 16 372.227 even 30
496.2.bg.c.257.2 16 372.59 even 30
775.2.bl.a.226.1 16 465.59 odd 30
775.2.bl.a.751.1 16 465.134 odd 30
775.2.ck.a.224.2 32 465.227 even 60
775.2.ck.a.224.3 32 465.413 even 60
775.2.ck.a.474.2 32 465.338 even 60
775.2.ck.a.474.3 32 465.152 even 60
961.2.a.i.1.5 8 3.2 odd 2
961.2.a.j.1.5 8 93.92 even 2
961.2.c.i.439.5 16 93.68 even 6
961.2.c.i.521.5 16 93.26 even 6
961.2.c.j.439.5 16 93.56 odd 6
961.2.c.j.521.5 16 93.5 odd 6
961.2.d.n.531.3 16 93.29 even 10
961.2.d.n.628.3 16 93.77 even 10
961.2.d.o.531.3 16 93.2 odd 10
961.2.d.o.628.3 16 93.47 odd 10
961.2.d.p.374.2 16 93.8 odd 10
961.2.d.p.388.2 16 93.35 odd 10
961.2.d.q.374.2 16 93.23 even 10
961.2.d.q.388.2 16 93.89 even 10
961.2.g.j.448.2 16 93.44 even 30
961.2.g.j.547.2 16 93.74 even 30
961.2.g.k.448.2 16 93.80 odd 30
961.2.g.k.547.2 16 93.50 odd 30
961.2.g.l.844.2 16 93.83 even 30
961.2.g.l.846.2 16 93.65 even 30
961.2.g.m.338.1 16 93.11 even 30
961.2.g.m.816.1 16 93.17 even 30
961.2.g.n.235.1 16 93.86 even 30
961.2.g.n.732.1 16 93.53 even 30
961.2.g.s.338.1 16 93.20 odd 30
961.2.g.s.816.1 16 93.14 odd 30
961.2.g.t.235.1 16 93.38 odd 30
961.2.g.t.732.1 16 93.71 odd 30
8649.2.a.be.1.4 8 31.30 odd 2
8649.2.a.bf.1.4 8 1.1 even 1 trivial