Properties

Label 8640.2.a.t
Level $8640$
Weight $2$
Character orbit 8640.a
Self dual yes
Analytic conductor $68.991$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8640 = 2^{6} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8640.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(68.9907473464\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{5} + 2 q^{7} + O(q^{10}) \) \( q - q^{5} + 2 q^{7} - 4 q^{11} + 2 q^{13} + 5 q^{17} + 5 q^{19} + q^{23} + q^{25} + 2 q^{29} + 7 q^{31} - 2 q^{35} + 6 q^{37} - 4 q^{43} + 4 q^{47} - 3 q^{49} - 9 q^{53} + 4 q^{55} - 14 q^{59} + 11 q^{61} - 2 q^{65} - 14 q^{67} - 12 q^{73} - 8 q^{77} - 3 q^{79} + q^{83} - 5 q^{85} + 4 q^{91} - 5 q^{95} + 16 q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −1.00000 0 2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8640.2.a.t 1
3.b odd 2 1 8640.2.a.cd 1
4.b odd 2 1 8640.2.a.k 1
8.b even 2 1 1080.2.a.l yes 1
8.d odd 2 1 2160.2.a.m 1
12.b even 2 1 8640.2.a.bi 1
24.f even 2 1 2160.2.a.e 1
24.h odd 2 1 1080.2.a.e 1
40.f even 2 1 5400.2.a.q 1
40.i odd 4 2 5400.2.f.x 2
72.j odd 6 2 3240.2.q.p 2
72.n even 6 2 3240.2.q.b 2
120.i odd 2 1 5400.2.a.j 1
120.w even 4 2 5400.2.f.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.2.a.e 1 24.h odd 2 1
1080.2.a.l yes 1 8.b even 2 1
2160.2.a.e 1 24.f even 2 1
2160.2.a.m 1 8.d odd 2 1
3240.2.q.b 2 72.n even 6 2
3240.2.q.p 2 72.j odd 6 2
5400.2.a.j 1 120.i odd 2 1
5400.2.a.q 1 40.f even 2 1
5400.2.f.f 2 120.w even 4 2
5400.2.f.x 2 40.i odd 4 2
8640.2.a.k 1 4.b odd 2 1
8640.2.a.t 1 1.a even 1 1 trivial
8640.2.a.bi 1 12.b even 2 1
8640.2.a.cd 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8640))\):

\( T_{7} - 2 \)
\( T_{11} + 4 \)
\( T_{13} - 2 \)
\( T_{17} - 5 \)
\( T_{19} - 5 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( T \)
$5$ \( 1 + T \)
$7$ \( -2 + T \)
$11$ \( 4 + T \)
$13$ \( -2 + T \)
$17$ \( -5 + T \)
$19$ \( -5 + T \)
$23$ \( -1 + T \)
$29$ \( -2 + T \)
$31$ \( -7 + T \)
$37$ \( -6 + T \)
$41$ \( T \)
$43$ \( 4 + T \)
$47$ \( -4 + T \)
$53$ \( 9 + T \)
$59$ \( 14 + T \)
$61$ \( -11 + T \)
$67$ \( 14 + T \)
$71$ \( T \)
$73$ \( 12 + T \)
$79$ \( 3 + T \)
$83$ \( -1 + T \)
$89$ \( T \)
$97$ \( -16 + T \)
show more
show less