Properties

Label 8640.2.a.ca.1.1
Level $8640$
Weight $2$
Character 8640.1
Self dual yes
Analytic conductor $68.991$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8640,2,Mod(1,8640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8640.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8640 = 2^{6} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8640.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.9907473464\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8640.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +2.00000 q^{7} +O(q^{10})\) \(q+1.00000 q^{5} +2.00000 q^{7} +6.00000 q^{13} +7.00000 q^{17} +7.00000 q^{19} -7.00000 q^{23} +1.00000 q^{25} -6.00000 q^{29} -3.00000 q^{31} +2.00000 q^{35} +6.00000 q^{37} +4.00000 q^{41} +8.00000 q^{43} +4.00000 q^{47} -3.00000 q^{49} +5.00000 q^{53} +6.00000 q^{59} +3.00000 q^{61} +6.00000 q^{65} -10.0000 q^{67} -12.0000 q^{71} +16.0000 q^{73} -1.00000 q^{79} +9.00000 q^{83} +7.00000 q^{85} -4.00000 q^{89} +12.0000 q^{91} +7.00000 q^{95} -16.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.00000 1.69775 0.848875 0.528594i \(-0.177281\pi\)
0.848875 + 0.528594i \(0.177281\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.00000 −1.45960 −0.729800 0.683660i \(-0.760387\pi\)
−0.729800 + 0.683660i \(0.760387\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.00000 0.686803 0.343401 0.939189i \(-0.388421\pi\)
0.343401 + 0.939189i \(0.388421\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 3.00000 0.384111 0.192055 0.981384i \(-0.438485\pi\)
0.192055 + 0.981384i \(0.438485\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 16.0000 1.87266 0.936329 0.351123i \(-0.114200\pi\)
0.936329 + 0.351123i \(0.114200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.00000 −0.112509 −0.0562544 0.998416i \(-0.517916\pi\)
−0.0562544 + 0.998416i \(0.517916\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) 7.00000 0.759257
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.00000 0.718185
\(96\) 0 0
\(97\) −16.0000 −1.62455 −0.812277 0.583272i \(-0.801772\pi\)
−0.812277 + 0.583272i \(0.801772\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −7.00000 −0.652753
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14.0000 1.28338
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −14.0000 −1.24230 −0.621150 0.783692i \(-0.713334\pi\)
−0.621150 + 0.783692i \(0.713334\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.0000 −1.22319 −0.611593 0.791173i \(-0.709471\pi\)
−0.611593 + 0.791173i \(0.709471\pi\)
\(132\) 0 0
\(133\) 14.0000 1.21395
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.00000 −0.256307 −0.128154 0.991754i \(-0.540905\pi\)
−0.128154 + 0.991754i \(0.540905\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.0000 −0.983078 −0.491539 0.870855i \(-0.663566\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.00000 −0.240966
\(156\) 0 0
\(157\) 20.0000 1.59617 0.798087 0.602542i \(-0.205846\pi\)
0.798087 + 0.602542i \(0.205846\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −14.0000 −1.10335
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −19.0000 −1.47026 −0.735132 0.677924i \(-0.762880\pi\)
−0.735132 + 0.677924i \(0.762880\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.00000 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.00000 −0.144715 −0.0723575 0.997379i \(-0.523052\pi\)
−0.0723575 + 0.997379i \(0.523052\pi\)
\(192\) 0 0
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.0000 1.63868 0.819341 0.573306i \(-0.194340\pi\)
0.819341 + 0.573306i \(0.194340\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) 4.00000 0.279372
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −15.0000 −1.03264 −0.516321 0.856395i \(-0.672699\pi\)
−0.516321 + 0.856395i \(0.672699\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 42.0000 2.82523
\(222\) 0 0
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −27.0000 −1.79205 −0.896026 0.444001i \(-0.853559\pi\)
−0.896026 + 0.444001i \(0.853559\pi\)
\(228\) 0 0
\(229\) −3.00000 −0.198246 −0.0991228 0.995075i \(-0.531604\pi\)
−0.0991228 + 0.995075i \(0.531604\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) 4.00000 0.260931
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 0 0
\(241\) 11.0000 0.708572 0.354286 0.935137i \(-0.384724\pi\)
0.354286 + 0.935137i \(0.384724\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) 42.0000 2.67240
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.00000 0.561405 0.280702 0.959795i \(-0.409433\pi\)
0.280702 + 0.959795i \(0.409433\pi\)
\(258\) 0 0
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 5.00000 0.307148
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 13.0000 0.789694 0.394847 0.918747i \(-0.370798\pi\)
0.394847 + 0.918747i \(0.370798\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.0000 0.642627 0.321313 0.946973i \(-0.395876\pi\)
0.321313 + 0.946973i \(0.395876\pi\)
\(294\) 0 0
\(295\) 6.00000 0.349334
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −42.0000 −2.42892
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.00000 0.171780
\(306\) 0 0
\(307\) −26.0000 −1.48390 −0.741949 0.670456i \(-0.766098\pi\)
−0.741949 + 0.670456i \(0.766098\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.0000 −0.567048 −0.283524 0.958965i \(-0.591504\pi\)
−0.283524 + 0.958965i \(0.591504\pi\)
\(312\) 0 0
\(313\) 16.0000 0.904373 0.452187 0.891923i \(-0.350644\pi\)
0.452187 + 0.891923i \(0.350644\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000 0.0561656 0.0280828 0.999606i \(-0.491060\pi\)
0.0280828 + 0.999606i \(0.491060\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 49.0000 2.72643
\(324\) 0 0
\(325\) 6.00000 0.332820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) 34.0000 1.85210 0.926049 0.377403i \(-0.123183\pi\)
0.926049 + 0.377403i \(0.123183\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 35.0000 1.87351 0.936754 0.349990i \(-0.113815\pi\)
0.936754 + 0.349990i \(0.113815\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.0000 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 16.0000 0.837478
\(366\) 0 0
\(367\) 26.0000 1.35719 0.678594 0.734513i \(-0.262589\pi\)
0.678594 + 0.734513i \(0.262589\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.0000 0.519174
\(372\) 0 0
\(373\) −8.00000 −0.414224 −0.207112 0.978317i \(-0.566407\pi\)
−0.207112 + 0.978317i \(0.566407\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36.0000 −1.85409
\(378\) 0 0
\(379\) −35.0000 −1.79783 −0.898915 0.438124i \(-0.855643\pi\)
−0.898915 + 0.438124i \(0.855643\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −35.0000 −1.78842 −0.894208 0.447651i \(-0.852261\pi\)
−0.894208 + 0.447651i \(0.852261\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) −49.0000 −2.47804
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.00000 −0.0503155
\(396\) 0 0
\(397\) 34.0000 1.70641 0.853206 0.521575i \(-0.174655\pi\)
0.853206 + 0.521575i \(0.174655\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −18.0000 −0.896644
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.00000 0.0494468 0.0247234 0.999694i \(-0.492129\pi\)
0.0247234 + 0.999694i \(0.492129\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.0000 0.590481
\(414\) 0 0
\(415\) 9.00000 0.441793
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) −3.00000 −0.146211 −0.0731055 0.997324i \(-0.523291\pi\)
−0.0731055 + 0.997324i \(0.523291\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.00000 0.339550
\(426\) 0 0
\(427\) 6.00000 0.290360
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 26.0000 1.25238 0.626188 0.779672i \(-0.284614\pi\)
0.626188 + 0.779672i \(0.284614\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −49.0000 −2.34399
\(438\) 0 0
\(439\) −19.0000 −0.906821 −0.453410 0.891302i \(-0.649793\pi\)
−0.453410 + 0.891302i \(0.649793\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.00000 0.427603 0.213801 0.976877i \(-0.431415\pi\)
0.213801 + 0.976877i \(0.431415\pi\)
\(444\) 0 0
\(445\) −4.00000 −0.189618
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) 4.00000 0.187112 0.0935561 0.995614i \(-0.470177\pi\)
0.0935561 + 0.995614i \(0.470177\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.0000 1.71216 0.856078 0.516847i \(-0.172894\pi\)
0.856078 + 0.516847i \(0.172894\pi\)
\(468\) 0 0
\(469\) −20.0000 −0.923514
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 7.00000 0.321182
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 36.0000 1.64146
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.0000 −0.726523
\(486\) 0 0
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −34.0000 −1.53440 −0.767199 0.641409i \(-0.778350\pi\)
−0.767199 + 0.641409i \(0.778350\pi\)
\(492\) 0 0
\(493\) −42.0000 −1.89158
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.0000 −1.07655
\(498\) 0 0
\(499\) 11.0000 0.492428 0.246214 0.969216i \(-0.420813\pi\)
0.246214 + 0.969216i \(0.420813\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.00000 0.401290 0.200645 0.979664i \(-0.435696\pi\)
0.200645 + 0.979664i \(0.435696\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −36.0000 −1.59567 −0.797836 0.602875i \(-0.794022\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(510\) 0 0
\(511\) 32.0000 1.41560
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) 0 0
\(523\) −18.0000 −0.787085 −0.393543 0.919306i \(-0.628751\pi\)
−0.393543 + 0.919306i \(0.628751\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21.0000 −0.914774
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 34.0000 1.46177 0.730887 0.682498i \(-0.239107\pi\)
0.730887 + 0.682498i \(0.239107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.00000 −0.214176
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −42.0000 −1.78926
\(552\) 0 0
\(553\) −2.00000 −0.0850487
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −34.0000 −1.44063 −0.720313 0.693649i \(-0.756002\pi\)
−0.720313 + 0.693649i \(0.756002\pi\)
\(558\) 0 0
\(559\) 48.0000 2.03018
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 0 0
\(565\) −6.00000 −0.252422
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.0000 0.922288 0.461144 0.887325i \(-0.347439\pi\)
0.461144 + 0.887325i \(0.347439\pi\)
\(570\) 0 0
\(571\) −17.0000 −0.711428 −0.355714 0.934595i \(-0.615762\pi\)
−0.355714 + 0.934595i \(0.615762\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.00000 −0.291920
\(576\) 0 0
\(577\) −20.0000 −0.832611 −0.416305 0.909225i \(-0.636675\pi\)
−0.416305 + 0.909225i \(0.636675\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 18.0000 0.746766
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.00000 −0.371470 −0.185735 0.982600i \(-0.559467\pi\)
−0.185735 + 0.982600i \(0.559467\pi\)
\(588\) 0 0
\(589\) −21.0000 −0.865290
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.0000 0.533846 0.266923 0.963718i \(-0.413993\pi\)
0.266923 + 0.963718i \(0.413993\pi\)
\(594\) 0 0
\(595\) 14.0000 0.573944
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.0000 −1.06233 −0.531166 0.847268i \(-0.678246\pi\)
−0.531166 + 0.847268i \(0.678246\pi\)
\(600\) 0 0
\(601\) 5.00000 0.203954 0.101977 0.994787i \(-0.467483\pi\)
0.101977 + 0.994787i \(0.467483\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −11.0000 −0.447214
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) 16.0000 0.646234 0.323117 0.946359i \(-0.395269\pi\)
0.323117 + 0.946359i \(0.395269\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −29.0000 −1.16750 −0.583748 0.811935i \(-0.698414\pi\)
−0.583748 + 0.811935i \(0.698414\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.00000 −0.320513
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 42.0000 1.67465
\(630\) 0 0
\(631\) 47.0000 1.87104 0.935520 0.353273i \(-0.114931\pi\)
0.935520 + 0.353273i \(0.114931\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.0000 −0.555573
\(636\) 0 0
\(637\) −18.0000 −0.713186
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 48.0000 1.89589 0.947943 0.318440i \(-0.103159\pi\)
0.947943 + 0.318440i \(0.103159\pi\)
\(642\) 0 0
\(643\) 42.0000 1.65632 0.828159 0.560493i \(-0.189388\pi\)
0.828159 + 0.560493i \(0.189388\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.00000 0.353827 0.176913 0.984226i \(-0.443389\pi\)
0.176913 + 0.984226i \(0.443389\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.00000 −0.117399 −0.0586995 0.998276i \(-0.518695\pi\)
−0.0586995 + 0.998276i \(0.518695\pi\)
\(654\) 0 0
\(655\) −14.0000 −0.547025
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −46.0000 −1.79191 −0.895953 0.444149i \(-0.853506\pi\)
−0.895953 + 0.444149i \(0.853506\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 14.0000 0.542897
\(666\) 0 0
\(667\) 42.0000 1.62625
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −22.0000 −0.848038 −0.424019 0.905653i \(-0.639381\pi\)
−0.424019 + 0.905653i \(0.639381\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) −32.0000 −1.22805
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.00000 0.344375 0.172188 0.985064i \(-0.444916\pi\)
0.172188 + 0.985064i \(0.444916\pi\)
\(684\) 0 0
\(685\) −3.00000 −0.114624
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 30.0000 1.14291
\(690\) 0 0
\(691\) 1.00000 0.0380418 0.0190209 0.999819i \(-0.493945\pi\)
0.0190209 + 0.999819i \(0.493945\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) 28.0000 1.06058
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.0000 1.43524 0.717620 0.696435i \(-0.245231\pi\)
0.717620 + 0.696435i \(0.245231\pi\)
\(702\) 0 0
\(703\) 42.0000 1.58406
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.00000 −0.300871
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.0000 0.786456
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 56.0000 2.07123
\(732\) 0 0
\(733\) 16.0000 0.590973 0.295487 0.955347i \(-0.404518\pi\)
0.295487 + 0.955347i \(0.404518\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −35.0000 −1.28750 −0.643748 0.765238i \(-0.722621\pi\)
−0.643748 + 0.765238i \(0.722621\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) 15.0000 0.547358 0.273679 0.961821i \(-0.411759\pi\)
0.273679 + 0.961821i \(0.411759\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 6.00000 0.218074 0.109037 0.994038i \(-0.465223\pi\)
0.109037 + 0.994038i \(0.465223\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 36.0000 1.29988
\(768\) 0 0
\(769\) −27.0000 −0.973645 −0.486822 0.873501i \(-0.661844\pi\)
−0.486822 + 0.873501i \(0.661844\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.00000 0.179838 0.0899188 0.995949i \(-0.471339\pi\)
0.0899188 + 0.995949i \(0.471339\pi\)
\(774\) 0 0
\(775\) −3.00000 −0.107763
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 28.0000 1.00320
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20.0000 0.713831
\(786\) 0 0
\(787\) −12.0000 −0.427754 −0.213877 0.976861i \(-0.568609\pi\)
−0.213877 + 0.976861i \(0.568609\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.0000 −0.885545 −0.442773 0.896634i \(-0.646005\pi\)
−0.442773 + 0.896634i \(0.646005\pi\)
\(798\) 0 0
\(799\) 28.0000 0.990569
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −14.0000 −0.493435
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.0000 0.421898 0.210949 0.977497i \(-0.432345\pi\)
0.210949 + 0.977497i \(0.432345\pi\)
\(810\) 0 0
\(811\) 36.0000 1.26413 0.632065 0.774915i \(-0.282207\pi\)
0.632065 + 0.774915i \(0.282207\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.00000 0.0700569
\(816\) 0 0
\(817\) 56.0000 1.95919
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 46.0000 1.60541 0.802706 0.596376i \(-0.203393\pi\)
0.802706 + 0.596376i \(0.203393\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −17.0000 −0.591148 −0.295574 0.955320i \(-0.595511\pi\)
−0.295574 + 0.955320i \(0.595511\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −21.0000 −0.727607
\(834\) 0 0
\(835\) −19.0000 −0.657522
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 23.0000 0.791224
\(846\) 0 0
\(847\) −22.0000 −0.755929
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −42.0000 −1.43974
\(852\) 0 0
\(853\) 20.0000 0.684787 0.342393 0.939557i \(-0.388762\pi\)
0.342393 + 0.939557i \(0.388762\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −49.0000 −1.67381 −0.836904 0.547350i \(-0.815637\pi\)
−0.836904 + 0.547350i \(0.815637\pi\)
\(858\) 0 0
\(859\) 21.0000 0.716511 0.358255 0.933624i \(-0.383372\pi\)
0.358255 + 0.933624i \(0.383372\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.0000 0.578687 0.289343 0.957225i \(-0.406563\pi\)
0.289343 + 0.957225i \(0.406563\pi\)
\(864\) 0 0
\(865\) −9.00000 −0.306009
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −60.0000 −2.03302
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) −52.0000 −1.75592 −0.877958 0.478738i \(-0.841094\pi\)
−0.877958 + 0.478738i \(0.841094\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) −26.0000 −0.874970 −0.437485 0.899226i \(-0.644131\pi\)
−0.437485 + 0.899226i \(0.644131\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −39.0000 −1.30949 −0.654746 0.755849i \(-0.727224\pi\)
−0.654746 + 0.755849i \(0.727224\pi\)
\(888\) 0 0
\(889\) −28.0000 −0.939090
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 28.0000 0.936984
\(894\) 0 0
\(895\) −4.00000 −0.133705
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 18.0000 0.600334
\(900\) 0 0
\(901\) 35.0000 1.16602
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.00000 −0.166206
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.00000 0.0662630 0.0331315 0.999451i \(-0.489452\pi\)
0.0331315 + 0.999451i \(0.489452\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −28.0000 −0.924641
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −72.0000 −2.36991
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −36.0000 −1.18112 −0.590561 0.806993i \(-0.701093\pi\)
−0.590561 + 0.806993i \(0.701093\pi\)
\(930\) 0 0
\(931\) −21.0000 −0.688247
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −16.0000 −0.522697 −0.261349 0.965244i \(-0.584167\pi\)
−0.261349 + 0.965244i \(0.584167\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 50.0000 1.62995 0.814977 0.579494i \(-0.196750\pi\)
0.814977 + 0.579494i \(0.196750\pi\)
\(942\) 0 0
\(943\) −28.0000 −0.911805
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.0000 0.422443 0.211222 0.977438i \(-0.432256\pi\)
0.211222 + 0.977438i \(0.432256\pi\)
\(948\) 0 0
\(949\) 96.0000 3.11629
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) −2.00000 −0.0647185
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.00000 0.193147
\(966\) 0 0
\(967\) −50.0000 −1.60789 −0.803946 0.594703i \(-0.797270\pi\)
−0.803946 + 0.594703i \(0.797270\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 34.0000 1.09111 0.545556 0.838074i \(-0.316319\pi\)
0.545556 + 0.838074i \(0.316319\pi\)
\(972\) 0 0
\(973\) 24.0000 0.769405
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.0000 0.703842 0.351921 0.936030i \(-0.385529\pi\)
0.351921 + 0.936030i \(0.385529\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −51.0000 −1.62665 −0.813324 0.581811i \(-0.802344\pi\)
−0.813324 + 0.581811i \(0.802344\pi\)
\(984\) 0 0
\(985\) 23.0000 0.732841
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −56.0000 −1.78070
\(990\) 0 0
\(991\) −29.0000 −0.921215 −0.460608 0.887604i \(-0.652368\pi\)
−0.460608 + 0.887604i \(0.652368\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −24.0000 −0.760851
\(996\) 0 0
\(997\) 12.0000 0.380044 0.190022 0.981780i \(-0.439144\pi\)
0.190022 + 0.981780i \(0.439144\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8640.2.a.ca.1.1 1
3.2 odd 2 8640.2.a.x.1.1 1
4.3 odd 2 8640.2.a.bm.1.1 1
8.3 odd 2 1080.2.a.b.1.1 1
8.5 even 2 2160.2.a.i.1.1 1
12.11 even 2 8640.2.a.h.1.1 1
24.5 odd 2 2160.2.a.u.1.1 1
24.11 even 2 1080.2.a.h.1.1 yes 1
40.3 even 4 5400.2.f.n.649.2 2
40.19 odd 2 5400.2.a.bh.1.1 1
40.27 even 4 5400.2.f.n.649.1 2
72.11 even 6 3240.2.q.i.1081.1 2
72.43 odd 6 3240.2.q.v.1081.1 2
72.59 even 6 3240.2.q.i.2161.1 2
72.67 odd 6 3240.2.q.v.2161.1 2
120.59 even 2 5400.2.a.bi.1.1 1
120.83 odd 4 5400.2.f.o.649.2 2
120.107 odd 4 5400.2.f.o.649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.a.b.1.1 1 8.3 odd 2
1080.2.a.h.1.1 yes 1 24.11 even 2
2160.2.a.i.1.1 1 8.5 even 2
2160.2.a.u.1.1 1 24.5 odd 2
3240.2.q.i.1081.1 2 72.11 even 6
3240.2.q.i.2161.1 2 72.59 even 6
3240.2.q.v.1081.1 2 72.43 odd 6
3240.2.q.v.2161.1 2 72.67 odd 6
5400.2.a.bh.1.1 1 40.19 odd 2
5400.2.a.bi.1.1 1 120.59 even 2
5400.2.f.n.649.1 2 40.27 even 4
5400.2.f.n.649.2 2 40.3 even 4
5400.2.f.o.649.1 2 120.107 odd 4
5400.2.f.o.649.2 2 120.83 odd 4
8640.2.a.h.1.1 1 12.11 even 2
8640.2.a.x.1.1 1 3.2 odd 2
8640.2.a.bm.1.1 1 4.3 odd 2
8640.2.a.ca.1.1 1 1.1 even 1 trivial