Properties

Label 8640.2.a.bh
Level $8640$
Weight $2$
Character orbit 8640.a
Self dual yes
Analytic conductor $68.991$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8640 = 2^{6} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8640.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(68.9907473464\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{5} - 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{5} - 3 q^{7} + 2 q^{11} + 5 q^{13} - 8 q^{17} - q^{19} + 6 q^{23} + q^{25} - 2 q^{29} - 3 q^{35} - 5 q^{37} - 10 q^{41} - 4 q^{43} + 4 q^{47} + 2 q^{49} + 2 q^{53} + 2 q^{55} + 8 q^{59} - 7 q^{61} + 5 q^{65} + 9 q^{67} + 2 q^{71} - 5 q^{73} - 6 q^{77} - 3 q^{79} - 6 q^{83} - 8 q^{85} - 12 q^{89} - 15 q^{91} - q^{95} - 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 1.00000 0 −3.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8640.2.a.bh 1
3.b odd 2 1 8640.2.a.c 1
4.b odd 2 1 8640.2.a.ce 1
8.b even 2 1 135.2.a.a 1
8.d odd 2 1 2160.2.a.j 1
12.b even 2 1 8640.2.a.bb 1
24.f even 2 1 2160.2.a.v 1
24.h odd 2 1 135.2.a.b yes 1
40.f even 2 1 675.2.a.i 1
40.i odd 4 2 675.2.b.a 2
56.h odd 2 1 6615.2.a.a 1
72.j odd 6 2 405.2.e.b 2
72.n even 6 2 405.2.e.h 2
120.i odd 2 1 675.2.a.a 1
120.w even 4 2 675.2.b.b 2
168.i even 2 1 6615.2.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.2.a.a 1 8.b even 2 1
135.2.a.b yes 1 24.h odd 2 1
405.2.e.b 2 72.j odd 6 2
405.2.e.h 2 72.n even 6 2
675.2.a.a 1 120.i odd 2 1
675.2.a.i 1 40.f even 2 1
675.2.b.a 2 40.i odd 4 2
675.2.b.b 2 120.w even 4 2
2160.2.a.j 1 8.d odd 2 1
2160.2.a.v 1 24.f even 2 1
6615.2.a.a 1 56.h odd 2 1
6615.2.a.j 1 168.i even 2 1
8640.2.a.c 1 3.b odd 2 1
8640.2.a.bb 1 12.b even 2 1
8640.2.a.bh 1 1.a even 1 1 trivial
8640.2.a.ce 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8640))\):

\( T_{7} + 3 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13} - 5 \) Copy content Toggle raw display
\( T_{17} + 8 \) Copy content Toggle raw display
\( T_{19} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 3 \) Copy content Toggle raw display
$11$ \( T - 2 \) Copy content Toggle raw display
$13$ \( T - 5 \) Copy content Toggle raw display
$17$ \( T + 8 \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T + 2 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T + 5 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T - 4 \) Copy content Toggle raw display
$53$ \( T - 2 \) Copy content Toggle raw display
$59$ \( T - 8 \) Copy content Toggle raw display
$61$ \( T + 7 \) Copy content Toggle raw display
$67$ \( T - 9 \) Copy content Toggle raw display
$71$ \( T - 2 \) Copy content Toggle raw display
$73$ \( T + 5 \) Copy content Toggle raw display
$79$ \( T + 3 \) Copy content Toggle raw display
$83$ \( T + 6 \) Copy content Toggle raw display
$89$ \( T + 12 \) Copy content Toggle raw display
$97$ \( T + 13 \) Copy content Toggle raw display
show more
show less