Newspace parameters
Level: | \( N \) | \(=\) | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 864.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(23.5422948407\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.56070144.2 |
Defining polynomial: |
\( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{12}\cdot 3^{4} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \)
:
\(\beta_{1}\) | \(=\) |
\( 6\nu^{2} - 6\nu + 15 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 24\nu^{7} - 84\nu^{6} + 268\nu^{5} - 460\nu^{4} + 468\nu^{3} - 284\nu^{2} - 164\nu + 116 ) / 37 \)
|
\(\beta_{3}\) | \(=\) |
\( 2\nu^{6} - 6\nu^{5} + 24\nu^{4} - 38\nu^{3} + 62\nu^{2} - 44\nu + 25 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -48\nu^{7} + 168\nu^{6} - 684\nu^{5} + 1290\nu^{4} - 2268\nu^{3} + 2196\nu^{2} - 1596\nu + 471 ) / 37 \)
|
\(\beta_{5}\) | \(=\) |
\( -8\nu^{6} + 24\nu^{5} - 84\nu^{4} + 128\nu^{3} - 170\nu^{2} + 110\nu - 43 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -100\nu^{7} + 350\nu^{6} - 1314\nu^{5} + 2410\nu^{4} - 3874\nu^{3} + 3576\nu^{2} - 2622\nu + 787 ) / 37 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -112\nu^{7} + 392\nu^{6} - 1448\nu^{5} + 2640\nu^{4} - 4108\nu^{3} + 3718\nu^{2} - 2318\nu + 618 ) / 37 \)
|
\(\nu\) | \(=\) |
\( ( 2\beta_{7} - 2\beta_{6} + \beta_{2} + 6 ) / 12 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{7} - 2\beta_{6} + \beta_{2} + 2\beta _1 - 24 ) / 12 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -7\beta_{7} + 4\beta_{6} + 4\beta_{4} - 8\beta_{2} + 3\beta _1 - 39 ) / 12 \)
|
\(\nu^{4}\) | \(=\) |
\( ( -16\beta_{7} + 10\beta_{6} + \beta_{5} + 8\beta_{4} + 4\beta_{3} - 17\beta_{2} - 7\beta _1 + 54 ) / 12 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 38\beta_{7} - 14\beta_{6} + 5\beta_{5} - 38\beta_{4} + 20\beta_{3} + 43\beta_{2} - 45\beta _1 + 402 ) / 24 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 196\beta_{7} - 94\beta_{6} - 9\beta_{5} - 154\beta_{4} - 24\beta_{3} + 215\beta_{2} + 23\beta _1 - 120 ) / 24 \)
|
\(\nu^{7}\) | \(=\) |
\( ( -4\beta_{7} - 20\beta_{6} - 49\beta_{5} + 36\beta_{4} - 154\beta_{3} + 7\beta_{2} + 245\beta _1 - 1920 ) / 24 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).
\(n\) | \(325\) | \(353\) | \(703\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
703.1 |
|
0 | 0 | 0 | −6.42091 | 0 | − | 13.8102i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||
703.2 | 0 | 0 | 0 | −6.42091 | 0 | 13.8102i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
703.3 | 0 | 0 | 0 | −5.13244 | 0 | − | 4.02516i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
703.4 | 0 | 0 | 0 | −5.13244 | 0 | 4.02516i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
703.5 | 0 | 0 | 0 | 0.956810 | 0 | − | 6.34610i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
703.6 | 0 | 0 | 0 | 0.956810 | 0 | 6.34610i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
703.7 | 0 | 0 | 0 | 6.59655 | 0 | − | 4.56106i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
703.8 | 0 | 0 | 0 | 6.59655 | 0 | 4.56106i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 864.3.g.b | ✓ | 8 |
3.b | odd | 2 | 1 | 864.3.g.d | yes | 8 | |
4.b | odd | 2 | 1 | inner | 864.3.g.b | ✓ | 8 |
8.b | even | 2 | 1 | 1728.3.g.m | 8 | ||
8.d | odd | 2 | 1 | 1728.3.g.m | 8 | ||
12.b | even | 2 | 1 | 864.3.g.d | yes | 8 | |
24.f | even | 2 | 1 | 1728.3.g.j | 8 | ||
24.h | odd | 2 | 1 | 1728.3.g.j | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
864.3.g.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
864.3.g.b | ✓ | 8 | 4.b | odd | 2 | 1 | inner |
864.3.g.d | yes | 8 | 3.b | odd | 2 | 1 | |
864.3.g.d | yes | 8 | 12.b | even | 2 | 1 | |
1728.3.g.j | 8 | 24.f | even | 2 | 1 | ||
1728.3.g.j | 8 | 24.h | odd | 2 | 1 | ||
1728.3.g.m | 8 | 8.b | even | 2 | 1 | ||
1728.3.g.m | 8 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 4T_{5}^{3} - 48T_{5}^{2} - 176T_{5} + 208 \)
acting on \(S_{3}^{\mathrm{new}}(864, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} \)
$3$
\( T^{8} \)
$5$
\( (T^{4} + 4 T^{3} - 48 T^{2} - 176 T + 208)^{2} \)
$7$
\( T^{8} + 268 T^{6} + 16566 T^{4} + \cdots + 2588881 \)
$11$
\( T^{8} + 400 T^{6} + 43296 T^{4} + \cdots + 891136 \)
$13$
\( (T^{4} - 4 T^{3} - 282 T^{2} + 2300 T - 3167)^{2} \)
$17$
\( (T^{4} + 12 T^{3} - 720 T^{2} - 3024 T + 5328)^{2} \)
$19$
\( T^{8} + 1548 T^{6} + \cdots + 13809305169 \)
$23$
\( T^{8} + 1360 T^{6} + \cdots + 522762496 \)
$29$
\( (T^{4} - 64 T^{3} - 768 T^{2} + \cdots - 966656)^{2} \)
$31$
\( T^{8} + 1984 T^{6} + \cdots + 7929856 \)
$37$
\( (T^{4} - 12 T^{3} - 2826 T^{2} + \cdots - 661167)^{2} \)
$41$
\( (T^{4} + 80 T^{3} - 768 T^{2} + \cdots - 929792)^{2} \)
$43$
\( T^{8} + 2368 T^{6} + \cdots + 8446345216 \)
$47$
\( T^{8} + 14800 T^{6} + \cdots + 80138017536256 \)
$53$
\( (T^{4} - 24 T^{3} - 4032 T^{2} + \cdots + 3624192)^{2} \)
$59$
\( T^{8} + 16528 T^{6} + \cdots + 1539862591744 \)
$61$
\( (T^{4} + 68 T^{3} - 6618 T^{2} + \cdots - 11656223)^{2} \)
$67$
\( T^{8} + 8620 T^{6} + \cdots + 701937325489 \)
$71$
\( T^{8} + \cdots + 121012672331776 \)
$73$
\( (T^{4} - 36 T^{3} - 12186 T^{2} + \cdots + 1325601)^{2} \)
$79$
\( T^{8} + 8620 T^{6} + \cdots + 40981548721 \)
$83$
\( T^{8} + 46912 T^{6} + \cdots + 64\!\cdots\!44 \)
$89$
\( (T^{4} - 84 T^{3} - 8784 T^{2} + \cdots - 146736)^{2} \)
$97$
\( (T^{4} - 52 T^{3} - 15114 T^{2} + \cdots + 32388241)^{2} \)
show more
show less