Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [864,2,Mod(97,864)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(864, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("864.97");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 864.y (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.89907473464\) |
Analytic rank: | \(0\) |
Dimension: | \(54\) |
Relative dimension: | \(9\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 | 0 | −1.68626 | − | 0.395655i | 0 | −2.65901 | − | 0.967801i | 0 | −0.872194 | + | 4.94646i | 0 | 2.68691 | + | 1.33435i | 0 | ||||||||||
97.2 | 0 | −1.59135 | + | 0.683824i | 0 | 2.16034 | + | 0.786299i | 0 | 0.181183 | − | 1.02754i | 0 | 2.06477 | − | 2.17640i | 0 | ||||||||||
97.3 | 0 | −1.06169 | − | 1.36851i | 0 | 0.217711 | + | 0.0792403i | 0 | 0.399809 | − | 2.26743i | 0 | −0.745646 | + | 2.90586i | 0 | ||||||||||
97.4 | 0 | −1.00024 | + | 1.41404i | 0 | −3.61346 | − | 1.31519i | 0 | 0.621731 | − | 3.52601i | 0 | −0.999043 | − | 2.82877i | 0 | ||||||||||
97.5 | 0 | −0.146186 | − | 1.72587i | 0 | 2.31520 | + | 0.842664i | 0 | −0.690140 | + | 3.91398i | 0 | −2.95726 | + | 0.504595i | 0 | ||||||||||
97.6 | 0 | 0.256084 | + | 1.71302i | 0 | −1.06964 | − | 0.389317i | 0 | −0.738542 | + | 4.18848i | 0 | −2.86884 | + | 0.877351i | 0 | ||||||||||
97.7 | 0 | 1.11120 | − | 1.32862i | 0 | −0.779464 | − | 0.283702i | 0 | 0.260701 | − | 1.47851i | 0 | −0.530450 | − | 2.95273i | 0 | ||||||||||
97.8 | 0 | 1.53630 | + | 0.799856i | 0 | −1.92089 | − | 0.699146i | 0 | 0.00661950 | − | 0.0375410i | 0 | 1.72046 | + | 2.45764i | 0 | ||||||||||
97.9 | 0 | 1.64243 | + | 0.549936i | 0 | 3.46982 | + | 1.26291i | 0 | 0.136240 | − | 0.772655i | 0 | 2.39514 | + | 1.80646i | 0 | ||||||||||
193.1 | 0 | −1.72098 | − | 0.195544i | 0 | 0.359864 | − | 2.04089i | 0 | 2.05212 | − | 1.72193i | 0 | 2.92353 | + | 0.673052i | 0 | ||||||||||
193.2 | 0 | −1.67597 | + | 0.437160i | 0 | −0.158606 | + | 0.899497i | 0 | −1.25116 | + | 1.04985i | 0 | 2.61778 | − | 1.46534i | 0 | ||||||||||
193.3 | 0 | −0.661519 | − | 1.60075i | 0 | 0.197119 | − | 1.11792i | 0 | −0.270013 | + | 0.226568i | 0 | −2.12478 | + | 2.11785i | 0 | ||||||||||
193.4 | 0 | −0.523926 | + | 1.65091i | 0 | −0.649143 | + | 3.68147i | 0 | 1.60562 | − | 1.34727i | 0 | −2.45100 | − | 1.72991i | 0 | ||||||||||
193.5 | 0 | −0.0599758 | + | 1.73101i | 0 | 0.392840 | − | 2.22791i | 0 | −3.55853 | + | 2.98596i | 0 | −2.99281 | − | 0.207638i | 0 | ||||||||||
193.6 | 0 | 0.527750 | − | 1.64969i | 0 | −0.220114 | + | 1.24833i | 0 | −2.06659 | + | 1.73408i | 0 | −2.44296 | − | 1.74125i | 0 | ||||||||||
193.7 | 0 | 1.17779 | + | 1.26996i | 0 | 0.191385 | − | 1.08540i | 0 | 2.62195 | − | 2.20007i | 0 | −0.225616 | + | 2.99150i | 0 | ||||||||||
193.8 | 0 | 1.41286 | − | 1.00191i | 0 | 0.727972 | − | 4.12853i | 0 | −0.397562 | + | 0.333594i | 0 | 0.992364 | − | 2.83112i | 0 | ||||||||||
193.9 | 0 | 1.69762 | + | 0.343652i | 0 | −0.494020 | + | 2.80173i | 0 | −1.80000 | + | 1.51038i | 0 | 2.76381 | + | 1.16678i | 0 | ||||||||||
385.1 | 0 | −1.72098 | + | 0.195544i | 0 | 0.359864 | + | 2.04089i | 0 | 2.05212 | + | 1.72193i | 0 | 2.92353 | − | 0.673052i | 0 | ||||||||||
385.2 | 0 | −1.67597 | − | 0.437160i | 0 | −0.158606 | − | 0.899497i | 0 | −1.25116 | − | 1.04985i | 0 | 2.61778 | + | 1.46534i | 0 | ||||||||||
See all 54 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 864.2.y.b | ✓ | 54 |
4.b | odd | 2 | 1 | 864.2.y.c | yes | 54 | |
27.e | even | 9 | 1 | inner | 864.2.y.b | ✓ | 54 |
108.j | odd | 18 | 1 | 864.2.y.c | yes | 54 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
864.2.y.b | ✓ | 54 | 1.a | even | 1 | 1 | trivial |
864.2.y.b | ✓ | 54 | 27.e | even | 9 | 1 | inner |
864.2.y.c | yes | 54 | 4.b | odd | 2 | 1 | |
864.2.y.c | yes | 54 | 108.j | odd | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(864, [\chi])\):
\( T_{5}^{54} + 26 T_{5}^{51} + 54 T_{5}^{49} + 4271 T_{5}^{48} + 1908 T_{5}^{47} - 4941 T_{5}^{46} + 14126 T_{5}^{45} - 40653 T_{5}^{44} + 718182 T_{5}^{43} + 13296992 T_{5}^{42} - 2697336 T_{5}^{41} + \cdots + 6135275584 \)
|
\( T_{7}^{54} + 9 T_{7}^{52} - 106 T_{7}^{51} - 243 T_{7}^{50} - 84 T_{7}^{49} + 13673 T_{7}^{48} + 3924 T_{7}^{47} + 112917 T_{7}^{46} - 800116 T_{7}^{45} - 124686 T_{7}^{44} - 3763170 T_{7}^{43} + \cdots + 1043846369344 \)
|